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Abstract

We discuss the existence of a positive solution to the infinite semipositone problem

−∆u = au− buγ − f(u)− c

uα
, x ∈ Ω, u = 0, x ∈ ∂Ω,

where ∆ is the Laplacian operator, γ > 1, α ∈ (0, 1), a, b and c are positive constants, Ω is a bounded
domain in RN with smooth boundary ∂Ω, and f : [0,∞) → R is a continuous function such that
f(u) → ∞ as u → ∞. Also we assume that there exist A > 0 and β > 1 such that f(s) ≤ Asβ, for
all s ≥ 0. . We obtain our result via the method of sub- and supersolutions.
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1. Introduction

We consider the positive solution to the boundary value problem{
−∆u = au− buγ − f(u)− c

uα
, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

where ∆ denotes the Laplacian operator, γ > 1, α ∈ (0, 1), a, b and c are positive constants, Ω is a
bounded domain in RN with smooth boundary ∂Ω, and f : [0,∞)→ R is a continuous function. We
make the following assumptions:

(H1) f : [0,+∞)→ R is continuous function such that lims→+∞ f(s) =∞.
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(H2) There exist A > 0 and β > 1 such that f(s) ≤ Asβ, for all s ≥ 0.

In [9], the authors have studied the equation −∆u = g(u) − (c/uα) with Dirichlet boundary
conditions,where g is nonnegative and nondecreasing and limu→∞ g(u) =∞. The case g(u) := au−
f(u) has been study in [8], where f(u) ≥ au−M and f(u) ≤ Auβ on [0,∞) for some M,A > 0, β > 1
and this g may have a falling zero. In this paper, we study the equation−∆u = au−buγ−f(u)−(c/uα)
with Dirichlet boundary conditions. Our result in this paper include the result of [8], where say in
Remark 2.2. Let F (u) := au− buγ − f(u)− (c/uα), then limu→0+ F (u) = −∞ and hence we refer to
(1.1) as an infinite semipositone problem.

In recent years, there has been considerable progress on the study of semipositione problems
(F (0) < 0 but finite)(see [2],[3],[6]). Many results have been obtained on kind of infinite semipositone
problems; see for example [7], [8], [9] and [10]. One of the main tools used in these studies is the
method of sub-super solutions. By a subsolution of (1.1) we mean a function ψ ∈ C2(Ω)∩C(Ω) that
satisfies

−∆ψ ≤ aψ − bψγ − f(ψ)− c

ψα
in Ω

ψ ≤ 0 on ∂Ω,

and by a supersolution of (1.1) we mean a function Z ∈ C2(Ω) ∩ C(Ω) that satisfies

−∆Z ≥ aZ − bZγ − f(Z)− c

Zα
in Ω

Z ≥ 0 on ∂Ω.

Then we have the following Lemma.

Lemma 1.1 ([1, 4]). If there exist a subsolution ψ and a supersolution Z of (1.1) such that ψ ≤ Z
on Ω, then (1.1) has at least one solution u ∈ C2(Ω) ∩ C(Ω) satisfying ψ ≤ u ≤ Z on Ω.

2. The main result

We shall establish the following result.

Theorem 2.1. Let (H1) and (H2) hold. If a > ( 2
1+α

)λ1, Then there exists positive constant c∗ :=
c∗(a,A, α, β, γ,Ω) such that for c ≤ c∗, problem (1.1) has a positive solution, where λ1 be the first
eigenvalue of the Laplacian operator with Dirichlet boundary conditions.

Remark 2.2. Theorem 2.1 was established in [8] for the case f(u) := g(u)−buγ, where the function
g satisfy the following assumptions:
• g(u) ≈ buθ for some θ > γ.
• There exist A > 0 and β > 1 such that g(u) ≤ Auβ, for all u ≥ 0.
• There exist M > 0 such that g(u) ≥ au−M , for all u ≥ 0.
In fact, the function f satisfy the hypotheses of Theorem 2.1 in this paper (Since limu→∞ (g(u)/buθ) =
1, hence limu→∞ f(u) =∞) and g satisfy the hypotheses of Theorem 2.1 in [8], where (1.1) changes
to equation −∆u = au− g(u)− (c/uα) with Dirichlet boundary conditions.
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Proof .We shall establish Theorem 2.1 by constructing positive sub-supersolutions to equation (1.1).
From an anti-maximum principle (see [5, pages 155-156]), there exists σ(Ω) > 0 such that the solution
zλ of {

−∆z − λz = −1, x ∈ Ω,

z = 0, x ∈ ∂Ω,

for λ ∈ (λ1, λ1 +σ) is positive in Ω and is such that ∂z
∂ν
< 0 on ∂Ω, where ν is outward normal vector

on ∂Ω. Fix λ∗ ∈ (λ1,min{λ1 + σ, (1+α
2

)a}) and let

K := min
{( (2/1 + α)

