Int. J. Nonlinear Anal. Appl. 6 (2015) No. 2, 35-45 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2015.252

Polarization constant $\mathcal{K}(n, X) = 1$ for entire functions of exponential type

A. Pappas^{a,*}, P. Papadopoulos^b, L. Athanasopoulou^a

^aCivil Engineering Department, School of Technological Applications, Piraeus University of Applied Sciences

(Technological Education Institute of Piraeus), GR 11244, Egaleo, Athens, Greece

^bDepartment of Electronics Engineering, School of Technological Applications, Piraeus University of Applied Sciences (Technological Education Institute of Piraeus), GR 11244, Egaleo, Athens, Greece

(Communicated by Themistocles M. Rassias)

Abstract

In this paper we will prove that if L is a continuous symmetric n-linear form on a Hilbert space and \hat{L} is the associated continuous n-homogeneous polynomial, then $||L|| = ||\hat{L}||$. For the proof we are using a classical generalized inequality due to S. Bernstein for entire functions of exponential type. Furthermore we study the case that if X is a Banach space then we have that

$$||L|| = ||\widehat{L}||, \ \forall \ L \in \mathcal{L}^{s}(^{n}X) .$$

If the previous relation holds for every $L \in \mathcal{L}^{s}(^{n}X)$, then spaces $\mathcal{P}(^{n}X)$ and $L \in \mathcal{L}^{s}(^{n}X)$ are isometric. We can also study the same problem using Fréchet derivative.

Keywords: Polarization constants; polynomials on Banach spaces; polarization formulas. 2010 MSC: Primary 46B99; Secondary 46B28, 41A10.

1. Introduction and preliminaries

Many results which hold in linear forms can be expand in multilinear forms and polynomials. We refer without proof the following proposition (see [4]).

Proposition 1.1. Let $L: X^n \to Y$ a symmetric n-linear form and $P: X \to Y$, with $P = \hat{L}$, the associated homogeneous polynomial, where X, Y are Banach spaces. The following are equivalent

^{*}Corresponding author

Email addresses: alpappas@teipir.gr (A. Pappas), ppapadop@teipir.gr (P. Papadopoulos), athens@teipir.gr (L. Athanasopoulou)

- i. $L: X^n \to Y$ is continuous.
- ii. $P: X \to Y$ is continuous.
- iii. $P: X \to Y$ is continuous to 0.
- iv. There is a constant $M_1 > 0$ such that $||P(x)|| \le M_1 ||x||^n$.
- v. There is a constant $M_2 > 0$ such that

 $||L(x_1, x_2, \dots, x_n)|| \le M_2 ||x_1|| \cdots ||x_n||, \quad \forall \ (x_1, \dots, x_n) \in X^n.$

We can easily prove the following result using Banach-Steinhaus Theorem, (see Theorem 3.5 in [4]).

Proposition 1.2. Let X_1, \ldots, X_n Banach spaces and Y a normed space. The multilinear form $L: X_1 \times \cdots \times X_n \to Y$ is continuous if and only if L is continuous for each variable.

If X and Y Banach spaces and $L:X^n\to Y$ a continuous, symmetric n-linear form, we define the norm

$$||L|| := \inf\{M : ||L(x_1, x_2, \dots, x_n)|| \le M ||x_1|| \cdots ||x_n||, \ \forall (x_1, \dots, x_n) \in X^n\} \\ = \sup\{||L(x_1, \dots, x_n)|| : ||x_1|| \le 1, \dots, ||x_n|| \le 1\}.$$

We express with $\mathcal{L}^{s}(^{n}X, Y)$ the Banach space of the continuous, symmetric *n*-linear forms equipped with the above norm. Similarly, we express with $\mathcal{P}(^{n}X, Y)$ the Banach space of the continuous, homogeneous polynomials $P: X \to Y$ *n*-th degree, with norm

$$||P||: = \inf\{M > 0 : ||P(x)|| \le M ||x||^n, \ \forall x \in X\}$$

= sup{||P(x)|| : ||x|| \le 1}.

