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Abstract

In this paper we present new iterative algorithms in convex metric spaces. We show that these
iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then
we make the comparison of their rate of convergence. Additionally, numerical examples for these
iteration processes are given.
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1. Introduction and Preliminaries

Most of the real world problems of applied sciences are, in general, functional equations. Such
equations can be written as fixed point equations. Then, it is necessary to develop an iterative
process which approximate the solution of these equations that has a good rate of convergence.

Many studies in the field of fixed point theory concerning the existence and uniqueness of fixed
points of singlevalued contractions have been developed using basic iterative algorithms, such as :
Picard iteration, Krasnoselksii, Mann and Ishikawa iterative processes. Over the years the interest
regarding the speed of convergence of such iterations grew very fast. For example, many authors
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considered numerous iteration processes and studied their rate of convergence. For this see [1]-[4], [6]-
[8] and [10]-[14]. Some iterations were introduced to study the fixed points of the contractions. Also,
others [12] were introduced for the context of nonexpansive mappings. Furthermore, some authors
[6] compared the rate of convergence for some iterative algorithms for the class of quasi-contractions.
Finally, since the class of convex metric spaces is larger than the well-known class of linear normed
spaces, we shall work in the context of convex metric spaces introduced by W. Takahashi.

Our aim is to introduce new iteration processes and prove that these are faster than most of the
classical iterations found in literature, in suitable circumstances . We support analytic proof by some
numerical examples.

In the present research paper, we work on a nonlinear domain, more explicitly on a convex metric
space. Following [15], let (X, d) a metric space and W : X × X × [0, 1] → X a mapping called a
convexity structure. If

d (u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y), for all u, x, y ∈ X and λ ∈ [0, 1],
then (X, d,W ) is called a convex metric space. Additionally, following [16], we have that W (x, y, 0) =
y, for all x, y ∈ X.
A nonempty subset C of a convex metric space X is convex, if W (x, y, λ) ∈ C, for all x, y ∈ C.

We remind the reader of two important basic example of convex metric spaces : CAT (0) spaces
and linear normed spaces. For details, we let the reader follow [5] and [15]. Other important examples
are : hyperbolic spaces introduced by Goebel and Kirk and hyperbolic spaces in the sense of Reich
and Safrir. For details one can follow : [7] and [12].

Simplifying some existing iteration processes in the literature, we recall the definition of Machado
from [9] of general convex combinations defined on convex metric spaces:
For a1, . . . , an ∈ X and ϕ1, . . . , ϕn ∈ [0, 1] with

∑n
i=1 ϕi = 1, we define the multiple convex combina-

tion of a1, . . . , an

W (a1, . . . , an;ϕ1, . . . , ϕn) = W

(
W

(
a1, . . . , an−1;

ϕ1

1− ϕn
, . . . ,

ϕn−1
1− ϕn

)
, an; 1− ϕn

)
, if ϕn 6= 1

and W (a1, . . . , an; 0, . . . , 1) = an, if ϕn = 1.
In the next section, we will work in the cases when n = 2 and n = 3. For the simplicity of this

remark, we consider that ϕn 6= 1. The other case is obvious and follows from the above definition.
We make the convention that, for n = 2, we have:

W (a1, a2;ϕ1, ϕ2) = W

(
W

(
a1, a1;

ϕ1

1− ϕ2

)
, a2; 1− ϕ2

)
= W (a1, a2; 1− ϕ2) = W (a1, a2, ϕ1), where

ϕ1 + ϕ2 = 1 .
Furthermore, we remind that we have used the following property of convex metric spaces :

W (x, x, λ) = x, ∀x ∈ X and λ ∈ [0, 1]. For n = 3, we have that

W (a1, a2, a3;ϕ1, ϕ2, ϕ3) = W

(
W

(
a1, a2;

ϕ1

1− ϕ3

,
ϕ2

1− ϕ3

)
, a3; 1− ϕ3

)
= W (b3, a3; 1− ϕ3), where

b3 = W

(
a1, a2;

ϕ1

1− ϕ3

,
ϕ2

1− ϕ3

)
= W

(
a1, a2; 1− ϕ2

1− ϕ3

)
, as in the case when n = 2. Also, we

have that ϕ1 + ϕ2 + ϕ3 = 1.
In the next sections, we will work under the definition of convex metric spaces and with the

notions of single-valued contractions. We recall here this concept.

Definition 1.1. Let (X, d) be a metric space and T : X → X an operator. We say that T is a
δ-contraction if there exists δ ∈ [0, 1), such that :
d (T (x), T (y)) ≤ δd(x, y), for each x, y ∈ X.
For the simplicity of notations, we will use Tx instead of T (x), for each x ∈ X.
Also, if (X, d) is a complete metric space, then T has a unique fixed point in X.
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As we shall present some iterative algorithms defined by multiple convex combinations and com-
pare their rate of convergence, we shall remind some defintions of convergence suitable for the case
of metric spaces. For details, see [6], [10] and [1].

Definition 1.2. Let an and bn be two sequences of positive numbers that converge to a, respectively
b. Assume that there exist the following limit

lim
n→∞

|an − a|
|bn − b|

= l,

(i) If l = 0, then it is said that {an} converge faster to a than {bn} to b.
(ii) If 0 < l <∞, then it is said that {an} and {bn} have the same rate of convergence.

Definition 1.3. Suppose that we have two iteration sequences {un} and {vn} both converging to
a fixed point p.
Let {an} and {bn} be two sequences of positive numbers, such that :

d(un, p) ≤ an, for all n ∈ N,
d(vn, p) ≤ bn, for all n ∈ N,

where {an} and {bn} converging to 0. If {an} converge faster than {bn} in the sense of (Definition
1.2), then {un} is said to converge faster than {vn} to p.

In this article, we use as references the articles of Abbas, Nazir, Gursoy, Karakaya and Berinde.
In [1], [8] and [4]. The authors used for comparing the rate of convergence of new iterations with
Picard iteration, the definitions (1.2) and (1.3).

In [11], [6] and [4], Suantai, Berinde et al. made the following remark : that the original definition
for comparison of rate of convergence depends on the sequences {an}, {bn}, {cn}, {βn} and {αn},
where the already presented sequences appear as auxiliary sequences in some iterative processes.
Therefore, the definitions (1.2) and (1.3) are not consistent and this method of comparing the rate
of convergence of two iterative algorithms is unclear.

In [11], Phuengrattana and Suantai proposed a new definition in convex metric spaces (see [6]).

Definition 1.4. If {xn} and {un} are two iterative sequences that converge to the unique fixed
point p of T , then {xn} converges faster than {un}, if

lim
n→∞

d(xn, p)

d(un, p)
= 0.

In the case of convex metric spaces, if we use the above definition for comparing the rate of
convergence of two iterative schemes, then we need the following property (see [6] and [11]).

Remark 1.5. For each x, y, z ∈ X and λ ∈ [0, 1], we have that
d (z,W (x, y, λ)) ≥ (1− λ)d(z, y)− λd(z, x).

In the entire fixed point literature, there are a lot of classical iteration schemes defined on normed
linear spaces and on metric spaces endowed with a convexity structure. Following [6] and [10], we
shall remind some of them, but with the remark that, in the research article [10], the authors use a
modified version of convex metric space, that is the hyperbolic space in the sense of Goebel and Kirk.
So, the iterative schemes will be defined with the inverse order of the two sequence terms appearing
in the convexity structure W :
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Let C be a convex subset of the convex metric space (X, d,W ) and T : C → C be a contraction
mapping. Moreover, let αn, bn an be sequences in (0, 1). The classical Noor iteration is

xn+1 = W (Tyn, xn, αn)

yn = W (Tzn, xn, bn)

zn = W (Txn, xn, an) .

(1.1)

Putting an = 0 we have that zn = xn, for each n ∈ N, we get the well know Ishikawa iteration in
convex metric spaces: {

xn+1 = W (Tyn, xn, αn)

yn = W (Txn, xn, bn) .
(1.2)

Putting an = bn = 0, then yn = zn = xn, for each n ∈ N, we get the well know Mann iteration in
convex metric spaces:

xn+1 = W (Txn, xn, αn) . (1.3)

Furthermore, we remind that we can employ a condition from hyperbolic spaces, which is satisfied
in linear normed spaces, i.e. : W (x, y, λ) = W (y, x, 1 − λ), for each x, y ∈ X and λ ∈ [0, 1]. This
conditions is not at all restrictive and it has the advantage that the iteration terms in the convexity
structure W can be swapped one with another and this does not affect convergence of the fixed point
iteration.

Moreover, we recall the basic fixed point iteration which appears in Banach contraction principle,
that is Picard iteration:

xn+1 = Txn, for each n ∈ N (1.4)

Other interesting iteration algorithms are the implicit iterations. Following [10], we recall:
The implicit Noor iteration 

xn+1 = W (Txn+1, yn, αn)

yn = W (Tyn, zn, bn)

zn = W (Tzn, xn, an) .

(1.5)

Putting an = 0, then zn = xn, for each n ∈ N, we get the implicit Ishikawa iteration in convex metric
spaces: {

xn+1 = W (Txn+1, yn, αn)

yn = W (Tyn, xn, bn) .
(1.6)

Additionally, putting an = bn = 0, it follows that yn = zn = xn, for each n ∈ N; we get the implicit
Mann iteration:

xn+1 = W (Txn+1, xn, αn) . (1.7)

Now, we recall sufficient conditions for the convergence to the fixed point of a contraction mapping
of Noor iteration, respectively implicit Noor iteration.
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Remark 1.6. Since Noor iteration is more general than Ishikawa and Mann iterations, we shall
remind that, the classical Noor iteration (1.1) is convergent to the fixed point p of the contraction
mapping T , if

∑∞
k=0 αk = ∞. In a similar way, since implicit Noor iteration is more general than

implicit Mann and implicit Ishikawa iterations, we remind that implicit Noor algorithm (1.5) is
convergent when

∑∞
k=0(1− αk) =∞.

Following [3], we remind that

Definition 1.7. Let (X, d) be a metric space and T : X → X a map for which there exists the real
numbers a, b and c satisfying 0 < a < 1, 0 < b, c < 1/2 such that for each pair x, y ∈ X, at least one
of the following is true
(z1) d(Tx, Ty) ≤ ad(x, y),
(z2) d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)],
(z3) d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)].
Then T is called a Zamfirescu operator. Morevorer, by [17] ,if (X, d) is a complete metric space,T
has a unique fixed point.

Regarding contraction mappings and Zamfirescu operators, we have the following

Remark 1.8. In [3], in the context of normed linear spaces, it is shown that Picard iteration con-
verges faster than Noor iteration for Zamfirescu operators. The same remark can be applied in the
context of convex metric spaces as well. Since, any contraction is a Zamfirescu operator by con-
dition (z1), the above property remains true for the contraction mappings. Moreover, because of
the complex computations of convergence in the case of some iterative schemes, we will use in the
next sections the condition that T must be a contraction with the contraction constant δ. The same
proofs can be applied in the same way to Zamfirescu operators. We let this as an open problem.

