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Abstract

In this paper we will prove that if L is a continuous symmetric n-linear form on a Hilbert space and
L̂ is the associated continuous n-homogeneous polynomial, then ||L|| = ||L̂||. For the proof we are
using a classical generalized inequality due to S. Bernstein for entire functions of exponential type.
Furthermore we study the case that if X is a Banach space then we have that

‖L‖ = ‖L̂‖, ∀ L ∈ Ls(nX) .

If the previous relation holds for every L ∈ Ls (nX), then spaces P (nX) and L ∈ Ls(nX) are
isometric. We can also study the same problem using Fréchet derivative.
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1. Introduction and preliminaries

Many results which hold in linear forms can be expand in multilinear forms and polynomials. We
refer without proof the following proposition (see [4]).

Proposition 1.1. Let L : Xn → Y a symmetric n-linear form and P : X → Y , with P = L̂, the
associated homogeneous polynomial, where X, Y are Banach spaces. The following are equivalent
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i. L : Xn → Y is continuous.

ii. P : X → Y is continuous.

iii. P : X → Y is continuous to 0.

iv. There is a constant M1 > 0 such that ‖P (x)‖ ≤M1‖x‖n.

v. There is a constant M2 > 0 such that

‖L(x1, x2, . . . , xn)‖ ≤M2‖x1‖ · · · ‖xn‖, ∀ (x1, . . . , xn) ∈ Xn .

We can easily prove the following result using Banach-Steinhaus Theorem, (see Theorem 3.5 in
[4]).

Proposition 1.2. Let X1, . . . , Xn Banach spaces and Y a normed space. The multilinear form
L : X1 × · · · ×Xn → Y is continuous if and only if L is continuous for each variable.

If X and Y Banach spaces and L : Xn → Y a continuous, symmetric n-linear form, we define the
norm

‖L‖ : = inf{M : ‖L(x1, x2, . . . , xn)‖ ≤M‖x1‖ · · · ‖xn‖, ∀ (x1, . . . , xn) ∈ Xn}
= sup{‖L(x1, . . . , xn)‖ : ‖x1‖ ≤ 1, . . . , ‖xn‖ ≤ 1} .

We express with Ls(nX, Y ) the Banach space of the continuous, symmetric n-linear forms equipped
with the above norm. Similarly, we express with P(nX, Y ) the Banach space of the continuous,
homogeneous polynomials P : X → Y n-th degree, with norm

‖P‖ : = inf{M > 0 : ‖P (x)‖ ≤M‖x‖n, ∀ x ∈ X}
= sup{‖P (x)‖ : ‖x‖ ≤ 1} .

Remark 1.3. Generally, we can estimate the norm of L ∈ Ls(nX, Y ) easier than the norm of the

associated homogeneous polynomial L̂ ∈ P(nX, Y ). Obviously we have

‖L̂‖ ≤ ‖L‖ .

Mazur-Orlicz study the relation between the norm of L ∈ Ls(nX, Y ) and the norm of the associated

homogeneous polynomial L̂ ∈ P(nX, Y ).
We refer the following problem of Mazur-Orlicz from the famous “Scottish Book” [10, Problem

73]:
Problem. Let cn be the smallest number with the property that if F (x1, . . . , xn) is an arbitrary
symmetric n-linear operator [ in a Banach space and with values in such a space ], then

sup
‖xi‖≤1
1≤i≤n

‖F (x1, . . . , xn)‖ ≤ cn sup
‖x‖≤1

‖F (x, . . . , x)‖ .

It is known (Mr. Banach) that cn exists. One can show that the number cn satisfies the inequalities

nn

n!
≤ cn ≤

1

n!

n∑
k=1

(nk) kn .

Is cn = nn

n!
?



Polarization constant K(n,X) = 1 . . . 6 (2015) No. 2, 35-45 37

The answer to this problem is yes for any real or complex Banach space. R. S. Martin [9] proved
that cn ≤ nn/n! with the aid of an n- dimensional polarization formula. Indeed, if L ∈ Ls (nX) and
x1, . . . , xn are unit vectors in X, then we obtain that

L (x1, . . . , xn) =
1

n!

1∫
0

r1 (t) · · · rn (t)P

(
n∑
i=1

ri (t)xi

)
dt . (1.1)

The nth Rademacher function rn is defined on [0, 1] by rn (t) = sign sin 2nπt. The Rademacher
functions {rn} form an orthonormal set in L2 ([0, 1] , dt) where dt denotes Lebesgue measure on [0, 1].
For x1, . . . , xn ∈ X, we can express the above polarization formula in the following convenient form:

‖L(x1, . . . , xn)‖ = 1
n!