Remark 1.3. Generally, we can estimate the norm of $L \in \mathcal{L}^{s}({}^{n}X, Y)$ easier than the norm of the associated homogeneous polynomial $\widehat{L} \in \mathcal{P}({}^{n}X, Y)$. Obviously we have

$$\|\widehat{L}\| \le \|L\| \ .$$

Mazur-Orlicz study the relation between the norm of $L \in \mathcal{L}^{s}(^{n}X, Y)$ and the norm of the associated homogeneous polynomial $\hat{L} \in \mathcal{P}(^{n}X, Y)$.

We refer the following problem of Mazur-Orlicz from the famous "Scottish Book" [10, Problem 73]:

Problem. Let c_n be the smallest number with the property that if $F(x_1, \ldots, x_n)$ is an arbitrary symmetric *n*-linear operator [in a Banach space and with values in such a space], then

$$\sup_{\substack{\|x_i\| \le 1 \\ 1 \le i \le n}} \|F(x_1, \dots, x_n)\| \le c_n \sup_{\|x\| \le 1} \|F(x, \dots, x)\|.$$

It is known (Mr. Banach) that c_n exists. One can show that the number c_n satisfies the inequalities

$$\frac{n^n}{n!} \le c_n \le \frac{1}{n!} \sum_{k=1}^n {n \choose k} k^n .$$

Is $c_n = \frac{n^n}{n!}$?

The answer to this problem is yes for any real or complex Banach space. R. S. Martin [9] proved that $c_n \leq n^n/n!$ with the aid of an n- dimensional polarization formula. Indeed, if $L \in \mathcal{L}^s(^nX)$ and x_1, \ldots, x_n are unit vectors in X, then we obtain that

$$L(x_1, \dots, x_n) = \frac{1}{n!} \int_0^1 r_1(t) \cdots r_n(t) P\left(\sum_{i=1}^n r_i(t) x_i\right) dt.$$
(1.1)

The *n*th Rademacher function r_n is defined on [0, 1] by $r_n(t) = \operatorname{sign} \sin 2^n \pi t$. The Rademacher functions $\{r_n\}$ form an orthonormal set in $L_2([0, 1], dt)$ where dt denotes Lebesgue measure on [0, 1]. For $x_1, \ldots, x_n \in X$, we can express the above polarization formula in the following convenient form:

$$\begin{aligned} \|L(x_1,\ldots,x_n)\| &= \frac{1}{n!} \left\| \int_0^1 r_1(t)\cdots r_n(t)\widehat{L}\left(\sum_{k=1}^n r_k(t)x_k\right) dt \right\| \\ &\leq \frac{1}{n!} \int_0^1 \left\| \widehat{L}\left(\sum_{k=1}^n r_k(t)x_k\right) \right\| dt \\ &\leq \frac{\|\widehat{L}\|}{n!} \int_0^1 \left\| \sum_{k=1}^n r_k(t)x_k \right\|^n dt \\ &\leq \frac{\|\widehat{L}\|}{n!} \left(\sum_{k=1}^n \|x_k\|\right)^n \\ &= \frac{n^n}{n!} \|\widehat{L}\| . \end{aligned}$$
(1.2)

Thus, $||L|| \leq (n^n/n!) ||\widehat{L}||$. So for every $L \in \mathcal{L}^s(^nX, Y)$, we get

$$\|\widehat{L}\| \le \|L\| \le \frac{n^n}{n!} \|\widehat{L}\|$$
 (1.3)

The map

$$\widehat{} : \mathcal{L}^{s}(^{n}X, Y) \to \mathcal{P}(^{n}X, Y)$$
$$L \mapsto \widehat{L}$$

is obviously linear and onto and because of the polarization formula Eq. (1.1), is one to one. Therefore, from (1.3) we infer that this map is a linear isomorphism.