2b ‖zλ∗‖
2γ−α+1

1+α
∞

) 1
γ−1

,
( a− ( 2

1+α
)λ∗

3b ‖zλ∗‖
2(γ−1)
1+α
∞

) 1
γ−1

,

( (2/1 + α)

2A ‖zλ∗‖
2β−α+1

1+α
∞

) 1
β−1

,
( a− ( 2

1+α
)λ∗

3A ‖zλ∗‖
2(β−1)
1+α
∞

) 1
β−1
}

Define ψ = Kz
2

1+α

λ∗ . Then

∇ψ = K(
2

1 + α
)z

1−α
1+α

λ∗ ∇zλ∗

and

−∆ψ = − div(∇ψ)

= −K(
2

1 + α
)

{
(
1− α
1 + α

)z
−2α
1+α

λ∗ |∇zλ∗|
2 + z

1−α
1+α

λ∗ ∆zλ∗

}
= −K(

2

1 + α
)

{
(
1− α
1 + α

)z
−2α
1+α

λ∗ |∇zλ∗|
2 + z

1−α
1+α

λ∗ (1− λ∗zλ∗)

}

= K(
2

1 + α
)

λ∗z 2
1+α

λ∗ − z
1−α
1+α

λ∗ −
(

1− α
1 + α

)
|∇zλ∗|2

z
2α
1+α

λ∗


Let δ > 0, µ > 0, m > 0 be such that |∇zλ∗ |2 ≥ m in Ωδ and zλ∗ ≥ µ in Ω \ Ωδ, where Ωδ := {x ∈
Ω : d(x, ∂Ω) ≤ δ}. Let

c∗ := K1+α min

{
(

2

1 + α
)
(1− α

1 + α

)
m2,

1

3
µ2
(
a− (

2

1 + α
)λ∗
)}

.

Let x ∈ Ωδ and c ≤ c∗. Since ( 2
1+α

)λ∗ < a, we have

K(
2

1 + α
)λ∗z

2
1+α

λ∗ < a
(
Kz

2
1+α

λ∗

)
. (2.1)

From the choice of K , we have

1

2
(

2

1 + α
) ≥ bKγ−1 ‖zλ∗‖

2γ−α+1
1+α
∞ (2.2)

1

2
(

2

1 + α
) ≥ AKβ−1 ‖zλ∗‖

2β−α+1
1+α
∞ (2.3)
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and by (2.2),(2.3) and (H2), we know that

−1

2
K(

2

1 + α
)z

1−α
1+α

λ∗ ≤ −b
(
Kz

2
1+α

λ∗

)γ
(2.4)

−1

2
K(

2

1 + α
)z

1−α
1+α

λ∗ ≤ −A
(
Kz

2
1+α

λ∗

)β
≤ −f

(
Kz

2
1+α

λ∗

)
(2.5)

Since |∇zλ∗|2 ≥ m in Ωδ, from the choice of c∗ we have

−K(
2

1 + α
)
(1− α

1 + α

) |∇zλ∗|2
z

2α
1+α

λ∗

≤ −K(
2

1 + α
)
(1− α

1 + α

) m2

z
2α
1+α

λ∗

≤ − c(
Kz

2
1+α

λ∗

)α . (2.6)

Hence for c ≤ c∗, combining (2.1),(2.4),(2.5) and (2.6) we have

−∆ψ = K(
2

1 + α
)

λ∗z 2
1+α

λ∗ − z
1−α
1+α

λ∗ −
(

1− α
1 + α

)
|∇zλ∗|2

z
2α
1+α

λ∗


= K(

2

1 + α
)λ∗z

2
1+α

λ∗ −
1

2
K(

2

1 + α
)z

1−α
1+α

λ∗

− 1

2
K(

2

1 + α
)z

1−α
1+α

λ∗

−K(
2

1 + α
)

(
1− α
1 + α

)
|∇zλ∗|2

z
2α
1+α

λ∗

≤ a
(
Kz

2
1+α

λ∗

)
− b
(
Kz

2
1+α

λ∗

)γ
− f

(
Kz

2
1+α

λ∗

)
− c(

Kz
2

1+α

λ∗

)α
= aψ − bψγ − f(ψ)− c

ψα
, x ∈ Ωδ.

Next in Ω \ Ωδ, for c ≤ c∗ from the choice of c∗ and K, we know that

c

Kα
≤ 1

3
Kz2λ∗

(
a− (

2

1 + α
)λ∗
)
, (2.7)

and

bKγ−1z
2(γ−1)
1+α

λ∗ ≤ 1

3

(
a− (

2

1 + α
)λ∗
)

(2.8)

AKβ−1z
2(β−1)
1+α

λ∗ ≤ 1

3

(
a− (

2

1 + α
)λ∗
)
. (2.9)
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By combining (2.7),(2.8) and (2.9) we have

−∆ψ = K(
2

1 + α
)