∥∥∥∥∥∥
1∫

0

r1(t) · · · rn(t)L̂

(
n∑
k=1

rk(t)xk

)
dt

∥∥∥∥∥∥
≤ 1

n!

1∫
0

∥∥∥∥∥L̂
(

n∑
k=1

rk(t)xk

)∥∥∥∥∥ dt
≤ ‖L̂‖

n!

1∫
0

∥∥∥∥∥
n∑
k=1

rk(t)xk

∥∥∥∥∥
n

dt

≤ ‖L̂‖
n!

(
n∑
k=1

‖xk‖

)n

= nn

n!
‖L̂‖ .

(1.2)

Thus, ‖L‖ ≤ (nn/n!)‖L̂‖. So for every L ∈ Ls(nX, Y ), we get

‖L̂‖ ≤ ‖L‖ ≤ nn

n!
‖L̂‖ . (1.3)

The map

̂ : Ls(nX, Y ) → P(nX, Y )

L 7→ L̂

is obviously linear and onto and because of the polarization formula Eq. (1.1), is one to one.
Therefore, from (1.3) we infer that this map is a linear isomorphism.

Proposition 1.4. If X and Y are Banach spaces, then the map̂ : Ls(nX, Y )→ P(nX, Y )

is a linear isomorphism.

We will express the reverse form of this map with ”ˇ”. That is

ˇ : P(nX, Y ) → Ls(nX, Y )

P 7→ P̌

where P̌(x, . . . , x) = P (x).
For spesific Banach spaces we can tighten the costant ”nn/n!” in (1.3). For that case we need

the following definition
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Definition 1.5. For X, Y Banach spaces and n ∈ N, we define

K (n,X) := inf
{
M : ‖L‖ ≤M‖L̂‖, ∀ L ∈ Ls (nX, Y )

}
.

K(n,X) is the n-th polarization constant, of the Banach space X.

Using Hahn-Banach’s Theorem we obtain that in order to calculate K(n,X), we can consider
continuous, symmetric n-linear forms, without loss of generality. That is, we can consider that
Y = K. In that case Banach spaces Ls(nX, Y ) and P(nX, Y ) represent as Ls(nX) and P(nX)
respectively. From relation (1.3) turns out, that for every Banach space X we get that

1 ≤ K(n,X) ≤ nn

n!
. (1.4)

If H is a Hilbert space then
K(n,H) = 1 .

An equivalent formulation for this fact is that spaces Ls(nH) and P(nH) are isometric.

2. Entire functions of exponential type

An analytical function f : C → C is called entire if it is analytical in all C. Thus, if f is an entire
function then

f(z) =
∞∑
n=0

cnz
n, ∀ z ∈ C

and from Cauchy-Hadamard’s form, we have that lim sup n
√
|cn| = 0.

Definition 2.1. The entire function f is of exponential type if

lim sup
r→∞

lnM(r)

r
<∞, where M(r) = max

|z|=r
|f(z)| .

If we have that

σ = lim sup
r→∞

lnM(r)

r
,

then f is exponential of type σ.

Proposition 2.2. Let f be an entire exponential function of type σ, 0 ≤ σ <∞, then σ = inf{k ≥
0 : M(r) < erk, ∀r ≥ Rk}.

Proof . Let λ = inf{k ≥ 0 : M(r) < erk, ∀ r ≥ Rk}. For every ε > 0, there exists Rε > 0 such
that M(r) < e(λ+ε)r, for every r > Rε there exists a sequence {rn}, with r1 < r2 < . . . < rn < . . .,
such that M(rn) > e(λ−ε)rn . In other words we get

lnM(r)

r
< λ+ ε, ∀ r > Rε

and
lnM(rn)

rn
> λ− ε
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for suitable large rn. That means that

λ = lim sup
r→∞

lnM(r)

r
= σ .

�

From the previous we obtain that:

Corollary 2.3. Function f is an entire exponential function of type σ, if and only if for every ε > 0
but for no ε negative, the following holds

M(r) =
(
e(σ+ε)r

)
, (r →∞) .

Example 2.4. 1. The analytical functions

ez, sin z, cos z, sinh z, cosh z

are exponential functions of type 1.

2. The entire function f(z) = ez · cos z is an exponential function of type 2, on the other hand the
entire function g(z) = z2 · e2z − e3z is exponential of type 3.

3. If the entire functions f1 and f2 are exponential functions of type σ1 and σ2 respectively, then
f1 · f2 is an exponential function of type σ, with σ ≤ σ1 + σ2 and f1 + f2 is an exponential
function of type σ∗, where σ∗ ≤ max{σ1, σ2}.