Proposition 1.4. If X and Y are Banach spaces, then the map

$$\widehat{} : \mathcal{L}^s(^nX, Y) \to \mathcal{P}(^nX, Y)$$

is a linear isomorphism.

We will express the reverse form of this map with "`". That is

$$\mathcal{L}^{*}: \mathcal{P}(^{n}X, Y) \to \mathcal{L}^{s}(^{n}X, Y)$$

 $P \mapsto \check{P}$

where $\check{\mathbf{P}}(x,\ldots,x) = P(x)$.

For spesific Banach spaces we can tighten the costant " $n^n/n!$ " in (1.3). For that case we need the following definition **Definition 1.5.** For X, Y Banach spaces and $n \in \mathbb{N}$, we define

$$\mathbb{K}(n,X) := \inf \left\{ M : \|L\| \le M \|\widehat{L}\|, \quad \forall L \in \mathcal{L}^s(^nX,Y) \right\} .$$

 $\mathbb{K}(n, X)$ is the *n*-th polarization constant, of the Banach space X.

Using Hahn-Banach's Theorem we obtain that in order to calculate $\mathbb{K}(n, X)$, we can consider continuous, symmetric *n*-linear forms, without loss of generality. That is, we can consider that $Y = \mathbb{K}$. In that case Banach spaces $\mathcal{L}^{s}(^{n}X, Y)$ and $\mathcal{P}(^{n}X, Y)$ represent as $\mathcal{L}^{s}(^{n}X)$ and $\mathcal{P}(^{n}X)$ respectively. From relation (1.3) turns out, that for every Banach space X we get that

$$1 \le \mathbb{K}(n, X) \le \frac{n^n}{n!} \,. \tag{1.4}$$

If H is a Hilbert space then

$$\mathbb{K}(n,H) = 1 \; .$$

An equivalent formulation for this fact is that spaces $\mathcal{L}^{s}(^{n}H)$ and $\mathcal{P}(^{n}H)$ are isometric.

2. Entire functions of exponential type

An analytical function $f : \mathbb{C} \to \mathbb{C}$ is called **entire** if it is analytical in all \mathbb{C} . Thus, if f is an entire function then

$$f(z) = \sum_{n=0}^{\infty} c_n z^n, \quad \forall \ z \in \mathbb{C}$$

and from Cauchy-Hadamard's form, we have that $\limsup \sqrt[n]{|c_n|} = 0$.

Definition 2.1. The entire function f is of exponential type if

$$\limsup_{r \to \infty} \frac{\ln M(r)}{r} < \infty, \quad where \quad M(r) = \max_{|z|=r} |f(z)| \; .$$

If we have that

$$\sigma = \limsup_{r \to \infty} \frac{\ln M(r)}{r} \; ,$$

then f is exponential of type σ .

Proposition 2.2. Let f be an entire exponential function of type σ , $0 \le \sigma < \infty$, then $\sigma = \inf\{k \ge 0 : M(r) < e^{rk}, \forall r \ge R_k\}$.

Proof. Let $\lambda = \inf\{k \ge 0 : M(r) < e^{rk}, \forall r \ge R_k\}$. For every $\varepsilon > 0$, there exists $R_{\varepsilon} > 0$ such that $M(r) < e^{(\lambda+\varepsilon)r}$, for every $r > R_{\varepsilon}$ there exists a sequence $\{r_n\}$, with $r_1 < r_2 < \ldots < r_n < \ldots$, such that $M(r_n) > e^{(\lambda-\varepsilon)r_n}$. In other words we get

$$\frac{\ln M(r)}{r} < \lambda + \varepsilon, \ \forall \ r > R_{\varepsilon}$$

and

$$\frac{\ln M(r_n)}{r_n} > \lambda - \varepsilon$$

for suitable large r_n . That means that

$$\lambda = \limsup_{r \to \infty} \frac{\ln M(r)}{r} = \sigma \; .$$

From the previous we obtain that:

Corollary 2.3. Function f is an entire exponential function of type σ , if and only if for every $\varepsilon > 0$ but for no ε negative, the following holds

$$M(r) = \left(e^{(\sigma+\varepsilon)r}\right), \ (r \to \infty)$$

Example 2.4. 1. The analytical functions

$$e^z$$
, $\sin z$, $\cos z$, $\sinh z$, $\cosh z$

are exponential functions of type 1.