We present our three goals that we will gain throughout the next sections

(A.) Let C be a nonempty convex subset of a normed space E and T : C → C a δ-contraction
map.
In 2005 Suantai [14] introduced a modified Noor iterative method with sequences
{αn}, {βn}, {an}, {bn}, {cn} ⊆ [0, 1] ,x1 = x ∈ C and

xn+1 = αnTyn + βnTzn + (1− αn − βn)xn, n ≥ 1

yn = bnTzn + cnTxn + (1− bn − cn)xn

zn = anTxn + (1− an)xn.

(1.8)

In the case when C is a nonempty convex subset of a convex metric space E, Berinde modified the
above iteration with the use of the convexity structure W and defined the iteration as follows

xn+1 = W

(
Tyn,W

(
Tzn, xn,

βn
1− αn

)
, αn

)
yn = W

(
Tzn,W

(
Txn, xn,

cn
1− bn

)
, bn

)
zn = W (Txn, xn, an) .

(1.9)
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For the convergence of the above iteration to the fixed point of the nonlinear contraction mapping,
we remind the following

Remark 1.9. Following the same article of Berinde [6], the above iteration is convergent when the
next assumptions are satisfied
for each n ∈ N , {αn + βn} ∈ [0, 1] and

∑∞
k=0(αk + βk) =∞.

Moreover, we have that d(xn+1, p) ≤ [1− (1− δ)(αn + βn)] d(xn, p), for each n ∈ N.

Our first goal of the present research article is to find at least a faster iteration that (1.9) with
some assumptions on the sequences {αn}, {βn}, {an}, {bn} and {cn} that makes usage of the defini-
tion of multiple convex combinations introduced by Machado in [9].

(B.) In [2], Agarwal et al. presented a new iteration defined on nonempty convex subset C on
normed spaces, that can be adapted easily on convex metric spaces. This iteration is defined by
x1 = x ∈ C and {

xn+1 = αnTyn + (1− αn)Txn

yn = bnTxn + (1− bn)xn.
(1.10)

The above iteration (1.10) was introduced as an example of an iteration that is faster than Picard
iteration (1.4), with respect to (Definition 1.2) and (Definition 1.3).

In the context of nonempty convex subset C of a convex metric space, the above iteration is
defined by x1 = x ∈ C and {

xn+1 = W (Tyn, Txn, αn)

yn = W (Txn, xn, bn) .
(1.11)

In [1] Abbas and Nazir improved the above iteration and they presented a three-step iteration.
We will present it in the context of the convex metric space

xn+1 = W (Tzn, T yn, αn)

yn = W (Tzn, Txn, bn)

zn = W (Txn, xn, an) .

(1.12)

From the same paper [1], we recall the following convergence concept.

Remark 1.10. The above iteration (1.12) is convergent when the next assumptions are satisfied :
ak ∈ [a, 1− a] ∈ (0, 1) and

∑∞
k=0 αkbkak =∞.

In this case, we have that d(xn+1, p) ≤ δ [1− (1− δ)αnbnan] d(xn, p), for each n ∈ N.

In the fixed point literature we can find other classical iterations. From [8], we will recall them
in the context of convex metric spaces
SP iteration, with x0 = x ∈ C and 

xn+1 = W (Tyn, yn, αn)

yn = W (Tzn, zn, bn)

zn = W (Txn, xn, an) .

(1.13)
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S iteration, with x0 = x ∈ C and {
xn+1 = W (Tyn, Txn, αn)

yn = W (Txn, xn, bn) .
(1.14)

CR iteration, with x0 = x ∈ C and 
xn+1 = W (Tyn, yn, αn)

yn = W (Tzn, Txn, bn)

zn = W (Txn, xn, an) .

(1.15)

Additionally, in [8] Gursoy and Karakaya presented a modified Picard-S hybrid iteration, that is
faster than all of the classical iterations (1.3),(1.2),(1.1),(1.13),(1.14) and (1.15) :

xn+1 = Tyn

yn = W (Tzn, Txn, bn)

zn = W (Txn, xn, an) .

(1.16)

We recall from [8] that the above iteration (1.16) is faster than S iteration (1.14) and the last one is
faster than Picard iteration (1.4). So this iteration answers the question of Agarwal et al., i.e. it is
indeed an example of an iterative process that is faster with respect to convergence than Picard’s.

Moreover, we have the following results concerning iteration (1.16)

Remark 1.11. The iteration (1.16) is convergent when
∑∞

k=0 bkak = ∞. Also, we have that
d(xn+1, p) ≤ δ2 [1− (1− δ)anbn] d(xn, p), for each n ∈ N.

We let the reader get into details for the following remark.

Remark 1.12. When the sequence {αn} satisfies lim
n→∞

αn = 0, iteration (1.16) is faster than iteration

(1.12), in the sense of (Definition 1.2) and (Definition 1.3).

Also, regarding the question of Agarwal, Sintunavarat and Pitea in [13] introduced a new iteration
better than that of Agarwal’s and of Picard. That is
Sn iteration, with x0 = x ∈ C and 

xn+1 = W (Tyn, T zn, αn)

yn = W (Txn, xn, bn)

zn = W (yn, xn, an) .

(1.17)

From the same paper, we recall the assumptions under which the iteration (1.17) is convergent
to the unique fixed point of the contraction mapping.

Remark 1.13. If {αn} ∈ [α, 1 − α], {bn} ∈ [b, 1 − b], {an} ∈ [a, 1 − a] and α, b, a ∈
(

0,
1

2

)
, with

α(2− a) < a, then the iteration (1.17) is faster to the fixed point of T than iteration (1.11).
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It is clearly obvious that this iteration requires stronger conditions that the above ones and so
we can eliminate from our discussion. So, another goal of this paper is to find iterations with better
rate of convergence than (1.16), which implies that the iteration we seek is faster than (1.12),(1.16)
and (1.4), also regarding (Definition 1.2) and (Definition 1.3).

(C.) The last goal of this paper is to present a faster implicit-type Noor iteration, faster than
the already existing in literature implicit Noor iteration (1.5). Then, we want to modify this one
through multiple convex combinations and analyze the rate of convergence.

2. Convergence Analysis

Let impose in the convex metric space the property of hyperbolic spaces in the sense of Goebel and
Kirk, that is W (x, y, λ) = W (y, x, 1 − λ), for each x, y ∈ X and λ ∈ [0, 1]. This property is easily
satisfied in a linear normed space.

The first main result of this section improve Suantai’s iteration (1.9) on convex metric spaces.
The next iteration is an implicit algorithm made by multiple convex combinations. Let’s call it
Suantai implicit 

xn+1 = W (yn, T yn, Txn+1; 1− αn − βn, βn, αn)

yn = W (zn, T zn, T yn; 1− bn − cn, cn, bn)

zn = W (Tzn, xn, an).
In terms of simple convex combinations, this iteration is

xn+1 = W

(
Txn+1,W

(
Tyn, yn,

βn
1− αn

)
;αn

)
yn = W

(
Tyn,W

(
Tzn, zn,

cn
1− bn

)
; bn

)
zn = W (Tzn, xn, an).

(2.1)

Our first results of this section concerns under what condition iteration (2.1) is convergent to the
unique fixed point of a δ-contraction.

Theorem 2.1. Let C be a nonempty, closed and convex subset of a complete convex metric space
X. Let T : C → C be a δ-contraction. Let {an}, {bn}, {cn}, {αn}, {βn}, {bn + cn} and {αn + βn}
sequences in [0, 1] such that

∑∞
k=0(αk + βk) = ∞. Then {xn} in (2.1) is convergent to the unique

fixed point p of T .

Proof . We evaluate
d(zn, p) = d (W (Tzn, xn; an) , p) ≤ and(Tzn, p) + (1− an)d(xn,p) ≤ δand(zn, p) + (1− an)d(xn, p).

Then, we get that d(zn, p) ≤
1− an
1− δan

d(xn, p).

In a similar way, we evaluate

d(yn, p) = d

(
W

(
Tyn,W

(
Tzn, zn,

cn
1− bn

)
; bn

)
, p

)
≤ bnd(Tyn, p) + (1− bn)d

(
W

(
Tzn, zn;

cn
1− bn

)
, p

)
≤

δbnd(yn, p)+(1−bn)

[(
cn

1− bn

)
d(Tzn, p) +

(
1− cn

1− bn

)
d(zn, p)

]
= δbnd(yn, p)+δcnd(zn, p)+(1−

bn − cn)d(zn, p).
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Then, we get that d(yn, p) ≤
1− bn − cn(1− δ)

1− δbn
d(zn, p).

For {xn+1}, we have that

d(xn+1, p) = d

(
W

(
Txn+1,W

(
Tyn, yn,

βn
1− αn

)
;αn

)
, p

)
≤

αnd(Txn+1, p) + (1− αn)d

(
W

(
Tyn, yn;

βn
1− αn

)
, p

)
≤

δαnd(xn+1, p) + (1− αn)

[(
βn

1− αn

)
d(Tyn, p) +

(
1− βn

1− αn

)
d(yn, p)

]
≤

δαnd(xn+1, p) + (δβn + 1− βn − αn) d(yn, p).

Then, we get that d(xn+1, p) ≤
1− αn − (1− δ)βn

1− δαn
d(yn, p).

Combining the above results, we have the estimation

d(xn+1, p) ≤ An · Bn · Cnd(xn, p), where An :=
1− αn − (1− δ)βn

1− δαn
, Bn :=

1− bn − (1− δ)cn
1− δbn

and

Cn :=
1− an
1− δan

, for each n ∈ N.

It is easy to see that, because of δ < 1, results that Cn < 1.
Also,

An =
1− αn − (1− δ)βn

1− δαn
=⇒ 1 − An = 1 − 1− αn − (1− δ)βn

1− δαn
=

(1− δ)(αn + βn)

1− δαn
=⇒ 1 − An ≥

(1− δ)(αn + βn) =⇒ An ≤ 1− (1− δ)(αn + βn).

In a similar manner Bn =
1− bn − (1− δ)cn

1− δbn
≤ 1− (1− δ)(bn + cn). Since δ < 1 and bn + cn ≥ 0, we

have that Bn < 1, for each n ∈ N.
So, d(xn+1, p) ≤ [1− (1− δ)(αn + βn)] d(xn, p). This means that :

d(xn+1, p) ≤
n∏
k=0

[1− (1− δ)(αk + βk)] d(x0, p). (2.2)

In view of the fact that 1− x ≤ e−x, for x ∈ [0, 1], the above inequality (2.2) reduces to

d(xn+1, p) ≤
n∏
k=0

e−(1−δ)(αk+βk)d(x0, p) = e−(1−δ)
∑n

k=0(αk+βk)d(x0, p) .

