Int. J. Nonlinear Anal. Appl. 6 (2015) No. 2, 137-147 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2015.264

Subordination and superordination properties for convolution operator

Samira Rahrovi

Department of Mathematics, Faculty of Basic science, University of Bonab, P.O. Box: 5551-761167, Bonab , Iran

(Communicated by A. Ebadian)

Abstract

In the present paper, a certain convolution operator of analytic functions is defined. Subordination and superordination-preserving properties for a useful class of analytic operators on the space of normalized analytic functions in the open unit disk are obtained. Sandwich- type results are also obtained.

Keywords: Convolution operator; differential subordination; differential superordination; best dominant; best subordinant. 2010 MSC: 30C45.

1. Introduction and preliminaries

Let $H(\Delta)$ denote the class of analytic functions in the open unit disk $\Delta = \{z : |z| < 1\}$, and normalized by f(0) = f'(0) - 1 = 0. Also let A(p) be the class of all analytic functions of the form

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k, \quad p \in \mathbb{N},$$

and let A(1) = A. For a positive integer number n and $a \in \mathbb{C}$, let

$$\mathcal{H}[a,n] = \{ f \in H(\Delta) : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \ldots \}$$

Let f and F be members of the analytic function class $H(\Delta)$. The function f is said to be subordinate to F or F is said to be superordinate of f, if there exist a function w analytic in Δ with

Received: November 2014 Revised: June 2015

Email address: sarahrovi@gmail.com (Samira Rahrovi)

w(0) = 0, and |w(z)| < 1 such that f(z) = F(w(z)) and we write $f(z) \prec F(z)$ or $f \prec F$. If function F is univalent, then we have $f \prec F$ if and only if f(0) = F(0) and $f(\Delta) \subset F(\Delta)$.

Let $\varphi : \mathbb{C}^2 \times \Delta \longrightarrow \mathbb{C}$ and h be analytic in Δ . If p is analytic in Δ and satisfies the (first-order) differential subordination

$$\varphi(p(z), zp'(z); z) \prec h(z), \tag{1.1}$$

then p is called a solution of the differential subordination. The univalent function q is called a dominant of the solution of the differential subordination, or dominant if $p \prec q$ for all p satisfying (1.1). A dominant \tilde{q} that satisfies $q \prec \tilde{q}$ for all dominant of q of (1.1) is called the best dominant.

Let $\varphi : \mathbb{C}^2 \times \Delta \longrightarrow \mathbb{C}$ and h be analytic in Δ . If p and $\varphi(p(z), zp'(z); z)$ are univalent and p satisfies the (first-order) differential superordination

$$h(z) \prec \varphi(p(z), zp'(z); z) \tag{1.2}$$

then p is called a solution of the differential superordination. An analytic function q is called a subordinant of the solution of the differential superordinate, or more simply a subordinant if $q \prec p$ for all q satisfying (1.2). A univalent subordinant \tilde{q} that satisfies $\tilde{q} \prec q$ for all subordinant of q of (1.2) is called the best subordinant.

Ali et al [2] have obtained sufficient conditions for certain normalized analytic functions f(z) to satisfy $q_1(z) \prec \frac{zf'(z)}{f(z)} \prec q_2(z)$, where q_1 and q_2 are given univalent functions in Δ with $q_1(0) = q_2(0) = 1$.

For two functions $f_j(z)$, j = 1, 2, given by

$$f_j(z) = z + \sum_{k=2}^{\infty} a_{k,j} z^k$$

we define the Hadamard product (or convolution) of $f_1(z)$ and $f_2(z)$ by

$$(f_1 * f_2)(z) := z + \sum_{k=2}^{\infty} a_{k,1} a_{k,2} z^k = (f_2 * f_1)(z), \quad z \in \Delta.$$

In terms of the Pochhammer symbol (or the shifted factorial), define $(\kappa)_n$ by

$$(\kappa)_0 = 1, \text{ and } (\kappa)_n = \kappa(\kappa+1)(\kappa+2)\dots(\kappa+n-1), n \in \mathbb{N} := \{1, 2, \dots\}$$

Also, Aghalary et al [1] have defined a function $\phi_a^{\lambda}(b,c;z)$ by

$$\phi_a^{\lambda}(b,c;z) := 1 + \sum_{n=1}^{\infty} \left(\frac{a}{a+n}\right)^{\lambda} \frac{(b)_n}{(a)_n} z^n, \quad z \in \Delta,$$
(1.3)

where $b \in \mathbb{C}$, $c \in \mathbb{R} \setminus Z_0^-$, $a \in \mathbb{C} \setminus Z_0^-(Z_0^- = \{0, -1, -2, ...\})$ and $\lambda \ge 0$. Corresponding to the function $\phi_a^{\lambda}(b, c; z)$, given by (1.3), they have introduced the following convolution operator

$$L_a^{\lambda}(b,c;\beta)f(z) := \phi_a^{\lambda}(b,c;z) * \left(\frac{f(z)}{z}\right)^{\beta}, \quad f \in A, \quad \beta \in \mathbb{C} \setminus \{0\}.$$
(1.4)

It is easy to see that

$$z(\phi_a^{\lambda}(b,c;z))' = a\phi_a^{\lambda}(b,c;z) - a\phi_a^{\lambda+1}(b,c;z),$$
(1.5)

and

$$z(L_a^{\lambda+1}(b,c;\beta)f(z))' = aL_a^{\lambda}(b,c;\beta)f(z) - aL_a^{\lambda+1}(b,c;\beta)f(z).$$
(1.6)

The operator $L_a^{\lambda}(b,c;\beta)f(z)$ includes, as its special cases, Komatu integral operator (see [4], [5], [10]), some fractional calculus operators (see [4], [12], [13]) and Carlson-Shaffer operator (see [3]).