- 2. The entire function $f(z) = e^z \cdot \cos z$ is an exponential function of type 2, on the other hand the entire function $g(z) = z^2 \cdot e^{2z} e^{3z}$ is exponential of type 3.
- 3. If the entire functions f_1 and f_2 are exponential functions of type σ_1 and σ_2 respectively, then $f_1 \cdot f_2$ is an exponential function of type σ , with $\sigma \leq \sigma_1 + \sigma_2$ and $f_1 + f_2$ is an exponential function of type σ^* , where $\sigma^* \leq \max\{\sigma_1, \sigma_2\}$.
- 4. If

$$f(\vartheta) = \sum_{k=-n}^{n} c_k e^{ik\vartheta}, \ c_k \in \mathbb{C},$$

is a trigonometric polynomial of type $\leq n$, then from the previous examples we have that the entire function

$$\sum_{k=-n}^{n} c_k \ e^{ikz}$$

is an exponential function of type $\leq n$.

The proof is very easy and without using the previous examples, we have

$$|f(z)| = |f(x+iy)| \le C \cdot e^{n|y|}, \text{ where } C = \sum_{k=-n}^{n} |c_k|,$$

thus

$$M(r) = \max_{|z|=r} |f(z)| \le C \cdot e^{n \cdot r} .$$

Proposition 2.5. We assume that the entire function $f(z) = \sum_{n=0}^{\infty} c_n z^n$ is an exponential function of type σ . If $\lambda = \limsup n |c_n|^{1/n}$, with $0 \le \lambda < \infty$, then

$$\sigma = \frac{\lambda}{e} = \limsup \frac{n}{e} |c_n|^{\frac{1}{n}} .$$
(2.1)

For the proof of relation (2.1) we refer to R. P. Boas [1] and B. Ya. Levin [8].

Theorem 2.6. (Bernstein's Inequality) We assume that $f : \mathbb{C} \to \mathbb{C}$ is an entire exponential function of type $\leq \sigma$. If we have that $\sup_{x \in \mathbb{R}} |f(x)| < \infty$, then $\forall \omega \in \mathbb{R}$ we obtain

$$\sup_{x \in \mathbb{R}} |f'(x) \cos \omega + \sigma \cdot f(x) \sin \omega| \le \sigma \cdot \sup_{x \in \mathbb{R}} |f(x)| .$$
(2.2)

Equality holds if and only if

$$f(z) = ae^{i\sigma z} + be^{-i\sigma z}$$
, where $a, b \in \mathbb{C}$

Using the same hypothesis like in Theorem 2.6, from (2.2) for $\omega = 0$, we have that

$$\sup_{x \in \mathbb{R}} |f'(x)| \le \sigma \cdot \sup_{x \in \mathbb{R}} |f(x)| .$$
(2.3)

Relation (2.3) is the classical **Bernstein's inequality**. In particular, if f takes real values, then (2.2) implies the **Szegö's inequality**, that is

$$\sqrt{n^2 f(x)^2 + f'(x)^2} \le n \sup_{x \in \mathbb{R}} |f(x)| , \qquad (2.4)$$

for every $x \in \mathbb{R}$. Obviously inequalities (2.2), (2.3), and (2.4) hold in the special case where f is a trigonometric polynomial of type $\leq \sigma$.

