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Abstract

Using the notion of η-convex functions as generalization of convex functions, we estimate the dif-
ference between the middle and right terms in Hermite-Hadamard-Fejer inequality for differentiable
mappings. Also as an application we give an error estimate for midpoint formula.

Keywords: η-convex function; Hermite-Hadamard-Fejer inequality.
2010 MSC: Primary 26A51; Secondary 25D15.

1. Introduction and Preliminaries

The elegance in shape and properties of convex functions makes it attractive to study this kind of
functions in mathematical analysis. It should be noticed that in new problems related to convexity,
generalized notions about convex functions are required to obtain applicable results. During recently
years many efforts have gone on generalization of notion of convex functions. Most important gen-
eralizations can be found in works that change the form of defining of functions to a generalized
form such as quasi-convex [1], pseudo-convex [7], strongly convex [9], logarithmically convex [8],
approximately convex [5], midconvex [6] functions etc.

On the other hand Hermite-Hadamard-Fejer inequality, an interesting result related to convex
functions has been proved in [4] as the following:

Theorem 1.1. Let f : [a, b]→ R be a convex function. Then

f(
a+ b

2
)

∫ b

a

g(x)dx ≤
∫ b

a

f(x)g(x)dx ≤ f(a) + f(b)

2

∫ b

a

g(x)dx, (1.1)

where g : [a, b]→ R+ = [0,+∞) is integrable and symmetric about x = a+b
2

(
g(x) = g(a+b−x),∀x ∈

[a, b]
)
.
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If in (1.1) we consider g ≡ 1 then we obtain Hermite-Hadamard inequality:

f(
a+ b

2
) ≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
. (1.2)

An interesting question in (1.2), was estimating the difference between left and middle terms and
between right and middle terms. In [2], the difference between middle and right terms in (1.2) has
been estimated as the following:

Theorem 1.2. Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with a < b. If |f ′|
is convex on [a, b], then the following inequality holds:∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx
∣∣∣ ≤ b− a

8

(
|f ′(a)|+ |f ′(b)|

)
.

Motivated by these works we introduce the notion of η-convex functions as generalization of
convex functions and estimate the difference between middle and left terms in (1.1), when |f ′| is an
η-convex function. Also as an application we give an error estimate for midpoint formula.

Definition 1.3. [3] Let I be an interval in real line R. A function f : I → R is called convex with
respect to bifunction η : R× R→ R (briefly η-convex), if

f(tx+ (1− t)y) ≤ f(y) + tη
(
f(x), f(y)

)
(1.3)

for all x, y ∈ I and t ∈ [0, 1].

In fact above definition geometrically says that if a function is η-convex on I, then it’s graph
between any x, y ∈ I is on or under the path starting from

(
y, f(y)

)
and ending at

(
x, f(y) +

η(f(x), f(y))
)
. If f(x) should be the end point of the path for every x, y ∈ I, then we have

η(x, y) = x − y and the function reduces to a convex one. Note that by taking x = y in (1.3)
we get tη(f(x), f(x)) ≥ 0 for any x ∈ I and t ∈ [0, 1] which implies that

η(f(x), f(x)) ≥ 0

for any x ∈ I. Also if we take t = 1 in (1.3) we get

f(x)− f(y) ≤ η
(
f(x), f(y)

)
for any x, y ∈ I. If f : I → R is a convex function and η : I × I → R is an arbitrary bifunction that
satisfies

η(x, y) ≥ x− y

for any x, y ∈ I, then

f(tx+ (1− t)y) ≤ f(y) + t[f(x)− f(y)] ≤ f(y) + tη
(
f(x), f(y)

)
showing that f is η-convex.