λ∗z 2
1+α

λ∗ − z
1−α
1+α

λ∗ −
(

1− α
1 + α

)
|∇zλ∗|2

z
2α
1+α

λ∗


≤ K(

2

1 + α
)λ∗z

2
1+α

λ∗

=
1

z
2α
1+α

λ∗

3∑
i=1

(
1

3
K(

2

1 + α
)λ∗z2λ∗

)
≤ 1

z
2α
1+α

λ∗

{(1

3
Kz2λ∗a−

c

Kα

)
+Kz2λ∗

(
1

3
a− bKγ−1z

2(γ−1)
1+α

λ∗

)
+Kz2λ∗

(
1

3
a− AKβ−1z

2(β−1)
1+α

λ∗

)}
≤ aKz

2
1+α

λ∗ − bK
γz

2γ
1+α

λ∗ − AK
βz

2β
1+α

λ∗ −
c

Kαz
2α
1+α

λ∗

≤ a
(
Kz

2
1+α

λ∗

)
− b
(
Kz

2
1+α

λ∗

)γ
− f

(
Kz

2
1+α

λ∗

)
− c(

Kz
2

1+α

λ∗

)α
= aψ − bψγ − f(ψ)− c

ψα
, x ∈ Ω \ Ωδ.

Thus ψ is a positive subsolution of (1.1). From (H1) and γ > 1, it is obvious that Z = M where
M is sufficiently large constant is a supersolution of (1.1) with Z ≥ ψ. Thus, by Lemma 1.1 there
exists a solution u of (1.1) with ψ ≤ u ≤ Z. This completes the proof of Theorem 2.1. �

3. An extension to system (3.1)

In this section, we consider the extension of (1.1) to the following system:
−∆u = a1u− b1uγ − f1(u)− c1

vα
, x ∈ Ω,

−∆v = a2v − b2vγ − f2(v)− c2
uα
, x ∈ Ω,

u = 0 = v, x ∈ ∂Ω,

(3.1)

where ∆ denotes the Laplacian operator, γ > 1, α ∈ (0, 1), a1, a2, b1, b2, c1 and c2 are positive
constants, Ω is a bounded domain in RN with smooth boundary ∂Ω, and fi : [0,∞) → R is a
continuous function for i = 1, 2. We make the following assumptions:

(H3) fi : [0,+∞)→ R is continuous functions such that lims→+∞ fi(s) =∞ for i = 1, 2.

(H4) There exist A > 0 and β > 1 such that fi(s) ≤ Asβ, i = 1, 2, for all s ≥ 0.

We prove the following result by finding sub-super solutions to infinite semipositone system (3.1).

Theorem 3.1. Let (H3) and (H4) hold, If min{a1, a2} > ( 2
1+α

)λ1, Then there exists positive constant
c∗ := c∗(a1, a2, b1, b2, A,Ω) such that for max{c1, c2} ≤ c∗, problem (3.1) has a positive solution.
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Proof . Let σ be as in section 2, ã = min{a1, a2} and b̃ = max{b1, b2}. Choice λ∗ ∈ (λ1,min{λ1 +
σ, (1+α

2
)ã}). Define

K := min
{( (2/1 + α)

2b̃ ‖zλ∗‖
2γ−α+1

1+α
∞

) 1
γ−1

,
( ã− ( 2

1+α
)λ∗

3b̃ ‖zλ∗‖
2(γ−1)
1+α
∞

) 1
γ−1

,

( (2/1 + α)

2A ‖zλ∗‖
2β−α+1

1+α
∞

) 1
β−1

,
( ã− ( 2

1+α
)λ∗

3A ‖zλ∗‖
2(β−1)
1+α
∞

) 1
β−1
}
,

and

c∗ := K1+α min

{
(

2

1 + α
)
(1− α

1 + α

)
m2,

1

3
µ2
(
ã− (

2

1 + α
)λ∗
)}

.

By the same argument as in the proof of theorem 2.1, we can show that (ψ1, ψ2) := (Kz
2

1+α

λ∗ , Kz
2

1+α

λ∗ )
is a positive subsolution of (3.1) for max{c1, c2} ≤ c∗, i.e.

−∆ψ1 ≤ a1ψ1 − b1ψ1
γ − f1(ψ1)− c1

ψ2
α , x ∈ Ω,

−∆ψ2 ≤ a2ψ2 − b2ψ2
γ − f2(ψ2)− c2

ψ1
α , x ∈ Ω,

(ψ1, ψ2) ≤ (0, 0), x ∈ ∂Ω.

Also it is easy to check that constant function (Z1, Z2) := (M,M) is a supersolution of (3.1) for M
large, i.e. 

−∆Z1 ≥ a1Z1 − b1Z1
γ − f1(Z1)− c1

Z2
α , x ∈ Ω,

−∆z2 ≥ a2Z2 − b2Z2
γ − f2(Z2)− c2

Z1
α , x ∈ Ω,

(Z1, Z2) ≥ (0, 0), x ∈ ∂Ω.

Further M can be chosen large enough so that (Z1, Z2) ≥ (ψ1, ψ2) on Ω. Hence for max{c1, c2} ≤ c∗,
(3.1) has a positive solution and the proof is complete. �
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