4. If

f(ϑ) =
n∑

k=−n

ck e
ikϑ, ck ∈ C ,

is a trigonometric polynomial of type ≤ n, then from the previous examples we have that the
entire function

n∑
k=−n

ck e
ikz

is an exponential function of type ≤ n.

The proof is very easy and without using the previous examples, we have

|f(z)| = |f(x+ iy)| ≤ C · en|y|, where C =
n∑

k=−n

|ck| ,

thus
M(r) = max

|z|=r
|f(z)| ≤ C · en·r .

Proposition 2.5. We assume that the entire function f(z) =
∑∞

n=0 cnz
n is an exponential function

of type σ. If λ = lim supn|cn|1/n, with 0 ≤ λ <∞ , then

σ =
λ

e
= lim sup

n

e
|cn|

1
n . (2.1)

For the proof of relation (2.1) we refer to R. P. Boas [1] and B. Ya. Levin [8].
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Theorem 2.6. (Bernstein’s Inequality) We assume that f : C → C is an entire exponential
function of type ≤ σ. If we have that supx∈R |f(x)| <∞, then ∀ ω ∈ R we obtain

sup
x∈R
|f ′(x) cosω + σ · f(x) sinω| ≤ σ · sup

x∈R
|f(x)| . (2.2)

Equality holds if and only if

f(z) = aeiσz + be−iσz , where a, b ∈ C .

Using the same hypothesis like in Theorem 2.6, from (2.2) for ω = 0, we have that

sup
x∈R
|f ′(x)| ≤ σ · sup

x∈R
|f(x)| . (2.3)

Relation (2.3) is the classical Bernstein’s inequality. In particular, if f takes real values, then
(2.2) implies the Szegö’s inequality, that is√

n2f (x)2 + f ′ (x)2 ≤ n sup
x∈R
|f (x)| , (2.4)

for every x ∈ R. Obviously inequalities (2.2), (2.3), and (2.4) hold in the special case where f
is a trigonometric polynomial of type ≤ σ.

Remark 2.7. Y. Katznelson [7], discover the relation witch connects Bernstein’s inequality (2.3)
with Banach’s theory of algebra. An element a of a Banach’s complex algebra A with unit
component, is called hermitian, if ‖ exp(ita)‖ = 1, ∀ t ∈ R. For example, the hermitian elements in
algebra of bounded operators in a Hilbert space are the self adjoint operators. It is known that the
norm of a self adjoint operator in a Hilbert space is equal to the spectral radius of the operator. Using
Bernstein’s inequality (2.3), Y. Katznelson proved that : The norm of an hermitian element a of a
Banach’s algebra A, is equal to the spectral radius %(a) = limn→∞ ‖an‖1/n. The above proposition is
equivalent to Bernstein’s inequality (2.3). Independently and almost simultaneously, Bonsall-Crabb
[2], A. M. Sinclair [12] and A. Browder [3] proved the same result.

3. Polarization constant K(n,X) = 1

We study the case that if X is a Banach space then we have that

‖L‖ = ‖L̂‖, ∀ L ∈ Ls(nX) .

If the previous relation holds for every L ∈ Ls (nX), then spaces P (nX) and L ∈ Ls(nX) are
isometric. We can also study the same problem using Fréchet derivative.

Definition 3.1. Let X, Y two normed spaces and U is a non empty open subset of X. A function
f : U → Y is called Fréchet differentiable in x ∈ U, if there exists a linear operator F : X → Y such
that :

lim
y→0

‖f(x+ y)− f(x)− F (y)‖
‖y‖

= 0 .
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F is the Fréchet derivative of f in x ∈ U, and expressed by Df(x). That is

F = Df(x) .

If f : U → Y is Fréchet differentiable in every component of U , then we say that f is Fréchet
differentiable in all of U . In that case the map

x ∈ U 7→ Df(x) ∈ L(X, Y )

is the Fréchet derivative of f in U and expressed by Df .

Proposition 3.2. Let P ∈ P(nX, Y ) and P = L̂, for L ∈ Ls(nX, Y ), then the homogeneous polyno-
mial P is Fréchet differentiable for every x and satisfies the following relation

DP (x)(y) = nL(xn−1, y) ,

where L(xn−1, y) = L(x, . . . , x︸ ︷︷ ︸
n−1

, y) .

Proof . By the definition of P we easily get that:

P (x+ y) = L(x+ y, x+ y, . . . , x+ y) =
n∑
k=0

(nk)L
(
xn−k, yk

)
where

L(xn−k, yk) = L(x, x, . . . , x︸ ︷︷ ︸
n−k

, y, y, . . . , y︸ ︷︷ ︸
k

) .