Remark 2.7. Y. Katznelson [7], discover the relation witch connects Bernstein's inequality (2.3) with **Banach's theory of algebra**. An element *a* of *a Banach's complex algebra* A with unit component, is called hermitian, if $\|\exp(ita)\| = 1$, $\forall t \in \mathbb{R}$. For example, the hermitian elements in algebra of bounded operators in a Hilbert space are the self adjoint operators. It is known that the norm of a self adjoint operator in a Hilbert space is equal to the spectral radius of the operator. Using Bernstein's inequality (2.3), Y. Katznelson proved that : The norm of an hermitian element *a* of a Banach's algebra *A*, is equal to the spectral radius $\varrho(a) = \lim_{n\to\infty} \|a^n\|^{1/n}$. The above proposition is equivalent to Bernstein's inequality (2.3). Independently and almost simultaneously, Bonsall-Crabb [2], A. M. Sinclair [12] and A. Browder [3] proved the same result.

3. Polarization constant $\mathcal{K}(n, X) = 1$

We study the case that if X is a Banach space then we have that

$$||L|| = ||\widehat{L}||, \ \forall \ L \in \mathcal{L}^{s}(^{n}X)$$

If the previous relation holds for every $L \in \mathcal{L}^{s}(^{n}X)$, then spaces $\mathcal{P}(^{n}X)$ and $L \in \mathcal{L}^{s}(^{n}X)$ are isometric. We can also study the same problem using Fréchet derivative.

Definition 3.1. Let X, Y two normed spaces and U is a non empty open subset of X. A function $f: U \to Y$ is called Fréchet differentiable in $\mathbf{x} \in \mathbf{U}$, if there exists a linear operator $F: X \to Y$ such that :

$$\lim_{y \to 0} \frac{\|f(x+y) - f(x) - F(y)\|}{\|y\|} = 0$$

F is the Fréchet derivative of f in $\mathbf{x} \in \mathbf{U}$, and expressed by Df(x). That is

$$F = Df(x) \; .$$

If $f: U \to Y$ is Fréchet differentiable in every component of U, then we say that f is Fréchet differentiable in all of U. In that case the map

$$x \in U \mapsto Df(x) \in \mathcal{L}(X,Y)$$

is the Fréchet derivative of f in U and expressed by Df.

Proposition 3.2. Let $P \in \mathcal{P}(^nX, Y)$ and $P = \widehat{L}$, for $L \in \mathcal{L}^s(^nX, Y)$, then the homogeneous polynomial P is Fréchet differentiable for every x and satisfies the following relation

$$DP(x)(y) = nL(x^{n-1}, y)$$

where $L(x^{n-1}, y) = L(\underbrace{x, ..., x}_{n-1}, y)$.

Proof. By the definition of *P* we easily get that:

$$P(x+y) = L(x+y, x+y, \dots, x+y) = \sum_{k=0}^{n} {n \choose k} L\left(x^{n-k}, y^{k}\right)$$

where

$$L(x^{n-k}, y^k) = L(\underbrace{x, x, \dots, x}_{n-k}, \underbrace{y, y, \dots, y}_{k}).$$

Thus we have

$$\lim_{y \to 0} \frac{\|P(x+y) - P(x) - nL(x^{n-1}, y)\|}{\|y\|} = \lim_{y \to 0} \frac{\left\|\sum_{k=0}^{n} {n \choose k} L(x^{n-k}, y^{k}) - \widehat{L}(x) - nL(x^{n-1}, y)\right\|}{\left\|\sum_{k=0}^{n} {n \choose k} L(x^{n-k}, y^{k})\right\|}$$
$$= \lim_{y \to 0} \frac{\left\|\sum_{k=2}^{n} {n \choose k} L(x^{n-k}, y^{k})\right\|}{\|y\|}$$
$$\leq \lim_{y \to 0} \sum_{k=2}^{n} {n \choose k} \|L\| \cdot \|x\|^{n-k} \|y\|^{k-1} = 0.$$

Hence,

$$\lim_{y \to 0} \frac{\|P(x+y) - P(x) - nL(x^{n-1}, y)\|}{\|y\|} = 0$$

that is

$$DP(x)(y) = nL(x^{n-1}, y)$$

Remark 3.3. The value of the linear operator $DP(x) : X \to Y$ in y usually expressed by DP(x)yinstead of DP(x)(y). So we have that:

$$DP(x)y = nL(x^{n-1}, y)$$
.