Since
∑∞

k=0(αk + βk) =∞, letting n→∞, we get
d(xn+1, p)→ 0 ,

where p is the unique fixed point of the δ-contraction operator T . �

As particular cases of iteration (2.1) we get classical iterations, such as implicit Noor, respectively
implicit Ishikawa iterative processes.

Remark 2.2. In (2.1), taking βn = cn = 0, we get Implicit Noor iteration (1.5) and taking βn =
cn = an = 0, we get Implicit Ishikawa iteration (1.6).

In the following we present a Noor-type implicit iteration which is faster than the original implicit
Noor (1.5). Let’s call it Noor implicit II

xn+1 = W (Txn+1, T yn;αn)

yn = W (Tyn, T zn; bn)

zn = W (Tzn, xn, an).

(2.3)
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Now, we present our second result regarding the conditions under which iteration (2.3) is conver-
gent to the unique fixed point of a δ-contraction.

Theorem 2.3. Let C be a nonempty, closed and convex subset of a complete convex metric space
X. Let T : C → C be a δ-contraction. Let {an}, {bn}, {αn} sequences in (0, 1). Then {xn} in (2.3)
is convergent to the unique fixed point p of T .

Proof . First, we evaluate
d(zn, p) = d (W (Tzn, xn, an), p) ≤ and(Tzn, p) + (1− an)d(xn, p) ≤ δand(zn, p) + (1− an)d(xn, p).

That is, d(zn, p) ≤
1− an
1− δan

d(xn, p).

In a similar way, we estimate
d(yn, p) = d (W (Tyn, T zn; bn), p) ≤ bnd(Tyn, p) + (1− bn)d(Tzn, p) ≤ δbnd(yn, p) + δ(1− bn)d(zn, p).

We get that, d(yn, p) ≤ δ · 1− bn
1− δbn

d(zn, p).

For {xn+1}, we have
d(xn+1, p) = d (W (Txn+1, T yn;αn), p) ≤ αnd(Txn+1, p) + (1 − αn)d(Tyn, p) ≤ δαnd(xn+1, p) + δ(1 −
αn)d(yn, p).

We get that, d(xn+1, p) ≤ δ · 1− αn
1− δαn

d(yn, p).

Combining above results, results that :

d(xn+1, p) ≤ δ2 · An ·Bn · Cn · d(xn, p), with An :=
1− αn
1− δαn

, Bn :=
1− bn
1− δbn

, Cn :=
1− an
1− δan

(2.4)

.
From the assumption of contraction operator T that δ ∈ [0, 1) and from the assumption that the
sequences {an}, {bn} and {αn} are positive, it implies that :
An, Bn, Cn < 1, for each n ∈ N. So, we obtain
d(xn+1, p) < δ2 · d(xn, p) ≤ δ2(n+1)d(x0, p).
Letting p → ∞, because of δ < 1, we get d(xn+1, p) → 0, so the sequence {xn} is convergent to the
unique fixed point p of T . �

Now, we present an useful remark concerning iteration (2.3).

Remark 2.4. The above iteration (2.3) has weak hypotheses, because, without any other assump-
tions on the sequences {an}, {bn} and {αn}, d(xn+1, p) < δ2d(xn, p), for each n ∈ N, so is a contraction
sequence.

Iteration (2.3) is faster than Picard iteration (1.4) in the sense of definitions 1.2 and 1.3, as follows

Remark 2.5. In the case of Picard iteration (1.4), the sequence {d(xn, p)} has the term δ between
two consecutive elements. The above iteration (2.3) is evidently faster convergent than Picard it-
eration, because of the term δ2 in the approximation of the sequence {d(xn, p)}, in the sense of
definitions (1.2) and (1.3).

Now, we can combine Gursoy-Karakaya iteration (1.16) with implicit Noor II iteration (2.3). Let’s
call it GKN implicit II :



On new faster fixed point iterative schemes . . . 8 (2017) No. 1, 353-388 363


xn+1 = Tyn

yn = W (Tyn, T zn; bn)

zn = W (Tzn, xn, an).

(2.5)

Theorem 2.6. Let C be a nonempty, closed and convex subset of a complete convex metric space
X. Let T : C → C be a δ-contraction. Let {an}, {bn}, sequences in (0, 1). Then {xn} in (2.5) is
convergent to the unique fixed point p of T .

Proof . First, we estimate
d(zn, p) = d (W (Tzn, xn, an), p) ≤ and(Tzn, p) + (1− an)d(xn, p) ≤ δand(zn, p) + (1− an)d(xn, p).

That is, d(zn, p) ≤
1− an
1− δan

d(xn, p).

In a similar way, we evaluate
d(yn, p) = d (W (Tyn, T zn; bn), p) ≤ bnd(Tyn, p) + (1− bn)d(Tzn, p) ≤ δbnd(yn, p) + δ(1− bn)d(zn, p).

We get that, d(yn, p) ≤ δ · 1− bn
1− δbn

d(zn, p).

For {xn+1}, we have
d(xn+1, p) = d(Tyn, p) ≤ δd(yn, p).
Combining above results, we obtain that :

d(xn+1, p) ≤ δ2 · An ·Bn · d(xn, p), with An :=
1− bn
1− δbn

, Bn :=
1− an
1− δan

(2.6)

.
From the assumption of contraction operator T that δ ∈ [0, 1) and from the assumption that the
sequences {an}, {bn} and {αn} are positive, it implies that :
An, Bn < 1, for each n ∈ N. So, we obtain
d(xn+1, p) < δ2 · d(xn, p) ≤ δ2(n+1)d(x0, p).
Letting p → ∞, because of δ < 1, we get d(xn+1, p) → 0, so the sequence {xn} is convergent to the
unique fixed point p of T . �

Remark 2.7. The above iteration (2.5) has weak hypotheses, because, without any other assump-
tions on the sequences {an}, {bn} and {αn}, d(xn+1, p) < δ2d(xn, p), for each n ∈ N.

In the spirit of definition (1.2) and (1.3), iteration (2.5) is faster than Picard iteration, as follows

Remark 2.8. In the case of Picard iteration (1.4), the sequence {d(xn, p)} has the term δ between
two consecutive elements. The above iteration (2.5) is evidently a faster convergent iteration than
Picard, because of the term δ2 in the approximation of the sequence with the general term {d(xn, p)},
following definitions (1.2) and (1.3).

The next two iterations are modified version of (2.5) through multiple convex combinations (or
simply m.c.c). The iterative scheme presented below will be called GKN implicit II with multiple
convex combinations 1, or simply GKN implicit II m.c.c. 1
xn+1 = Tyn

yn = (Tzn, xn, T yn; 1− bn − cn, cn, bn)

zn = W (Tzn, xn, an),
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and in the case of simple convex combinations
xn+1 = Tyn

yn = W

(
Tyn,W

(
xn, T zn,

cn
1− bn

)
; bn

)
zn = W (Tzn, xn, an).

(2.7)

For our new iteration (2.7), we present the conditions in which our iteration convergences to the
unique fixed point of a δ-contraction, as follows

Theorem 2.9. Let C be a nonempty, closed and convex subset of a complete convex metric space
X. Let T : C → C be a δ-contraction. Let {an}, {bn}, {bn + cn} sequences in (0, 1). Then {xn} in
(2.7) is convergent to the unique fixed point p of T .

Proof . We evaluate the following distance
d(zn, p) = d (W (Tzn, xn, an) , p) ≤ and(Tzn, p) + (1− an)d(xn, p) ≤ δand(zn, p) + (1− an)d(xn, p).

That is, d(zn, p) ≤
1− an
1− δan

d(xn, p).

We estimate the following

d(yn, p) = d

(
W

(
Tyn,W

(
xn, T zn,

cn
1− bn

)
; bn

)
, p

)
≤ bnd(Tyn, p)+

(1− bn)d

(
W

(
xn, T zn;

cn
1− bn

)
, p

)
≤ δbnd(yn, p)+

(1− bn)

[(
cn

1− bn

)
d(xn, p) +

(
1− cn

1− bn

)
d(Tzn, p)

]
≤

δbnd(yn, p) + cnd(xn, p) + δ(1− bn − cn)d(zn, p).

That is, d(yn, p) ≤
cn + δ(1− bn − cn) · 1− an

1− δan
1− δbn

d(xn, p).

For {xn+1}, we have that :
d(xn+1, p) = d(Tyn, p) ≤ δd(yn, p).
Combining these results, we get that

d(xn+1, p) ≤ δ · An · d(xn, p), with An :=
cn + δ(1− bn − cn) · 1− an

1− δan
1− δbn

d(xn, p). (2.8)

Since δ < 1 and {an} is a sequence of positive numbers, we get that
1− an
1− δan

< 1, so d(xn+1, p) <

Bn · d(xn, p), where Bn :=
cn + δ(1− cn)− δbn

1− δbn
.

Because of cn < 1 , for each n ∈ N =⇒ (1− δ)cn + δ < 1, so Bn < 1.
Finally, it implies that d(xn+1, p) ≤ δ · d(xn, p) ≤ δn+1d(x0, p).
Letting n → ∞, because δ < 1, we get that {xn} converges to the unique fixed point p of the
δ-contraction operator T . �

The next remark concerns some particular cases of iteration (2.7).

Remark 2.10. If we put cn = 0 in the above iteration (2.7), we get iteration (2.5).
Additionally, putting αn = 0 in iteration (2.3), we get iteration (2.5).
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Let’s call the next iterative scheme by GKN implicit II with multiple convex combinations 2, or
simply GKN implicit II m.c.c. 2
xn+1 = Tyn

yn = (Tzn, zn, T yn; 1− bn − cn, cn, bn)

zn = W (Tzn, xn, an).
In the case of simple convex combinations, we have

xn+1 = Tyn

yn = W

(
Tyn,W

(
zn, T zn,

cn
1− bn

)
; bn

)
zn = W (Tzn, xn, an).

(2.9)

For the convergence of iteration (2.9) to the unique fixed point of a contraction mapping, we have
the following.

Theorem 2.11. Let C be a nonempty, closed and convex subset of a complete convex metric space
X. Let T : C → C be a δ-contraction. Let {an}, {bn}, {bn + cn} sequences in (0, 1). Then {xn} in
(2.9) is convergent to the unique fixed point p of T .

Proof . We evaluate
d(zn, p) = d (W (Tzn, xn, an) , p) ≤ and(Tzn, p) + (1− an)d(xn, p) ≤ δand(zn, p) + (1− an)d(xn, p).

That is, d(zn, p) ≤
1− an
1− δan

d(xn, p).

Now, we estimate the following distance

d(yn, p) = d

(
W

(
Tyn,W

(
zn, T zn,

cn
1− bn

)
; bn

)
, p

)
≤ bnd(Tyn, p)+

(1− bn)d

(
W

(
zn, T zn;

cn
1− bn

)
, p

)
≤ δbnd(yn, p)+

(1− bn)

[(
cn

1− bn

)
d(zn, p) +

(
1− cn

1− bn

)
d(Tzn, p)

]
≤

δbnd(yn, p) + cnd(zn, p) + δ(1− bn − cn)d(zn, p).