There are simple examples about η-convexity of a function([3]).
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Example 1.4. (1) For a convex function f , we may find another function η other than the function
η(x, y) = x− y such that f is η-convex. Consider f(x) = x2 and η(x, y) = 2x+ y. Then we have

f
(
λx+ (1− λ)y

)
=
(
λx+ (1− λ)y

)2 ≤
y2 + λx2 + λ(1− λ)2xy ≤ y2 + λx2 + λ(1− λ)(x2 + y2) ≤

y2 + λ(x2 + x2 + y2) = y2 + λ(2x2 + y2) = f(y) + λη
(
f(x), f(y)

)
for all x, y ∈ R and λ ∈ (0, 1). Also the facts x2 ≤ y2 + (2x2 + y2) and y2 ≤ y2, for all x, y ∈ R show
the correctness of inequality for λ = 1 and λ = 0 respectively which means that f is η-convex. Note
that the function f(x) = x2 is η-convex w.r.t all η(x, y) = ax+ by with a ≥ 1, b ≥ −1 and x, y ∈ R.

(2) Consider a function f : R→ R defined as

f(x) =

{
−x, x ≥ 0;
x, x < 0.

and define a bifunction η as η(x, y) = −x− y, for all x, y ∈ R− = (−∞, 0]. It is not hard to check
that f is an η-convex function but not a convex one.

(3) Define the function f : R+ → R+ as f(x) =

{
x, 0 ≤ x ≤ 1;
1, x > 1.

and a bifunction η : R+×R+ →

R+ as η(x, y) =

{
x+ y, x ≤ y;
2(x+ y), x > y.

Then f is η-convex but is not convex.

The first result is the fact that any η-convex function with a bounded bifunction η from above,
satisfies the Lipschitz condition. Two definitions are required.

Definition 1.5. [10] A function f : [a, b]→ R is absolutely continuous on [a, b] if corresponding to
any ε > 0 there exists a δ > 0 such that for any collection {ai, bi}n1 of disjoint open intervals of [a, b]
with

∑n
1 (bi − ai) < δ,

∑n
1 |f(bi)− f(ai)| < ε.

Definition 1.6. [10] A function f : [a, b]→ R is said to satisfy Lipschitz condition on [a, b] if there
is a constant K so that for any two points x, y ∈ [a, b], |f(x)− f(y)| ≤ K|x− y|.

Lemma 1.7. Suppose that f : I → R is an η-convex function and η is bounded from above on
f(I)× f(I). Then f satisfies the Lipschitz condition on any closed interval [a, b] contained in I◦, the
interior of I. Hence, f is absolutely continuous on [a, b] and continuous on I◦.

Proof . Let Mη be the upper bound of η on f(I) × f(I). Consider closed interval [a, b] in I◦ and
choose ε > 0 such that [a− ε, b+ ε] belongs to I. Suppose that x, y are distinct points of [a, b]. Set

z = y+ ε
|y−x|(y−x) and t = |y−x|

ε+|y−x| . So it is not hard to see that z ∈ [a−ε, b+ε] and y = tz+(1−t)x.
Then

f(y) ≤ f(x) + tη(f(z), f(x)) ≤ f(x) + tMη.

This implies that

f(y)− f(x) ≤ tMη =
|y − x|

ε+ |y − x|
Mη ≤

|y − x|
ε

Mη = K |y − x| ,

where K = Mη

ε
.
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Also if we change the place of x, y in above argument we have f(x)−f(y) ≤ K |y − x|. Therefore
| f(y)− f(x) |≤ K |y − x|.

It follows that if we choose δ < ε/K, then f is absolutely continuous. Finally since [a, b] is
arbitrary on I◦, then f is continuous on I◦. �

As a consequence of Lemma 1.7, an η-convex function f : [a, b] → R where η is bounded from
above on f([a, b])× f([a, b]) is integrable.

2. Main Result

The first result of this section is a lemma that is generalization of Lemma 2.1 in [2].

Lemma 2.1. Suppose that f : [a, b]→ R is a differentiable function, g : [a, b]→ R+ is a continuous
function and f ′ is an integrable function on [a, b]. Then

f(a) + f(b)

2

∫ b

a

g(x)dx−
∫ b

a

f(x)g(x)dx =

1

2

∫ b

a

∫ x

a

g(u)f ′(x)dudx− 1

2

∫ b

a

∫ b

x

g(u)f ′(x)dudx.