П

Example 3.4. Let $(H, \langle \cdot, \cdot \rangle)$ a real Hilbert space and $P(x) = ||x||^2$, $\forall x \in H$. Because for every $x, y \in H$ we have the following identity $||x + y||^2 - ||x||^2 - 2\langle x, y \rangle = ||y||^2$, we obtain that

$$DP(x)y = 2\langle x, y \rangle$$
.

We have that $P(x) = ||x||^2$ is a homogeneous polynomial of type 2, and so the previous result can be proved using Proposition 3.2, too.

Let $f : \mathbb{R}^n \to \mathbb{R}$ a convex function. If all the partial derivatives of f in $a \in \mathbb{R}^n$ exist, then it is known (lemma 19.4 in [5]) that function f is Fréchet differentiable in a. Also, we have (Theorem 19.5 in [5]) that if $f : \mathbb{R}^n \to \mathbb{R}$ is convex, then f is Fréchet differentiable almost everywhere. Generally previous result doesn't hold in an infinite dimensional space. Indeed, for every $x \in \ell_1$ the convex function $f(x) = ||x||_1$ isn't Fréchet differentiable (see examples 1.4(b) and 1.14(a) in [11]). Although the following result is well known, we refer it's proof complementary.

Example 3.5. Norm in ℓ_1 space isn't Fréchet differentiable for any component.

Proof. Let $x_0 = (x_k) \in \ell_1$, with $x_n = 0$ for a $n \in \mathbb{N}$. If $e_n = (\underbrace{0, 0, \dots, 0, 1}_{n}, 0, \dots)$ and $t \in \mathbb{R}$, then $\|x_0 + te_n\|_1 - \|x_0\|_1 = |t|$. If $f(x) = \|x\|_1$ and $F \in (\ell_1)^*$, then the limit

$$\lim_{t \to 0} \frac{|f(x_0 + te_n) - f(x_0) - F(te_n)|}{\|te_n\|_1} = \lim_{t \to 0} ||t|/t - F(e_n)|$$

either doesn't exist (if $F(e_n) \neq 0$) or it is equal to 1 (if $F(e_n) = 0$). Thus we have that function f isn't Fréchet differentiable in x_0 . We assume now that $x_0 = (x_k) \in \ell_1$, with $x_k \neq 0 \forall k \in \mathbb{N}$. Let

$$F = (sgnx_k) \in \ell_1^* = \ell_\infty, \text{ where } sgnx_k = \frac{x_k}{|x_k|}$$

We also suppose that

$$y = (y_k) \in \ell_1 \text{ where } ||y||_1 = \sum_{k=1}^{\infty} |y_k| = 1.$$

Because $\lim_{n\to\infty}\sum_{k=n}^{\infty}|y_k|=0$, for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$\sum_{k=N+1}^{\infty} |y_k| < \frac{\varepsilon}{2}$$

For $\delta > 0$ sufficiently small, if $1 \le k \le N$ and $|t| < \delta$ then it holds that

$$sgn(x_k + ty_k) = sgnx_k$$
.