That is, d(yn, p) ≤
cn + δ(1− bn − cn)

1− δbn
d(zn, p).

For {xn+1}, we have
d(xn+1, p) = d(Tyn, p) ≤ δd(yn, p).
Combining the above results, we get that

d(xn+1, p) ≤ δ · An ·Bn · d(xn, p), with An :=
cn + δ(1− bn − cn)

1− δbn
, Bn :=

1− an
1− δan

. (2.10)

Since δ < 1 and {an} is a sequence of positive numbers, we get that
1− an
1− δan

< 1, so d(xn+1, p) <

An · d(xn, p).

Moreover, 1−An =
(1− δ)(1− cn)

1− δbn
> (1− δ)(1− cn), this means that An < 1− (1− δ)(1− cn) < 1.

So, d(xn+1, p) < δd(xn, p) ≤ δn+1d(x0, p).
Letting n → ∞, because δ < 1, we get that {xn} converges to the unique fixed point p of the
δ-contraction operator T . �

A particular case of the iterative process (2.9) is presented in the next remark.
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Remark 2.12. If we put cn = 0 in the above iteration (2.9), we get iteration (2.5).

Let’s call the next iteration GKN implicit II with multiple convex combinations 3, or simply GKN
implicit II m.c.c. 3
xn+1 = Tyn

yn = (Tzn, Txn, T yn; 1− bn − cn, cn, bn)

zn = W (Tzn, xn, an).
, and in the case of simple convex combinations :

xn+1 = Tyn

yn = W

(
Tyn,W

(
Txn, T zn,

cn
1− bn

)
; bn

)
zn = W (Tzn, xn, an).

(2.11)

Now, we shall present a theorem for the convergence of iteration (2.11) to the unique fixed point
of the contraction mapping, as follows.

Theorem 2.13. Let C be a nonempty, closed and convex subset of a complete convex metric space
X. Let T : C → C be a δ-contraction. Let {an}, {bn}, {bn + cn} sequences in (0, 1). Then {xn} in
(2.11) is convergent to the unique fixed point p of T .

Proof . We have that
d(zn, p) = d (W (Tzn, xn, an) , p) ≤ and(Tzn, p) + (1− an)d(xn, p) ≤ δand(zn, p) + (1− an)d(xn, p).

That is, d(zn, p) ≤
1− an
1− δan

d(xn, p).

In a similar way, it follows that

d(yn, p) = d

(
W

(
Tyn,W

(
Txn, T zn,

cn
1− bn

)
; bn

)
, p

)
≤ bnd(Tyn, p)+

(1− bn)d

(
W

(
Txn, T zn;

cn
1− bn

)
, p

)
≤ δbnd(yn, p)+

(1− bn)

[(
cn

1− bn

)
d(Txn, p) +

(
1− cn

1− bn

)
d(Tzn, p)

]
≤

δbnd(yn, p) + δcnd(xn, p) + δ(1− bn − cn)d(zn, p).

That is, d(yn, p) ≤ δ
cn + (1− bn − cn) · 1− an

1− δan
1− δbn

d(xn, p).

For {xn+1}, we have
d(xn+1, p) = d(Tyn, p) ≤ δd(yn, p).
From the above results, we get that

d(xn+1, p) ≤ δ2 · An · d(xn, p), with An :=
cn + (1− bn − cn) · 1− an

1− δan
1− δbn

d(xn, p). (2.12)

Since δ < 1 and {an} is a sequence of positive numbers, we get that
1− an
1− δan

< 1, so d(xn+1, p) <

Bn · d(xn, p), where Bn :=
cn + (1− cn)− bn

1− δbn
=

1− bn
1− δbn

.
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Because of bn < 1 , for each n ∈ N, Bn < 1.
Finally, it implies that d(xn+1, p) < δ2 · d(xn, p) ≤ δ2(n+1)d(x0, p).
Letting n → ∞, because δ < 1, we get that {xn} converges to the unique fixed point p of the
δ-contraction operator T . �

Now we present a particular case of the iteration algorithm (2.11).

Remark 2.14. If we put cn = 0 in the above iteration (2.11), we get iteration (2.5).

Finally, we will study two iterations which are modified implicit Noor II-type iterations through
multiple convex combinations.

Let’s call the first one Implicit Noor II with multiple convex combinations, or simply, IN II m.c.c.
This is defined, through multiple convex combinations, as

xn+1 = W (Tyn, T zn, Txn+1; 1− αn − βn, βn, αn)

yn = W (Tzn, Txn, T yn; 1− bn − cn, cn, bn)

zn = W (Tzn, xn, an).
With simple convex combinations, the iteration become

xn+1 = W

(
Txn+1,W

(
Tzn, T yn;

βn
1− αn

)
;αn

)
yn = W

(
Tyn,W

(
Txn, T zn;

cn
1− bn

)
; bn

)
zn = W (Tzn, xn, an).

(2.13)

Concerning the convergence of the iteration (2.13), we have the following theorem.

Theorem 2.15. Let C be a nonempty, closed and convex subset of a complete convex metric space
X. Let T : C → C be a δ-contraction. Let {an}, {bn}, {αn} ,{bn + cn}, {αn + βn} sequences in
(0, 1). Then {xn} in (2.13) is convergent to the unique fixed point p of T .

Proof . We evaluate the following distance
d(zn, p) = d (W (Tzn, xn, an) , p) ≤ and(Tzn, p) + (1− an)d(xn, p) ≤ δand(zn, p) + (1− an)d(xn, p).

So, we have d(zn, p) ≤
1− an
1− δan

d(xn, p).

In the same manner, we get that

d(yn, p) = d

(
W

(
Tyn,W

(
Txn, T zn;

cn
1− bn

)
; bn

)
, p

)
≤

bnd(Tyn, p) + (1− bn)d

(
W

(
Txn, T zn;

cn
1− bn

)
, p

)
≤

δbnd(yn, p) + (1− bn)

[(
cn

1− bn

)
d(Txn, p) +

(
1− cn

1− bn

)
d(Tzn, p)

]
≤

δbnd(yn, p) + δcnd(xn, p) + δ(1− bn − cn)d(zn, p).

So, d(yn, p) ≤ δ ·
cn + (1− bn − cn) · 1− an

1− δan
1− δbn

d(xn, p).

For {xn}, it follows that

d(xn+1, p) = d

(
W

(
Txn+1,W

(
Tzn, T yn;

βn
1− αn

)
;αn

)
, p

)
≤



368 Alecsa

αnd(Txn+1, p) + (1− αn)d

(
W

(
Tzn, T yn;

βn
1− αn

)
, p

)
≤

δαnd(xn+1, p) + (1− αn)

[(
βn

1− αn

)
d(Tzn, p) +

(
1− βn

1− αn

)
d(Tyn, p)

]
≤

δαnd(xn+1, p) + δ (βnd(zn, p) + (1− αn − βn)d(yn, p)).
So, it follows that

d(xn+1, p) ≤ δ ·
βn ·

1− an
1− δan

+ δ · (1− αn − βn) ·
cn + (1− bn − cn) · 1− an

1− δan
1− δbn

1− δαn
d(xn, p). (2.14)

Because δ < 1, we get that
1− an
1− δan

< 1 and
cn + (1− bn − cn)

1− δbn
=

1− bn
1− δbn

< 1.

The above computations imply that :

d(xn+1, p) < δAn · d(xn, p), with An :=
βn + δ(1− αn − βn)

1− δαn
.

With the assumption that βn < 1, for each n ∈ N, it follows that An < 1.
Then, d(xn+1, p) < δd(xn, p) ≤ δn+1d(x0, p).
Since δ < 1, letting n→∞, we have that d(xn+1, p)→ 0, that means the sequence {xn} is convergent
to the unique fixed point p of T . �

As a particular case of iteration (2.13), we have the following.

Remark 2.16. Putting βn = cn = 0, we get iteration (2.3).

We present the last iteration. Let’s call it Double Implicit Noor II with multiple convex combina-
tions, or simply, DIN II m.c.c. This is defined, through multiple convex combinations, as

xn+1 = W (Tyn, Txn+1, Txn+1; 1− αn − βn, βn, αn)

yn = W (Tzn, T yn, T yn; 1− bn − cn, cn, bn)

zn = W (Tzn, xn, an).
With simple convex combinations, the iteration become

xn+1 = W

(
Txn+1,W

(
Txn+1, T yn;

βn
1− αn

)
;αn

)
yn = W

(
Tyn,W

(
Tyn, T zn;

cn
1− bn

)
; bn

)
zn = W (Tzn, xn, an).

(2.15)

In our last theorem of this section, sufficient conditions for the convergence of the iterative process
(2.15) are presented.

Theorem 2.17. Let C be a nonempty, closed and convex subset of a complete convex metric space
X. Let T : C → C be a δ-contraction. Let {an}, {bn}, {αn} ,{bn + cn}, {αn + βn} sequences in
(0, 1). Then {xn} in (2.15) is convergent to the unique fixed point p of T .

Proof . As in the above proofs, we estimate the following distance
d(zn, p) = d (W (Tzn, xn, an) , p) ≤ and(Tzn, p) + (1− an)d(xn, p) ≤ δand(zn, p) + (1− an)d(xn, p).
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So, we have d(zn, p) ≤
1− an
1− δan

d(xn, p).

In the same manner, it follows that

d(yn, p) = d

(
W

(
Tyn,W

(
Tyn, T zn;

cn
1− bn

)
; bn

)
, p

)
≤

bnd(Tyn, p) + (1− bn)d

(
W

(
Tyn, T zn;

cn
1− bn

)
, p

)
≤

δbnd(yn, p) + (1− bn)

[(
cn

1− bn

)
d(Tyn, p) +

(
1− cn

1− bn

)
d(Tzn, p)

]
≤

δbnd(yn, p) + δ [cnd(yn, p) + (1− bn − cn)d(zn, p)].
So, d(yn, p) ≤ δ · (bn + cn)d(yn, p) + δ · (1− bn − cn)d(zn, p).

This means that d(yn, p) ≤ δ · 1− (bn + cn)

1− δ(bn + cn)
· d(zn, p).

For {xn}, we have

d(xn+1, p) = d

(
W

(
Txn+1,W

(
Txn+1, T yn;

βn
1− αn

)
;αn

)
, p

)
≤

αnd(Txn+1, p) + (1− αn)d

(
W

(
Txn+1, T yn;

βn
1− αn

)
, p

)
≤

δαnd(xn+1, p) + (1− αn)

[(
βn

1− αn

)
d(Txn+1, p) +

(
1− βn

1− αn

)
d(Tyn, p)

]
≤

δ(αn + βn)d(xn+1, p) + δ(1− αn − βn)d(yn, p).

So, d(xn+1, p) ≤ δ · 1− (αn + βn)

1− δ(αn + βn)
d(yn, p).