Thus we have

lim
y→0

‖P (x+ y)− P (x)− nL (xn−1, y) ‖
‖y‖

= lim
y→0

∥∥∥∥∥
n∑
k=0

(nk)L
(
xn−k, yk

)
− L̂(x)− nL

(
xn−1, y

)∥∥∥∥∥
‖y‖

= lim
y→0

∥∥∥∥∥
n∑
k=2

(nk)L(xn−k, yk)

∥∥∥∥∥
‖y‖

≤ lim
y→0

n∑
k=2

(nk)‖L‖ · ‖x‖n−k‖y‖k−1 = 0 .

Hence,

lim
y→0

‖P (x+ y)− P (x)− nL (xn−1, y) ‖
‖y‖

= 0,

that is
DP (x)(y) = nL

(
xn−1, y

)
.

�

Remark 3.3. The value of the linear operator DP (x) : X → Y in y usually expressed by DP (x)y
instead of DP (x)(y). So we have that:

DP (x)y = nL
(
xn−1, y

)
.
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Example 3.4. Let (H, 〈·, ·〉) a real Hilbert space and P (x) = ‖x‖2, ∀ x ∈ H. Because for every
x, y ∈ H we have the following identity ‖x+ y‖2 − ‖x‖2 − 2〈x, y〉 = ‖y‖2, we obtain that

DP (x)y = 2〈x, y〉 .

We have that P (x) = ‖x‖2 is a homogeneous polynomial of type 2, and so the previous result can
be proved using Proposition 3.2, too.

Let f : Rn → R a convex function. If all the partial derivatives of f in a ∈ Rn exist, then it is
known (lemma 19.4 in [5]) that function f is Fréchet differentiable in a. Also, we have (Theorem 19.5
in [5]) that if f : Rn → R is convex, then f is Fréchet differentiable almost everywhere. Generally
previous result doesn’t hold in an infinite dimensional space. Indeed, for every x ∈ `1 the convex
function f(x) = ‖x‖1 isn’t Fréchet differentiable (see examples 1.4(b) and 1.14(a) in [11]). Although
the following result is well known, we refer it’s proof complementary.

Example 3.5. Norm in `1 space isn’t Fréchet differentiable for any component.

Proof . Let x0 = (xk) ∈ `1, with xn = 0 for a n ∈ N. If en = (0, 0, . . . , 0, 1︸ ︷︷ ︸
n

, 0, . . .) and t ∈ R, then

‖x0 + ten‖1 − ‖x0‖1 = |t|. If f(x) = ‖x‖1 and F ∈ (`1)
∗, then the limit

lim
t→0

|f(x0 + ten)− f(x0)− F (ten)|
‖ten‖1

= lim
t→0
| |t|/t− F (en) |

either doesn’t exist (if F (en) 6= 0 ) or it is equal to 1 (if F (en) = 0). Thus we have that function f
isn’t Fréchet differentiable in x0. We assume now that x0 = (xk) ∈ `1, with xk 6= 0 ∀ k ∈ N. Let

F = (sgnxk) ∈ `∗1 = `∞, where sgnxk =
xk
|xk|

.

We also suppose that

y = (yk) ∈ `1 where ‖y‖1 =
∞∑
k=1

|yk| = 1 .

Because lim
n→∞

∞∑
k=n

|yk| = 0, for every ε > 0 there exists N ∈ N such that

∞∑
k=N+1

|yk| <
ε

2
.

For δ > 0 sufficiently small, if 1 ≤ k ≤ N and |t| < δ then it holds that

sgn(xk + tyk) = sgnxk .
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Thus for |t| < δ we get

|f(x0+ty)−f(x0)−F (ty)|
‖ty‖1 = 1

|t| ·

∣∣∣∣∣
∞∑
k=1

|xk + tyk| −
∞∑
k=1

|xk| −
∞∑
k=1

tyksgnxk

∣∣∣∣∣
= 1

|t| ·

∣∣∣∣∣
N∑
k=1

{(xk + tyk)sgn(xk + tyk)− |xk| − tyksgnxk}+

+
∞∑

k=N+1

(|xk + tyk| − |xk| − tyksgnxk)

∣∣∣∣∣
= 1

|t| ·

∣∣∣∣∣
∞∑

k=N+1

(|xk + tyk| − |xk| − tyksgnxk)

∣∣∣∣∣
= 1

|t| ·
∞∑

k=N+1

{| |xk|+ tyksgnxk | − (|xk|+ tyksgnxk)}

≤ 1
|t| ·

∞∑
k=N+1

(|xk|+ t|yk| − |xk| − tyksgnxk)

≤ 2 ·
∞∑

k=N+1

|yk| < ε .