Thus for $|t| < \delta$ we get

$$\begin{aligned} \frac{|f(x_0+ty)-f(x_0)-F(ty)|}{||ty||_1} &= \frac{1}{|t|} \cdot \left| \sum_{k=1}^{\infty} |x_k + ty_k| - \sum_{k=1}^{\infty} |x_k| - \sum_{k=1}^{\infty} ty_k sgnx_k \right| \\ &= \frac{1}{|t|} \cdot \left| \sum_{k=1}^{N} \{ (x_k + ty_k) sgn(x_k + ty_k) - |x_k| - ty_k sgnx_k \} + \right. \\ &+ \left. \sum_{k=N+1}^{\infty} (|x_k + ty_k| - |x_k| - ty_k sgnx_k) \right| \\ &= \frac{1}{|t|} \cdot \left| \sum_{k=N+1}^{\infty} (|x_k + ty_k| - |x_k| - ty_k sgnx_k) \right| \\ &= \frac{1}{|t|} \cdot \sum_{k=N+1}^{\infty} \{ ||x_k| + ty_k sgnx_k| - (|x_k| + ty_k sgnx_k) \} \\ &\leq \frac{1}{|t|} \cdot \sum_{k=N+1}^{\infty} (|x_k| + t|y_k| - |x_k| - ty_k sgnx_k) \\ &\leq 2 \cdot \sum_{k=N+1}^{\infty} |y_k| < \varepsilon . \end{aligned}$$

So, we can say that if f is Fréchet differentiable in x_0 , then for $Df(x_0)$ we must define $F = (sgnx_k)$. In order to prove that f isn't Fréchet differentiable in x_0 , we consider the following sequence $y_n = (y_k^{(n)})$ of ℓ_1 , where

$$y_k^n = \begin{cases} 0, & k < n \\ -2x_k, & k \ge n \end{cases}.$$

Then

$$||y_n||_1 = 2 \cdot \sum_{k=n}^{\infty} |x_k| \text{ and } \lim_{n \to \infty} ||y_n|| = 0.$$

On the other hand we have

$$\begin{aligned} |f(x_0 + y_n) - f(x_0) - F(y_n)| &= \left| \begin{aligned} \|x_0 + y_n\|_1 - \|x_0\| - \sum_{k=1}^{\infty} y_k^{(n)} sgnx_k \\ &= \left| \sum_{k=1}^{\infty} \left| x_k + y_k^{(n)} \right| - \sum_{k=1}^{\infty} |x_k| - \sum_{k=1}^{\infty} y_k^{(n)} sgnx_k \right| \\ &= \left| \sum_{k=1}^{\infty} |x_k| - \sum_{k=1}^{\infty} |x_k| + 2\sum_{k=n}^{\infty} |x_k| \right| \\ &= 2 \cdot \sum_{k=n}^{\infty} |x_k| \\ &= \|y_n\|_1 \,. \end{aligned}$$

Hence f isn't Fréchet differentiable in x_0 . \Box

Now, if $P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$ (where a_0, a_1, \dots, a_n are real or complex coefficients) is a polynomial of type n, we have that the following Bernstein's inequality holds true

$$|P'(z)| \le n ||P||_{\infty}, \quad |z| \le 1,$$
(3.1)

where

$$||P||_{\infty} = \max\{|P(z)| : |z| = 1\}.$$

If P is a real polynomial of real variable then instead of relation (3.1) we have Markov's inequality:

$$|P'(x)| \le n^2 ||P||_{[-1,1]}, \quad -1 \le x \le 1 , \qquad (3.2)$$

where

 $||P||_{[-1,1]} = \max\{|P(x)| : ||x|| \le 1\}.$

We have to mention here that constants n and n^2 in inequalities (3.1) and (3.2) are the best that is possible. L. Harris [6] proved that generalization of (3.1) holds for every polynomial of type $\leq n$ in a complex Hilbert space. It is noteworthy to mention that inequality (3.2) can be generalized in every real normed space X.

Now, what can we say for homogeneous polynomials in a normed space X? For this kind of polynomials we give an equivalent form of Bernstein's inequality in a normed space X.

Proposition 3.6. Let $P \in \mathcal{P}(^nX)$, then Bernstein's inequality

$$||DP|| = \sup_{||\mathbf{x}|| \le 1} ||DP(\mathbf{x})|| \le n ||P||, ||\mathbf{x}|| \le 1,$$
 (3.3)

holds for every $n \in \mathbb{N}$, if and only if ||L|| = ||P||, where $L \in \mathcal{L}^{s}(^{n}X)$ and $\widehat{L} = P$.