This means that

d(xn+1, p) ≤ δ2AnBnCnd(xn, p), with An :=
1− (αn + βn)

1− δ(αn + βn)
, Bn :=

1− (bn + cn)

1− δ(bn + cn)
, Cn :=

1− an
1− δan

.

(2.16)
Since δ < 1, we get that An, Bn, Cn < 1.

Then, d(xn+1, p) < δ2d(xn, p) ≤ δ2(n+1)d(xo, p).
Since δ < 1, letting n→∞, we have that d(xn+1, p)→ 0, that means the sequence {xn} is convergent
to the unique fixed point p of T . �

In the next remark, a particular case of the iteration (2.15) is presented.

Remark 2.18. Putting βn = cn = 0, we get iteration (2.3).

In our last two remarks of this section, we refer to the convergence of iteration of iteration (2.1),
respectively to the case (B) of our first section.

Remark 2.19. It is important to observe the strong property that except the first iteration intro-
duced by us, that is (2.1), depend on convergence only from δ.

Remark 2.20. In the remarks (2.5) and (2.8), we answered the question posed by Agarwal in [2]
and found iterations with better rate of convergence than iteration (1.10). The points (A) and (C)
from the first section are solved in the next section.
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3. Rate of Convergence

• Using the definition for rate of convergence given by Berinde, Suantai et. al. in [6] and [11], we
provide sufficient conditions for some iterations given by us to converge better than iteration (1.9).
More exactly, the first three iterations are compared with iteration (1.9), using definition (1.4), since
iteration (1.9) was considered by Berinde et.al. in convex metric spaces and compared with various
classical iterations with the already mentioned definition.

Our first main result of this section relates to the comparing of the reate of convergence of
iterations (2.1) and (1.9).

Theorem 3.1. Let {xn} be the sequence defined by iteration (2.1), that is
xn+1 = W

(
Txn+1,W

(
Tyn, yn,

βn
1− αn

)
;αn

)
yn = W

(
Tyn,W

(
Tzn, zn,

cn
1− bn

)
; bn

)
zn = W (Tzn, xn, an).

(3.1)

Let {un} be the sequence defined by iteration (1.9), that is
un+1 = W

(
Tvn,W

(
Twn, un,

βn
1− αn

)
, αn

)
vn = W

(
Twn,W

(
Tun, un,

cn
1− bn

)
, bn

)
wn = W (Tun, un, an) .

(3.2)

Let C be a nonempty, closed and convex subset of a complete convex metric space X. Let T : C → C
be a δ-contraction. Let {an}, {bn}, {cn}, {αn}, {βn}, {bn + cn} and {αn + βn} sequences in (0, 1)
such that

∑∞
k=0(αk + βk) =∞.

Additionally, let’s suppose that the following assumptions are satisfied :
(C1) 0 < a < an < 1− a < 1,
(C2) lim

n=∞
αn = 0, lim

n=∞
βn = 0, lim

n=∞
bn = 0 and lim

n=∞
cn = 0,

(C3)
1

1 + δ
> 1− a,

(C*) [1− (αn + βn)] > δ{αn [1− bn − cn(1− δ)] + [1− an(1− δ)] · [βn + δαnbn]}, for each n ∈ N.
Then, iteration (2.1) converges faster than (1.9).

Proof . We know that d(xn+1, p) ≤ An and d(un+1, p) ≤ Bn, with

An =
n∏
k=0

(
1− αk − βk(1− δ)

1− δαk
· 1− bk − ck(1− δ)

1− δbk
· 1− ak

1− δak

)
· d(x0, p),

We make the following evaluation

d(un+1, p) ≥ (1− αn)d

(
W

(
Twn, un,

βn
1− αn

)
, p

)
− αnd(Tvn, p).

Since d(Tvn, p) ≤ δd(vn, p), we get that

d(un+1, p) ≥ (1− αn)

[(
1− βn

1− αn

)
d(un, p)−

βn
1− αn

d(Twn, p)

]
− δαnd(vn, p).

Since d(Twn, p) ≤ δd(wn, p), we obtain
d(un+1, p) ≥ (1− αn − βn)d(un, p)− δβnd(wn, p)− δαnd(vn, p).
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We know that d(wn, p) = d (W (Tun, un, an) , p) ≤ and(Tun, p) + (1 − an)d(un, p) ≤ (1 − an(1 −
δ))d(un, p).
In a similar manner, we have that

d(vn, p) ≤ bnd(Twn, p) + (1 − bn)

[(
cn

1− bn

)
d(Tun, p) +

(
1− cn

1− bn

)
d(un, p)

]
≤ δbnd(wn, p) +

δcnd(un, p) + (1− bn − cn)d(un, p) = δbnd(wn, p) + (1− bn − cn(1− δ))d(un, p).
So :
d(un+1, p) ≥ (1− αn − βn)d(un, p)− δβn [1− an(1− δ)] d(un, p)−
δαn [δbnd(wn, p) + (1− bn − cn + δcn)d(un, p)].
This means that d(un+1, p) ≥ [(1− αn − βn)− δαn(1− bn − cn(1− δ))]−δ [1− an(1− δ)]·[βn + δαnbn]·
d(un, p).
So, let’s denote by

Bn =
n∏
k=0

((1− αk − βk)− δαk [(1− bk − ck(1− δ))]− δ [1− ak(1− δ)] · [βk + δαkbk]) · d(u0, p),

Let’s denote θn :=
An
Bn

.

We have that

θn+1

θn
=

1− αn+1 − βn+1(1− δ)
1− δαn+1

· 1− bn+1 − cn+1(1− δ)
1− δbn+1

· 1− an+1

1− δan+1

[(1− αn+1 − βn+1)− δαn+1(1− bn+1 − cn+1(1− δ))]− δ [1− an+1(1− δ)] · [βn+1 + δαn+1bn+1]
From assumption (C1), we get that

θn+1

θn
≤

1− αn+1 − βn+1(1− δ)
1− δαn+1

· 1− bn+1 − cn+1(1− δ)
1− δbn+1

· 1− a
1− δ(1− a)

[(1− αn+1 − βn+1)− δαn+1(1− bn+1 − cn+1(1− δ))]− δ [1− a(1− δ)] · [βn+1 + δαn+1bn+1]

From assumptions (C2), we have that, lim
n→∞

θn+1

θn
≤ 1− a

1− (1− a)δ
.

Moreover, from assumption (C3), we get lim
n→∞

θn+1

θn
< 1.

Then, we get that
∑∞

n=1 θn <∞, which implies that lim
n→∞

θn = 0.

This means that lim
n→∞

An
Bn

= 0.

In conclusion, iteration (2.1) converges faster than (1.9). �

Now, our first remark of this section, useful in the last section regarding numerical examples,
refers to the condition (C∗) of the previous theorem.

Remark 3.2. The condition (C*) from the above theorem represent the condition such that the
denominator is positive.

Also, we observe that a <
1

2
< 1 − a, so if in our next theorems we have a relation between a

coefficient, for example q < 1− q, then, in numerical examples, we must take q <
1

2
.

In our second theorem of this section we compare the rate of convergence of the iterations (2.15)
and (1.9).
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Theorem 3.3. Let {xn} be the sequence defined by the iteration (2.15), that is
xn+1 = W

(
Txn+1,W

(
Txn+1, T yn;

βn
1− αn

)
;αn

)
yn = W

(
Tyn,W

(
Tyn, T zn;

cn
1− bn

)
; bn

)
zn = W (Tzn, xn, an).

(3.3)

Let {un} be the sequence defined by iteration (1.9), that is
un+1 = W

(
Tvn,W

(
Twn, un,

βn
1− αn

)
, αn

)
vn = W

(
Twn,W

(
Tun, un,

cn
1− bn

)
, bn

)
wn = W (Tun, un, an) .

(3.4)

Let C be a nonempty, closed and convex subset of a complete convex metric space X. Let T : C → C
be a δ-contraction. Let {an}, {bn}, {cn}, {αn}, {βn}, {bn + cn} and {αn + βn} sequences in (0, 1)
such that

∑∞
k=0(αk + βk) =∞.

Additionally, let’s suppose that the following assumptions are satisfied :
(C1) an ∈ (a, 1− a), bn ∈ (b, 1− b) and cn ∈ (c, 1− c),
(C2) lim

n→∞
βn = 0 and lim

n→∞
αn = 0

(C*) [1− (αn + βn)] > δ{αn [1− bn − cn(1− δ)] + [1− an(1− δ)] · [βn + δαnbn]}, for each n ∈ N.
Then, iteration (2.15) converges faster than iteration (1.9).

Proof . We know that d(xn+1, p) ≤ An and d(un+1, p) ≤ Bn, with

An =
n∏
k=0

(
δ2 · 1− (αk + βk)

1− δ(αk + βk)
· 1− (bk + ck)

1− δ(bk + ck)
· 1− ak

1− δak

)
· d(x0, p),

Bn =
n∏
k=0

((1− αk − βk)− δαk [(1− bk − ck(1− δ))]− δ [1− ak(1− δ)] · [βk + αkbk]) · d(u0, p).

Let’s denote θn :=
An
Bn

. We have that
θn+1

θn
≤

δ2 · 1

(1− αn+1 − βn+1)− δαn+1 [(1− bn+1 − cn+1(1− δ))]− δ [1− an+1(1− δ)] · [βn+1 + αn+1bn+1]
·

· 1− (αn+1 + βn+1)

1− δ(αn+1 + βn+1)
, because

1− (bn + cn)

1− δ(bn + cn)
< 1 and

1− an
1− δan

< 1, for each n ∈ N.

From assumptions (C1) and (C2), we have that

lim
n→∞

θn+1

θn
= δ2 < 1.

Then, we get that
∑∞

n=1 θn <∞, which implies that lim
n→∞

θn = 0.

This means that lim
n→∞

An
Bn

= 0.

In conclusion, iteration (2.15) converges faster than iteration (1.9). �

In our third main result, the comparison of the rate of convergence between the iterations (2.13)
and (1.9) is presented.
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Theorem 3.4. Let {xn} be the sequence defined by the iteration (2.13), that is
xn+1 = W

(
Txn+1,W

(
Tzn, T yn;

βn
1− αn

)
;αn

)
yn = W

(
Tyn,W

(
Txn, T zn;

cn
1− bn

)
; bn

)
zn = W (Tzn, xn, an).

(3.5)

Let {un} be the sequence defined by iteration (1.9), that is
un+1 = W

(
Tvn,W

(
Twn, un,

βn
1− αn

)
, αn

)
vn = W

(
Twn,W

(
Tun, un,

cn
1− bn

)
, bn

)
wn = W (Tun, un, an) .

(3.6)

Let C be a nonempty, closed and convex subset of a complete convex metric space X. Let T : C → C
be a δ-contraction. Let {an}, {bn}, {cn}, {αn}, {βn}, {bn + cn} and {αn + βn} sequences in (0, 1)
such that

∑∞
k=0(αk + βk) =∞.