So, we can say that if f is Fréchet differentiable in x0, then for Df(x0) we must define F = (sgnxk).
In order to prove that f isn’t Fréchet differentiable in x0, we consider the following sequence yn =
(y

(n)
k ) of `1, where

ynk =

{
0 , k < n
−2xk , k ≥ n .

Then

‖yn‖1 = 2 ·
∞∑
k=n

|xk| and lim
n→∞

‖yn‖ = 0 .

On the other hand we have

|f(x0 + yn)− f(x0)− F (yn)| =

∣∣∣∣∣ ‖x0 + yn‖1 − ‖x0‖ −
∞∑
k=1

y
(n)
k sgnxk

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=1

∣∣∣xk + y
(n)
k

∣∣∣− ∞∑
k=1

|xk| −
∞∑
k=1

y
(n)
k sgnxk

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=1

|xk| −
∞∑
k=1

|xk|+ 2
∞∑
k=n

|xk|

∣∣∣∣∣
= 2 ·

∞∑
k=n

|xk|

= ‖yn‖1 .

Hence f isn’t Fréchet differentiable in x0. �

Now, if P (z) = anz
n+an−1z

n−1+· · ·+a1z+a0 (where a0, a1, . . . , an are real or complex coefficients)
is a polynomial of type n, we have that the following Bernstein’s inequality holds true

|P ′(z)| ≤ n‖P‖∞, |z| ≤ 1 , (3.1)
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where
‖P‖∞ = max{|P (z)| : |z| = 1} .

If P is a real polynomial of real variable then instead of relation (3.1) we have Markov’s inequality:

|P ′(x)| ≤ n2‖P‖[−1,1], −1 ≤ x ≤ 1 , (3.2)

where
‖P‖[−1,1] = max{|P (x)| : ‖x‖ ≤ 1} .

We have to mention here that constants n and n2 in inequalities (3.1) and (3.2) are the best that is
possible. L. Harris [6] proved that generalization of (3.1) holds for every polynomial of type ≤ n in a
complex Hilbert space. It is noteworthy to mention that inequality (3.2) can be generalized in every
real normed space X.

Now, what can we say for homogeneous polynomials in a normed space X ? For this kind of
polynomials we give an equivalent form of Bernstein’s inequality in a normed space X.

Proposition 3.6. Let P ∈ P(nX), then Bernstein’s inequality

‖DP‖ = sup‖x‖≤1‖DP(x)‖ ≤ n‖P‖, ‖x‖ ≤ 1 , (3.3)

holds for every n ∈ N, if and only if ‖L‖ = ‖P‖, where L ∈ Ls(nX) and L̂ = P .

Proof . For ‖L‖ = ‖P‖ and ‖x‖ ≤ 1 we have:

‖DP (x)‖ = sup
‖y‖≤1

|DP (x)y| = n sup{|L
(
xn−1, y

)
| : ‖y‖ ≤ 1} ≤ n‖L‖ = n‖P‖ .

Reverse, we assume that (3.3) holds for every n ∈ N. Then we obtain

sup{|L
(
xn−1, y

)
| : ‖x‖ ≤ 1, ‖y‖ ≤ 1} ≤ ‖P‖ . (3.4)

We only have to prove that
‖L‖ = ‖P‖ .

We can achieve proof by deductive.
For n = 2, using the previous inequality we get that ‖L‖ ≤ ‖P‖ and then

‖L‖ = ‖P‖ .

We assune now that ‖F‖ = ‖F̂‖, for every F ∈ Ls(n−1X). If L ∈ Ls(nX) and P = L̂, then for every
xn ∈ X, with ‖xn‖ ≤ 1, we define Lxn ∈ Ls(n−1X) as

Lxn(x1, x2, . . . , xn−1) := L(x1, x2, . . . , xn) .

Using deductive hypothesis and relation (3.4) we obtain eventually

‖L‖ = sup{|L(x1, x2, . . . , xn)| : ‖xi‖ ≤ 1, 1 ≤ i ≤ n} =
= sup{|Lxn(x1, x2, . . . , xn−1)| : ‖xi‖ ≤ 1, 1 ≤ i ≤ n}
= sup{|Lxn(x, x, . . . , x)| : ‖xn‖ ≤ 1, ‖x‖ ≤ 1}
= sup{|L (xn−1, xn) | : ‖x‖ ≤ 1}
≤ ‖P‖ .

Thus we get that
‖L‖ = ‖P‖ .

�
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