Proof . By Leibniz integral rule and integration by parts we have∫ b

a

f(x)g(x)dx =

∫ b

a

f(x)
(∫ x

a

g(u)du
)′
dx = f(b)

∫ b

a

g(u)du−
∫ b

a

∫ x

a

g(u)f ′(x)dudx. (2.1)

With the same argument∫ b

a

f(x)g(x)dx =

∫ b

a

f(x)
(
−
∫ b

x

g(u)du
)′
dx = f(a)

∫ b

a

g(u)du+

∫ b

a

∫ b

x

g(u)f ′(x)dudx. (2.2)

Adding relations (2.1) and (2.2), gives the result. �

The following lemma is a consequence of lemma 2.1.

Lemma 2.2. Suppose that f : [a, b]→ R is a differentiable function, g : [a, b]→ R+ is a continuous
function and symmetric about a+b

2
and f ′ is an integrable function on [a, b]. Then

f(a) + f(b)

2

∫ b

a

g(x)dx−
∫ b

a

f(x)g(x)dx =

(b− a)

4

{∫ 1

0

(∫ 1−t
2
a+ 1+t

2
b

1+t
2
a+ 1−t

2
b

g(u)du

)
f ′
(1 + t

2
a+

1− t
2

b
)
dt+ (2.3)

∫ 1

0

(∫ 1−t
2
a+ 1+t

2
b

1+t
2
a+ 1−t

2
b

g(u)du

)
f ′
(1− t

2
a+

1 + t

2
b
)
dt.

}
Proof . From Lemma 2.1 we can see

I =
f(a) + f(b)

2

∫ b

a

g(x)dx−
∫ b

a

f(x)g(x)dx =

1

2

{∫ a+b
2

a

∫ x

a

g(u)f ′(x)dudx+

∫ b

a+b
2

∫ x

a

g(u)f ′(x)dudx− (2.4)

∫ a+b
2

a

∫ b

x

g(u)f ′(x)dudx−
∫ b

a+b
2

∫ b

x

g(u)f ′(x)dudx.

}
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By changing the variable x = 1+t
2
a+ 1−t

2
b and x = 1−t

2
a+ 1+t

2
b in (2.4) we have

I =
b− a

4

{∫ 1

0

∫ 1+t
2
a+ 1−t

2
b

a

g(u)f ′(
1 + t

2
a+

1− t
2

b)dudt+ (2.5)

∫ 1

0

∫ 1−t
2
a+ 1+t

2
b

a

g(u)f ′(
1− t

2
a+

1 + t

2
b)dudt− (2.6)∫ 1

0

∫ b

1+t
2
a+ 1−t

2
b

g(u)f ′(
1 + t

2
a+

1− t
2

b)dudt− (2.7)

∫ 1

0

∫ b

1−t
2
a+ 1+t

2
b

g(u)f ′(
1− t

2
a+

1 + t

2
b)dudt.

}
(2.8)

Consider (2.5) with (2.7) and consider (2.6) with (2.8) together. Then

I =
b− a

4

{∫ 1

0

[
2

∫ 1+t
2
a+ 1−t

2
b

a

g(u)du−
∫ b

a

g(u)du
]
f ′(

1 + t

2
a+

1− t
2

b)dt+ (2.9)

∫ 1

0

[
2

∫ 1−t
2
a+ 1+t

2
b

a

g(u)du−
∫ b

a

g(u)du
]
f ′(

1− t
2

a+
1 + t

2
b)dt.

}
Since g is symmetric with respect to a+b

2
then

2

∫ 1+t
2
a+ 1−t

2
b

a

g(u)du−
∫ b

a

g(u)du =

∫ 1−t
2
a+ 1+t

2
b

1+t
2
a+ 1−t

2
b

g(u)du, (2.10)

and

2

∫ 1−t
2
a+ 1+t

2
b

a

g(u)du−
∫ b

a

g(u)du =

∫ 1−t
2
a+ 1+t

2
b

1+t
2
a+ 1−t

2
b

g(u)du. (2.11)

Implying (2.10) and (2.11) in (2.9) we have

I =
(b− a)

4

{∫ 1

0

(∫ 1−t
2
a+ 1+t

2
b

1+t
2
a+ 1−t

2
b

g(u)du

)
f ′
(1 + t

2
a+

1− t
2

b
)
dt+

∫ 1

0

(∫ 1−t
2
a+ 1+t

2
b

1+t
2
a+ 1−t

2
b

g(u)du

)
f ′
(1− t

2
a+

1 + t

2
b
)
dt.