Additionally, let’s suppose that the following assumptions are satisfied :
(C1) lim

n→∞
βn = 0 and lim

n→∞
cn = 0,

(C2) lim
n→∞

αn = 0, lim
n→∞

bn = 0 and lim
n→∞

an = 0

(C*) [1− (αn + βn)] > δ{αn [1− bn − cn(1− δ)] + [1− an(1− δ)] · [βn + δαnbn]}, for each n ∈ N.
Then, iteration (2.13) converges faster than iteration (1.9).

Proof . We know that d(xn+1, p) ≤ An and d(un+1, p) ≤ Bn, with

An =
n∏
k=0

δ ·
βk ·

1− ak
1− δak

+ δ · (1− αk − βk) ·
ck + (1− bk − ck) ·

1− ak
1− δak

1− δbk
1− δαk

 · d(x0, p),

Bn =
n∏
k=0

((1− αk − βk)− δαk [(1− bk − ck(1− δ))]− δ [1− ak(1− δ)] · [βk + αkbk]) · d(u0, p).

Let’s denote θn :=
An
Bn

. We factorize and simplify the terms in An and we get

θn+1

θn
≤ δ · 1

(1− δan+1)(1− δαn+1)(1− δbn)
·

βn+1(1− an+1)(1− δbn+1) + δ(1− an+1 − bn+1) [cn+1(1− δan+1) + (1− an+1)(1− bn+1 − cn+1)]

(1− αn+1 − βn+1)− δαn+1 [(1− bn+1 − cn+1(1− δ))]− δ [1− an+1(1− δ)] · [βn+1 + δαn+1bn+1]
From assumptions (C1) and (C2), we get that

lim
n→∞

θn+1

θn
≤ δ2 < 1.

So we get that
∑∞

n=1 θn <∞, which implies that lim
n→∞

θn = 0.

This means that lim
n→∞

An
Bn

= 0.

In conclusion, iteration (2.13) converges faster than iteration (1.9). �
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• Now, we compare the rate of convergence between the iterations given by Gursoy, Karakaya,
Abbas, Nazir et. al, and our improved iterations with convex combinations or based on improved
implicit Noor iteration, following (1.2) and (1.3), using the technique present in the articles [1] and
[8] and [10]. So from now until the next section we use the already mentioned definitions as in the
articles of Gursoy, Karakaya, Abbas et. al.

A comparison between the rate of convergence of the iterations (2.3) and (2.5) is presented below.

Theorem 3.5. Let {xn} be the sequence defined by iteration (2.3), that is
xn+1 = W (Txn+1, T yn;αn)

yn = W (Tyn, T zn; bn)

zn = W (Tzn, xn, an).

(3.7)

Let {un} be the sequence defined by iteration (2.5), that is
un+1 = Tvn

vn = W (Tvn, Twn; bn)

wn = W (Twn, un, an).

(3.8)

Let C be a nonempty, closed and convex subset of a complete convex metric space X. Let T : C → C
be a δ-contraction. Let {an}, {bn}, {αn} sequences in (0, 1).
Additionally, let’s suppose that the following assumptions are satisfied :
(C1) 0 < α < αn < 1− α < 1,

(C2) α >
δ

1 + δ
.

Then, iteration (2.3) converges faster than (2.5).

Proof . We know that d(xn+1, p) ≤ An and d(un+1, p) ≤ Bn, with

An =
n∏
k=0

(
δ2 · 1− αk

1− δαk
· 1− bk

1− δbk
· 1− ak

1− δak

)
· d(x0, p),

Bn =
n∏
k=0

(
δ2 · 1− bk

1− δbk
· 1− ak

1− δak

)
· d(u0, p).

Let’s denote θn :=
An
Bn

.

We have that
θn+1

θn
=

δ2 · 1− αn+1

1− δαn+1

· 1− bn+1

1− δbn+1

· 1− an+1

1− δan+1

δ2 · 1− bn+1

1− δbn+1

· 1− an+1

1− δan+1

=
1− αn+1

1− δαn+1

.

From assumption (C1), we get that
1− αn+1

1− δαn+1

<
1− α

1− δ(1− α)
.

From assumption (C2), we get that
1− α

1− δ(1− α)
< 1.

Then, we have that lim
n→∞

θn+1

θn
< 1.

Then, we get that
∑∞

n=1 θn <∞, which implies that lim
n→∞

θn = 0.

This means that lim
n→∞

An
Bn

= 0.

In conclusion, iteration (2.3) converges faster than (2.5). �
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Regarding iterations (2.5) and (1.16), sufficient conditions are presented such that iteration (2.5)
is faster than iteration (1.16).

Theorem 3.6. Let {xn} be the sequence defined by the iteration (2.5), that is
xn+1 = Tyn

yn = W (Tyn, T zn; bn)

zn = W (Tzn, xn, an).

(3.9)

Let {un} be the sequence defined by the iteration (1.16), that is
un+1 = Tvn

vn = W (Twn, Tun, bn)

wn = W (Tun, un, an) .

(3.10)

Let C be a nonempty, closed and convex subset of a complete convex metric space X. Let T : C → C
be a δ-contraction. Let {an}, {bn}, sequences in (0, 1), with

∑∞
k=0 akbk =∞.

Additionally, let’s suppose that the following assumptions are satisfied :
(C1) 0 < b < bn < 1− b < 1,
(C2) lim

n→∞
an = 0,

(C3) b >
δ

1 + δ
.

Then, iteration (2.5) converges faster than iteration (1.16).

Proof . We know that d(xn+1, p) ≤ An and d(un+1, p) ≤ Bn, with

An =
n∏
k=0

(
δ2 · 1− bk

1− δbk
· 1− ak

1− δak

)
· d(x0, p),

Bn =
n∏
k=0

[δ2 · (1− akbk(1− δ))] · d(u0, p).

Let’s denote θn :=
An
Bn

.

We have that
θn+1

θn
=

δ2 · 1− bn+1

1− δbn+1

· 1− an+1

1− δan+1

δ2 · (1− an+1bn+1(1− δ))
=

1− bn+1

1− δbn+1

· 1− an+1

1− δan+1

(1− an+1bn+1(1− δ))
.

We know that
1− an+1

1− δan+1

< 1.

Also, from assumptions (C1) and (C3), we have that
1− bn+1

1− δbn+1

≤ 1− b
1− δ(1− b)

< 1.

Then,
θn+1

θn
≤ 1− b

1− δ(1− b)
· 1

1− an+1bn+1(1− δ)
.

From assumption (C2), we have that lim
n→∞

θn+1

θn
≤ 1− b

1− δ(1− b)
< 1.

Then, we get that
∑∞

n=1 θn <∞, which implies that lim
n→∞

θn = 0.

This means that lim
n→∞

An
Bn

= 0.

Now, by definitions (1.2), respectively (1.3), since An and Bn converge to 0 in the hypothesis as-
sumptions, it follows that : iteration (2.5) converges faster than iteration (1.16). �
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Comparing the rate of convergence between the iterations (2.5) and (2.11), we have the following.

Theorem 3.7. Let {xn} be the sequence defined by the iteration (2.5), that is
xn+1 = Tyn

yn = W (Tyn, T zn; bn)

zn = W (Tzn, xn, an).

(3.11)

Let {un} be the sequence defined by the iteration (2.11), that is
un+1 = Tvn

vn = W

(
Tvn,W

(
Tun, Twn,

cn
1− bn

)
; bn

)
wn = W (Twn, un, an).

(3.12)

Let C be a nonempty, closed and convex subset of a complete convex metric space X. Let T : C → C
be a δ-contraction. Let {an}, {bn}, {bn + cn} sequences in (0, 1).
Suppose the following assumptions are satisfied :
(C1) 0 < a < an < 1− a < 1 and 0 < b < bn < 1− b < 1,
(C2) lim

n→∞
cn = 0,

Then, iteration (2.11) converges faster than (2.5), with respect to definitions (1.2) and (1.3).

Proof . We know that d(xn+1, p) ≤ An and d(un+1, p) ≤ Bn, with

An =
n∏
k=0

(
δ2 · 1− bk

1− δbk
· 1− ak

1− δak

)
· d(x0, p),

Bn =
n∏
k=0

δ2 · ck + (1− bk − ck) ·
1− ak
1− δak

1− δbk

 · d(u0, p)

Then, Bn =
n∏
k=0

(
δ2 · ck(1− δak) + (1− bk − ck)(1− ak)

(1− δak)(1− δbk)

)
· d(u0, p).

Let’s denote θn :=
An
Bn

.

Then, we have that
θn+1

θn
=

(1− an+1)(1− bn+1)

cn+1(1− δan+1) + (1− bn+1 − cn+1)(1− an+1)
.

From assumption (C1), we have that
θn+1

θn
≤ (1− a)(1− b)
cn+1(1− δ + δa) + a(b− cn+1)

.

From assumption (C2), we get lim
n→∞

θn+1

θn
≤ 1− a

a
· 1− b

b
.

It is easy to see that lim
n→∞

θn+1

θn
> 1, because a < 1− a from (C1).

We will define φn :=
1

θn
. Then

φn+1

φn
=

θn
θn+1

.

Moreover, lim
n→∞

φn+1

φn
= lim

n→∞

θn
θn+1

=
1

lim
n→∞

θn+1

θn

< 1.

So we get that
∑∞

n=1 φn <∞, which implies that lim
n→∞

φn = 0.



On new faster fixed point iterative schemes . . . 8 (2017) No. 1, 353-388 377

This means that lim
n→∞

Bn

An
= 0.

In conclusion, iteration (2.11) converges faster than (2.5). �

Now, in our next theorem we make a comparison between the rate of convergence of the iterations
(2.11) and (2.9) in a complete convex metric space, under the assumptions of convergence of both
iterative processes.

Theorem 3.8. Let {xn} be the sequence defined by the iteration (2.11), that is
xn+1 = Tyn

yn = W

(
Tyn,W

(
Txn, T zn,

cn
1− bn

)
; bn

)
zn = W (Tzn, xn, an).

(3.13)

Let {un} be the sequence defined by the iteration (2.9), that is
un+1 = Tvn

vn = W

(
Tvn,W

(
wn, Twn,

cn
1− bn

)
; bn

)
wn = W (Twn, un, an).

(3.14)

Let C be a nonempty, closed and convex subset of a complete convex metric space X. Let T : C → C
be a δ-contraction. Let {an}, {bn}, {bn + cn} sequences in (0, 1).
Let’s suppose the following assumptions are satisfied :
(C1) 0 < a < an < 1− a < 1 and 0 < b < bn < 1− b < 1,
(C2) lim

n→∞
cn = 0,

(C3)
1− a
2− a

< b.

Then, iteration (2.11) converges faster than iteration (2.9).