Proof. For ||L|| = ||P|| and $||x|| \le 1$ we have:

$$||DP(x)|| = \sup_{\|y\| \le 1} |DP(x)y| = n \sup\{|L(x^{n-1}, y)| : \|y\| \le 1\} \le n ||L|| = n ||P||.$$

Reverse, we assume that (3.3) holds for every $n \in \mathbb{N}$. Then we obtain

$$\sup\{|L(x^{n-1}, y)| : ||x|| \le 1, ||y|| \le 1\} \le ||P|| .$$
(3.4)

We only have to prove that

$$\|L\| = \|P\|$$

We can achieve proof by deductive.

For n = 2, using the previous inequality we get that $||L|| \le ||P||$ and then

$$||L|| = ||P||$$
.

We assume now that $||F|| = ||\widehat{F}||$, for every $F \in \mathcal{L}^{s}(^{n-1}X)$. If $L \in \mathcal{L}^{s}(^{n}X)$ and $P = \widehat{L}$, then for every $x_n \in X$, with $||x_n|| \leq 1$, we define $L_{x_n} \in \mathcal{L}^{s}(^{n-1}X)$ as

$$L_{x_n}(x_1, x_2, \dots, x_{n-1}) := L(x_1, x_2, \dots, x_n)$$

Using deductive hypothesis and relation (3.4) we obtain eventually

$$\begin{aligned} \|L\| &= \sup\{|L(x_1, x_2, \dots, x_n)| : \|x_i\| \le 1, 1 \le i \le n\} = \\ &= \sup\{|L_{x_n}(x_1, x_2, \dots, x_{n-1})| : \|x_i\| \le 1, 1 \le i \le n\} \\ &= \sup\{|L_{x_n}(x, x, \dots, x)| : \|x_n\| \le 1, \|x\| \le 1\} \\ &= \sup\{|L(x^{n-1}, x_n)| : \|x\| \le 1\} \\ &\le \|P\|. \end{aligned}$$

Thus we get that

$$||L|| = ||P||$$
.

References

- [1] R.P. Boas, *Entire Functions*, Academic Press, 1954.
- [2] F.F. Bonsall and M.J. Crabb, The Spectral Radius of a Hermitian Element of a Banach Algebra, Bull. London Math. Soc. 2 (1970) 178–180.
- [3] A. Browder, On Bernstein's Inequality and the Norm of Hermitian Operators, Amer. Math. Monthly 78 (1971) 871–873.
- [4] S.B. Chae, Holomorphy and calculus in normed spaces, Marcel Dekker, 1985.
- [5] J. Diestel, H. Jarchow and A.M. Tonge, Absolutely Summing Operators, Cambridge University Press, 1995.
- [6] L.A. Harris, Bounds on the derivatives of holomorphic functions of vectors, in: Colloque d'Analyse Rio de Janeiro, 1972, L. Nachbin, ed, Actualités Sci. Indust. 1367, Hermann, Paris (1975) 145–163.
- [7] Y. Katznelson, An Introduction to Harmonic Analysis, Dover, 1968.
- [8] B.Y. Levin, Lectures on Entire Functions, Amer. Math. Soc., 1996.
- [9] R.S. Martin, *Thesis*, Cal. Inst. of Tech., 1932.
- [10] R.D. Mauldin, Mathematics from the Scottish Café, Birkhäuser, The Scottish Book, 1981.
- [11] R.R. Phelps. Convex functions, monotone operators and differentiability, Lecture Notes in Mathematics, Springer-Verlag, 1989.
- [12] A.M. Sinclair, The Norm of a Hermitian Element of a Banach algebra, Proc. Amer. Math. Soc. 28 (1971) 446-450.