}
�

Remark 2.3. Lemma 2.1 and 2.2 are equivalent to Lemma 2.1 in [2], if we set g ≡ 1.

Based on Lemma 2.2, we obtain the main theorem of the paper.

Theorem 2.4. Suppose that f : [a, b]→ R is a differentiable function, g : [a, b]→ R+ is a continuous
function and symmetric about a+b

2
and |f ′| is an η-convex function where η is bounded from above on

[a, b]. Then ∣∣∣∣f(a) + f(b)

2

∫ b

a

g(x)dx−
∫ b

a

f(x)g(x)dx

∣∣∣∣ ≤
(b− a)

4

[
2
∣∣f ′(b)∣∣+

∣∣η(f ′(a), f ′(b)
)∣∣] ∫ 1

0

∫ 1−t
2
a+ 1+t

2
b

1+t
2
a+ 1−t

2
b

g(u)dudt. (2.12)
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Proof . From Lemma 2.2 and the fact that |f ′| is η-convex where η is bounded from above we have∣∣∣∣f(a) + f(b)

2

∫ b

a

g(x)dx−
∫ b

a

f(x)g(x)dx

∣∣∣∣ ≤
(b− a)

4

∫ 1

0

∫ 1−t
2
a+ 1+t

2
b

1+t
2
a+ 1−t

2
b

g(u)
[∣∣f ′(1 + t

2
a+

1− t
2

b
)∣∣+

∣∣f ′(1− t
2

a+
1 + t

2
b
)∣∣]dudt ≤

(b− a)

4

∫ 1

0

∫ 1−t
2
a+ 1+t

2
b

1+t
2
a+ 1−t

2
b

g(u)
[
|f ′(b)|+ 1 + t

2
η
(
|f ′(a)|, |f ′(b)|

)
+ |f ′(b)|+ 1− t

2
η
(
|f ′(a)|, |f ′(b)|

)]
dudt =

(b− a)

4

[
2
∣∣f ′(b)∣∣+

∣∣η(f ′(a), f ′(b)
)∣∣] ∫ 1

0

∫ 1−t
2
a+ 1+t

2
b

1+t
2
a+ 1−t

2
b

g(u)dudt.

�

Remark 2.5. Theorem 2.4 reduces to Theorem 1.2, if we consider g ≡ 1 and η(x, y) = x− y for all
x, y ∈ [a, b].

Finally as an application of Theorem 2.4, we give an error estimate for midpoint formula that is
generalization of Proposition 4.1 in [2].

Suppose that d is a partition a = x0 < x1 < · · · < xn−1 < xn = b of interval [a, b]. Consider
formula ∫ b

a

f(x)g(x)dx = T (f, g, d) + E(f, g, d),

where

T (f, g, d) =
n−1∑
i=0

f(xi) + f(xi+1)

2

∫ xi+1

xi

g(x)dx

and E(f, g, d) is the approximation error.

Theorem 2.6. Suppose that f : [a, b]→ R is a differentiable function, g : [a, b]→ R+ is a continuous
function and symmetric with respect to a+b

2
and |f ′| is an η-convex function where η is bounded from

above on [a, b]. Then∣∣∣E(f, g, d)
∣∣∣ ≤ n−1∑

i=0

(xi+1 − xi)
4

[
2
∣∣f ′(xi+1)

∣∣+
∣∣η(f ′(xi), f ′(xi+1)

)∣∣] ∫ 1

0

∫ 1−t
2
xi+

1+t
2
xi+1

1+t
2
xi+

1−t
2
xi+1

g(x)dxdt.

Proof . It is enough to apply Theorem 2.4 on the subinterval [xi, xi+1] (i = 0, 1, · · · , n − 1) of
the partition d for interval [a, b], and to sum all achieved inequalities over i and then using triangle
inequality. �
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