Proof . We know that d(xn+1, p) ≤ An and d(un+1, p) ≤ Bn, with

An =
n∏
k=0

δ2 · ck + (1− bk − ck) ·
1− ak
1− δak

1− δbk

 · d(x0, p).

This means that An =
n∏
k=0

(
δ2 · ck(1− δak) + (1− bk − ck)(1− ak)

(1− δak)(1− δbk)

)
d(x0, p),

Bn =
n∏
k=0

(
δ · ck + δ(1− bk − ck)

1− δbk
· 1− ak

1− δak

)
· d(u0, p).

Also let B′n =
n∏
k=0

(
δ · ck + δ(1− bk − ck)

1− δbk

)
· d(u0, p), with Bn < B′n. and d(un+1, p) < B′nd(un, p).

Let’s denote θn :=
An
B′n

.

Then, we have that
θn+1

θn
= δ · cn+1(1− δan+1) + (1− bn+1 − cn+1)(1− an+1)

cn+1 + δ(1− bn+1 − cn+1)
.

Assumption (C1) implies that
θn+1

θn
≤ δ · cn+1(1− δa) + (1− b− cn+1)(1− a)

cn+1 + δ(b− cn+1)
.
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From assumption (C2), we get lim
n→∞

θn+1

θn
≤ δ · (1− b)(1− a)

δb
= (1− a) · (1− b)

b
.

From assumption (C3), since
1− a
2− a

< b, it implies that (1− a)(1− b) < b, that is lim
n→∞

θn+1

θn
< 1.

So we get that
∑∞

n=1 θn <∞, which implies that lim
n→∞

θn = 0.

This means that lim
n→∞

An
Bn

= 0.

In conclusion, iteration (2.11) converges faster than (2.9).
�

For the comparison between the iterative algorithms (2.9) and (2.7) in a complete convex metric
space, under the asssumptions of convergence of iterations, we have the following.

Theorem 3.9. Let {xn} be the sequence defined by the iteration (2.9), that is
xn+1 = Tyn

yn = W

(
Tyn,W

(
zn, T zn,

cn
1− bn

)
; bn

)
zn = W (Tzn, xn, an).

(3.15)

Let {un} be the sequence defined by the iteration (2.7), that is
un+1 = Tvn

vn = W

(
Tvn,W

(
un, Twn,

cn
1− bn

)
; bn

)
wn = W (Twn, un, an).

(3.16)

Let C be a nonempty, closed and convex subset of a complete convex metric space X. Let T : C → C
be a δ-contraction. Let {an}, {bn}, {bn + cn} sequences in (0, 1).
Let’s suppose the following assumptions are satisfied :
(C1) 0 < c < cn < 1− c < 1,
(C2) lim

n→∞
an = 1 and lim

n→∞
bn = 0.

(C3) c >
1− δ

2
.

Then, iteration (2.7) converges faster than iteration (2.9).

Proof . We know that d(xn+1, p) ≤ An and d(un+1, p) ≤ Bn, with

An =
n∏
k=0

(
δ · ck + δ(1− bk − ck)

1− δbk
· 1− ak

1− δak

)
· d(x0, p)

Bn =
n∏
k=0

δ · ck + δ(1− bk − ck) ·
1− ak
1− δak

1− δbk

 · d(u0, p).

This means that Bn =
n∏
k=0

(
δ · ck(1− δak) + δ(1− bk − ck)(1− ak)

(1− δak)(1− δbk)

)
d(u0, p),

Let’s denote θn :=
An
Bn

.

Then, we have that
θn+1

θn
=

cn+1 + δ(1− bn+1 − cn+1)

cn+1(1− δan+1) + δ(1− bn+1 − cn+1)(1− an+1)
.
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From assumption (C1), we get
θn+1

θn
≥ c+ δ(c− bn+1)

(1− c)(1− δan+1) + δ(1− c− bn+1)(1− an+1)
.

From assumption (C2), we get lim
n→∞

θn+1

θn
≤ c+ δ(c)

(1− c)(1− δ)
.

This means that the limit is
c+ δc

(1− c)(1− δ)
, i.e. 1 > c >

1− δ
2

. By assumption (C3), we get that the

limit is greater than 1.

Denote ϕn =
1

θn
. Then lim

n→∞

ϕn+1

ϕn
= lim

n→∞

θn
θn+1

. We get lim
n→∞

ϕn+1

ϕn
< 1.

So we get that
∑∞

n=1 ϕn <∞, which implies that lim
n→∞

ϕn = 0.

This means that lim
n→∞

Bn

An
= 0.

In conclusion, iteration (2.7) converges faster than (2.9).
�

For comparison of the rate of convergence of iterative processes (2.15) and (2.3) under the as-
sumptions of convergence, we present the following theorem.

Theorem 3.10. Let {xn} be the sequence defined by the iteration (2.15), that is
xn+1 = W

(
Txn+1,W

(
Txn+1, T yn;

βn
1− αn

)
;αn

)
yn = W

(
Tyn,W

(
Tyn, T zn;

cn
1− bn

)
; bn

)
zn = W (Tzn, xn, an).

(3.17)

Let {un} be the sequence defined by the iteration (2.3), that is
un+1 = W (Tun+1, T vn;αn)

vn = W (Tvn, Twn; bn)

wn = W (Twn, un, an).

(3.18)

Let C be a nonempty, closed and convex subset of a complete convex metric space X. Let T : C → C
be a δ-contraction. Let {an}, {bn}, {αn} ,{bn + cn}, {αn + βn} sequences in (0, 1).
Let’s suppose the following assumptions are satisfied :
(C1) 0 < β < βn < 1− β < 1,
(C2) lim

n→∞
αn = 0,

(C3) δ <
β

1− β
. Then, iteration (2.15) converges faster than iteration (2.3).

Proof . We know that d(xn+1, p) ≤ An and d(un+1, p) ≤ Bn, with

An =
n∏
k=0

(
δ2 · 1− (αk + βk)

1− δ(αk + βk)
· 1− (bk + ck)

1− δ(bk + ck)
· 1− ak

1− δak

)
· d(x0, p)

Bn =
n∏
k=0

(
δ2 · 1− αk

1− δαk
· 1− bk

1− δbk
· 1− ak

1− δak

)
· d(u0, p).

Let’s denote θn :=
An
Bn

.

We have that
θn+1

θn
=

1− (αn+1 + βn+1)

1− δ(αn+1 + βn+1)
· 1− δαn+1

1− αn+1

· 1− (bn+1 + cn+1)

1− δ(bn+1 + cn+1)
· 1− δbn+1

1− bn+1

.
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Since δ < 1, it is easy to see that
1− (bn+1 + cn+1)

1− δ(bn+1 + cn+1)
· 1− δbn+1

1− bn+1

≤ 1.

Then, we have
θn+1

θn
≤ 1− (αn+1 + βn+1)

1− δ(αn+1 + βn+1)
· 1− δαn+1

1− αn+1

.

Using the assumption (C1), we get
θn+1

θn
≤ 1− δαn+1

1− αn+1

· 1− (αn+1 + β)

1− δ(αn+1 + 1− β)
.

From assumption (C2), we get lim
n→∞

θn+1

θn
≤ 1− β

1− δ(1− β)
< 1, because of assumption (C3), i.e.

δ <
β

1− β
< 1, since β <

1

2
.

Since δ < 1, we get that
∑∞

n=1 θn <∞, which implies that lim
n→∞

θn = 0.

This means that lim
n→∞

An
Bn

= 0.

In conclusion, iteration (2.15) converges faster than iteration (2.3).
�

Now, if iteration algorithms (2.11) and (1.16) are convergent to the fixed of the contraction in a
complete convex metric space, for comparison of their rate of convergence, we have the following.

Theorem 3.11. Let {xn} be the sequence defined by the iteration (2.11), that is
xn+1 = Tyn

yn = W

(
Tyn,W

(
Txn, T zn,

cn
1− bn

)
; bn

)
zn = W (Tzn, xn, an).

(3.19)

Let {un} be the sequence defined by the iteration (1.16), that is
un+1 = Tvn

vn = W (Twn, Tun, bn)

wn = W (Tun, un, an) .

(3.20)

Let C be a nonempty, closed and convex subset of a complete convex metric space X. Let T : C → C
be a δ-contraction. Let {an}, {bn}, {bn + cn} sequences in (0, 1), with

∑∞
k=0 akbk =∞.

Let’s suppose the following assumptions are satisfied :
(C1) 0 < a < an < 1− a < 1,
(C2) lim

n→∞
bn = 0 and lim

n→∞
cn = 0,

(C3) a >
δ

1 + δ
.

Then, iteration (2.11) converges faster than iteration (1.16).

Proof . We know that d(xn+1, p) ≤ An and d(un+1, p) ≤ Bn, with

An =
n∏
k=0

δ2 · ck + (1− bk − ck) ·
1− ak
1− δak

1− δbk

 · d(x0, p).

This means that An =
n∏
k=0

(
δ2 · ck(1− δak) + (1− ak)(1− bk − ck)

(1− δak)(1− δbk)

)
d(x0, p).
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and Bn =
n∏
k=0

(δ2 · 1− akbk(1− δ)) · d(u0, p).

Let’s denote θn :=
An
Bn

.

Then,
θn+1

θn
=
cn+1(1− δan+1) + (1− an+1)(1− bn+1 − cn+1)

1− an+1bn+1(1− δ)
· 1

(1− δan+1)(1− δbn+1)
.

From assumption (C1), we have that
θn+1

θn
≤ cn+1(1− δa) + (1− a)(1− bn+1 − cn+1)

1− (1− a)bn+1(1− δ)
· 1

(1− δ(1− a))(1− δbn+1)
.

From assumption (C2), we get lim
n→∞

θn+1

θn
≤ 1− a

1− δ(1− a)
.

From assumption (C3), since a >
δ

1 + δ
, we get

1− a
1− δ(1− a)

< 1.

This implies that lim
n→∞

θn+1

θn
< 1.

So we get that
∑∞

n=1 θn <∞, which implies that lim
n→∞

θn = 0.

This means that lim
n→∞

An
Bn

= 0.

In conclusion, iteration (2.11) converges faster than iteration (1.16), by definitions (1.2) and (1.3).
�

Finally, our last theoretical result regarding the comparison of the rate of convergence of iterations
(2.3) and (1.12), we have the following theorem.

Theorem 3.12. Let {xn} be the sequence defined by the iteration (2.3), that is
xn+1 = W (Txn+1, T yn;αn)

yn = W (Tyn, T zn; bn)

zn = W (Tzn, xn, an).

(3.21)

Let {un} be the sequence defined by the iteration (1.12), that is
un+1 = W (Twn, T vn, αn)

vn = W (Twn, Tun, bn)

wn = W (Tun, un, an) .

(3.22)

Let C be a nonempty, closed and convex subset of a complete convex metric space X. Let T : C → C
be a δ-contraction. Let {an}, {bn}, {αn} sequences in (0, 1), with

∑∞
k=0 αkakbk =∞.

Let’s suppose the following assumptions are satisfied :
(C1) 0 < α < αn < 1− α < 1 and 0 < a < an < 1− a < 1,
(C2) lim

n→∞
bn = 0,

(C3) α >
δ

1 + δ
.

Then, iteration (2.3) converges faster than iteration (1.12).

Proof . We know that d(xn+1, p) ≤ An and d(un+1, p) ≤ Bn, with

An =
n∏
k=0

(
δ2 · 1− αk

1− δαk
· 1− bk

1− δbk
· 1− ak

1− δak

)
· d(x0, p).
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Also, Bn =
n∏
k=0

(δ · (1− αkakbk(1− δ))) · d(u0, p).

Let’s denote θn :=
An
Bn

.

Then,
θn+1

θn
= δ · 1− αn+1

1− δαn+1

· 1− bn+1

1− δbn+1

· 1− an+1

1− δan+1

· 1

(1− αn+1an+1bn+1(1− δ))
.

Since
1− bn+1

1− δbn+1

< 1 and
1− an+1

1− δan+1

< 1 and using assumption (C1), we get that :

θn+1

θn
≤ δ · 1− α

1− δ(1− α)
· 1

(1− (1− α)an+1bn+1(1− δ))
.

Assumption (C2) implies that lim
n→∞

θn+1

θn
≤ 1− α

1− δ(1− α)
.

From assumption (C3), we get that lim
n→∞

θn+1

θn
< 1.

So we get that
∑∞

n=1 θn <∞, which implies that lim
n→∞

θn = 0.

This means that lim
n→∞

An
Bn

= 0.

In conclusion, iteration (2.3) converges faster than iteration (1.12). �

4. Numerical Examples

Throughout this section, we cover with numerical examples the points (A) and (C) from the first
section. All of the examples presented below satisfy the conditions for the comparison of rate of
convergence and the conditions from the convergence analysis.

Let T : X → X, where Tx =
x

2
, with δ =

1

2
and X = [0,∞). Also, let’s take the first

iteration x0 = 100 and the number of iterations for each comparison of iterative processes be n = 15.
Regarding Theorem 3.1, we present a numerical example for iterations (2.1) and (1.9).

Example 4.1. Let αk =
1

k + 9
, βk =

1

k + 9
, bk =

1

k + 3
, ck =

1

k + 3
and ak =

1

2
.

Also, iteration (2.1) is 
zn = 2

1− an
2− an

xn

yn =
2− cn − 2bn

2− bn
zn

xn+1 =
2− βn − 2αn

2− αn
yn.

and iteration (2.1) is 
zn = 1− an

2
xn

yn =
bn
2
zn +

(
1− bn −

cn
2

)
xn

xn+1 =
αn
2
yn +

βn
2
zn + (1− αn − βn)xn.

Furthermore, condition (C∗) is : 1 >
2

n+ 9
+

1

4(n+ 3)(n+ 9)

[
2n+ 3 +

3

4
(2n+ 7)

]
, which is satisfied

for n > −3, so it is a valid assumption.
We have that
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ITERATION (1.9) ITERATION (2.1)

100.0 100.0

42.60651629 87.34375

19.98824221 77.51757813

9.95461865 69.6446991

5.16619183 63.1872579

2.76380633 57.79236367

1.51364647 53.21713488

0.84462672 49.288213597

0.47858118 45.87823358

0.27466398 42.89136941

0.1593546 40.25407114

0.09332257 37.90891209

0.05509877 35.81038302

0.03276441 33.92194486

0.01960717 32.21391854

0.01180006 30.6619459

Regarding Theorem 3.3, we present a numerical example for iterations (2.15) and (2.1):

Example 4.2. Let αk =
1

k + 7
, βk =

1

k + 7
, bk =

1

3
, ck =

1

2
and ak =

1

3
.

Also, iteration (2.15) is 
zn = 2

1− an
2− an

xn

yn =
1− bn − cn
2− bn − cn

zn

xn+1 =
1− αn − βn
2− αn − βn

yn.

and iteration (2.1) is 
zn = 1− an

2
xn

yn =
bn
2
zn +

(
1− bn −

cn
2

)
xn

xn+1 =
αn
2
yn +

βn
2
zn + (1− αn − βn)xn.

Moreover, condition (C∗) is 1 >
2

n+ 7
+

1

2

[
5

12
+

35

36

]
1

n+ 7
, which is satisfied for each n > −115

36
,

so it is valid.
Now, we have that

Regarding Theorem 3.4, we present a numerical example for iterations (2.13) and (2.1):

Example 4.3. Let αk =
1

k + 10
, βk =

1

k + 10
, bk =

1

k + 4
, ck =

1

k + 4
and ak =

2

2k + 7
.
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ITERATION (2.15) ITERATION (2.1)

100.0 100.0

4.89795918 83.68055555

0.24489796 71.54170953

0.01243926 62.2015419

0.00063973 54.81903566

0.00003323 48.85492762

0.00000174 43.94855668

0.00000009 39.85017937

487 ·10−11 36.38173783

260 ·10−12 33.41308909

139 ·10−13 30.84705120

749 ·10−15 28.60968792

404 ·10−16 26.64381755

218 ·10−17 24.90456835

119 ·10−18 23.35626846

646 ·10−20 21.97022728

Also, iteration (2.13) is 
zn = 2

1− an
2− an

xn

yn = 2
1− bn − cn

2− bn
zn +

cn
2− bn

xn

xn+1 =
1− αn − βn

2− αn
yn +

βn
2− αn

zn.

and iteration (2.1) is 
zn = 1− an

2
xn

yn =
bn
2
zn +

(
1− bn −

cn
2

)
xn

xn+1 =
αn
2
yn +

βn
2
zn + (1− αn − βn)xn.

Also, condition (C∗) is (n+ 4)(n+ 10)(2n+ 7)(8n3 + 124n2 + 598n+ 915) > 0, so the assumption is
valid.

Now, we have that

Regarding Theorem 3.5, we present a numerical example for iterations (2.3) and (2.5):

Example 4.4. Let αk =
55

120
, bk =

1√
k + 2

and ak = 1− 1√
k + 2

.

Also, iteration (2.3) is 
zn = 2

1− an
2− an

xn

yn =
1− bn
2− bn

zn

xn+1 =
1− αn
2− αn

yn.
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ITERATION (2.13) ITERATION (2.1)

100.0 100.0

33.92857143 89.44444444

12.32425184 81.00256032

4.69269589 74.06975455

1.84976637 68.26101041

0.74877079 63.31617686

0.30955125 59.05170739

0.13018573 55.33372046

0.0555366 52.06192489

0.0239783 49.15952527

0.01045996 46.56662042

0.0046038 44.2357406

0.00204218 42.12874589

0.00091215 40.21461916

0.00040992 38.46786313

0.00018523 36.86731548

and iteration (2.5) is 
zn = 2

1− an
2− an

xn

yn =
1− bn
2− bn

zn

xn+1 =
1

2
yn.

Finally, we have

ITERATION (2.3) ITERATION (2.5)

100.0 100.0

7.64126855 10.87411293

0.59661556 1.20823477

0.04612052 0.13291663

0.00349281 0.0143248

0.000258176 0.0015068

0.00001861 0.00015453

0.00000131 0.00001545

0.00000009 0.00000151

6 ·10−9 0.00000014

4 ·10−10 0.00000001

25 ·10−12 1 ·10−8

15 ·10−13 2 ·10−10

97 ·10−15 95 ·10−13

58 ·10−16 81 ·10−14

34 ·10−17 68 ·10−15

Regarding Theorem 3.6, we present a numerical example for iterations (2.5) and (1.16):
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Example 4.5. Let bk =
1

2
+

1

k + 2
and ak =

1

2(k + 3)
.

Also, iteration (1.16) is 
zn = 2(1− an)xn

yn =
bn
2
zn +

(
1− bn

2

)
xn

xn+1 =
1

2
yn.

and iteration (2.5) is 
zn = 2

1− an
2− an

xn

yn =
1− bn
2− bn

zn

xn+1 =
1

2
yn.

By comparison, we get

ITERATION (1.16) ITERATION (2.5)

100.0 100.0

23.69791667 6.66666667

5.7023112 0.63157895

1.38399845 0.06970604

0.33776153 0.00839054

0.08274403 0.00106841

0.02032688 0.00014153

0.00500408 0.00001931

0.00123396 0.00000269

0.00030469 0.00000038

0.00007532 0.00000006

0.00001864 8 ·10−9

0.00000461 1 ·10−9

0.00000114 1 ·10−10

0.00000028 2 ·10−11

0.00000007 4 ·10−12

Regarding Theorem 3.7, we present a numerical example for iterations (2.7) and (2.5):

Example 4.6. Let bk =
3

8
, ak =

17

30
and ck =

1√
k + 2

.

In our context of normed spaces, iteration (2.7) is
zn = 2

1− an
2− an

xn

yn =
1− bn − cn

2− bn
zn +

cn
2− bn

xn

xn+1 =
1

2
yn.
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and iteration (2.5) is 
zn = 2

1− an
2− an

xn

yn =
1− bn
2− bn

zn

xn+1 =
1

2
yn.

By comparison, we get

ITERATION (2.7) ITERATION (2.5)

100.0 100.0

18.65113029 11.62790698

3.30315188 1.35208221

0.56378435 0.15721886

0.0935548 0.01828126

0.01517991 0.00212573

0.00241797 0.00024718

0.0003792 0.00002874

0.00005868 0.00000334

0.00000898 0.00000039

0.00000136 0.00000005

0.0000002 5 ·10−9

0.00000003 6 ·10−10

4 ·10−9 7 ·10−11

7 ·10−10 8 ·10−12

9.6 ·10−11 97 ·10−13

5. Conclusions

In the present article, through an exhaustive approach involving iterative processes in the context
of convex metric spaces, we introduced numerous iterations which converge faster to the fixed point
of a single-valued mapping than some iterations found in fixed point literature. The first three
iterations introduced by us through multiple convex combination were compared to iteration (2.1)
using definition (1.4) as in the article of Berinde [6]. The other fixed point iterations were compared
with well know iterative processes using definition (1.2) and (1.3) from two points of view : the first
one consists on the fact that Agarwal et.al. [2] used this type of definitions, respectively the second
point of view lies on the idea that in [1], [8] and in the other articles gave as references, Gursoy,
Abbas and the rest of the authors compared iterations also with this type of definitions.

Moreover, from (Example 4.1), (Example 4.2) and (Example 4.3) the definition (1.4) is more
precise for iterations given through multiple convex combinations and our new iterative processes
converge faster than the iteration given by Suantai, Berinde et. al. in [6] and [14].

Finally, from (Example 4.6), we can easily observe that the definitions (1.2) and (1.3) depend on
the auxiliary sequences (bn), (cn) and (an). So, we gave also an example of two iterations justifying
the fact that definitions (1.2) and (1.3) are not very useful in practical applications.
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