Making use of the principle of subordinant between analytic functions Miller et all [8] obtained some interesting subordination theorems involving certain operators. Also Miller and Mocanu [7] considered subordination-preserving properties of certain integral operator investigations as the dual concept of differential subordination. In the present investigation, we obtain the subordination and superordination-preserving properties of the convolution operator L_a^{λ} defined by (1.4) with the Sandwich-type theorems.

2. Definitions and Preliminaries

The following definitions and Lemmas will be required in our present investigation.

Definition 2.1. If $0 \le \alpha < 1$, $\lambda \ge 0$ and $a \in \mathbb{C} \setminus Z_0^-(Z_0^- = \{0, -1, -2, \ldots\})$, let $\mathcal{L}_a^{\lambda}(\alpha)$ denote the class of functions $f \in A$ wich satisfies the inequality

$$Re[L_a^{\lambda}(b,c;\beta)f(z)] > \alpha$$

For a = 1, we set $\mathcal{L}_1^{\lambda}(\alpha) = \mathcal{L}^{\lambda}(\alpha)$.

Definition 2.2. [6] Denote by Q the set of all functions q that are analytic and injective on $\overline{\Delta} \setminus E(q)$ where

$$E(q) = \{\xi \in \Delta : \lim_{z \to \xi} q(z) = \infty\}$$

and are such that $h'(\xi) \neq 0$ for $\xi \in \partial \Delta \setminus E(q)$.

Lemma 2.3. [6] Let h(z) be analytic and convex univalent in Δ and h(0) = a. Also p(z) be analytic in Δ with p(0) = a. If

$$p(z) + \frac{zp'(z)}{\gamma} \prec h(z), \quad \gamma \neq 0, \quad Re\gamma \ge 0,$$

then $p(z) \prec q(z) \prec h(z)$, where

$$q(z) = \frac{\gamma}{z^{\gamma}} \int_0^z h(t) t^{\gamma - 1} dt.$$

Furthermore q(z) is a convex function and is the best dominant.

Lemma 2.4. [7] Let h(z) be a convex in Δ , $h(0) = a, \gamma \neq 0$ and $\Re \gamma \geq 0$. Also $p \in \mathcal{H}[a, n] \cap Q$. If $p(z) + \frac{zp'(z)}{\gamma}$ is univalent in Δ , $h(z) \prec p(z) + \frac{zp'(z)}{\gamma}$ and $q(z) = \frac{\gamma}{z^{\gamma}} \int_{0}^{z} h(t)t^{\gamma-1}dt$ then $q(z) \prec p(z)$, and q(z) is a convex function and is the best subordinant.

Lemma 2.5. [11] Let q(z) be a convex univalent function in Δ and $\psi, \gamma \in \mathbb{C}$ with $Re(1 + \frac{zq''(z)}{q'(z)}) > max\{0, -Re\frac{\psi}{\gamma}\}, q(0) = a, \gamma \neq 0 \text{ and } Re\gamma \geq 0$. If p(z) is analytic in Δ and $\psi p(z) + \gamma zp'(z) \prec \psi q(z) + \gamma zq'(z)$ then $p(z) \prec q(z)$, and q(z) is the best dominant.

Lemma 2.6. [9] Let q(z) be a convex univalent function in Δ and $\eta \in \mathbb{C}$, assume that $Re\eta > 0$. If $p(z) \in \mathcal{H}[a, n] \cap Q$ and $p(z) + \eta z p'(z) \prec q(z) + \eta z q'(z)$ which implies that $q(z) \prec p(z)$ and q(z) is the best subordinant.

3. Differential subordination defined by convolution operator

Theorem 3.1. If $0 \le \alpha < 1$, $\lambda \ge 0$ and $a \in \mathbb{C} \setminus Z_0^-$, then we have $\mathcal{L}_a^{\lambda}(\alpha) \subset \mathcal{L}_a^{\lambda+1}(\delta)$,

where

$$\delta(\alpha, a) = a\beta(a) + a(2\alpha - 1)\beta(a + 1),$$

and

$$\beta(x) = \int_0^1 \frac{t^{x-1}}{1+t} dt$$

The result is sharp.

Proof . First note that $f \in \mathcal{L}_a^{\lambda}(\alpha)$ and

2

$$a(L_a^{\lambda+1}(b,c;\beta)f(z))' = aL_a^{\lambda}(b,c;\beta)f(z) - aL_a^{\lambda+1}(b,c;\beta)f(z).$$
(3.1)

We define $p(z) = L_a^{\lambda+1}(b,c;\beta)f(z)$. From the relation (1.1) we have

$$L_a^{\lambda}(b,c;\beta)f(z) = p(z) + \frac{zp'(z)}{a}.$$

Now from Lemma 2.3, for $\gamma = a$, it follows that

$$p(z) = L_a^{\lambda+1}(b,c;\beta)f(z) \prec q(z) = \frac{a}{z^a} \int_0^z \frac{1 + (2\alpha - 1)t}{1+t} t^{a-1} dt$$

therefore we have

$$\mathcal{L}_a^{\lambda}(\alpha) \subset \mathcal{L}_a^{\lambda+1}(\delta),$$

where

$$\delta = \min_{|z| \le 1} Req(z) = q(1) = a\beta(a) + a(2\alpha - 1)\beta(a + 1)$$

Furthermore q(z) is a convex function and is the best dominant. \Box

For the class \mathcal{L}^{λ} we obtain the next corollary.

Corollary 3.2. If $0 \le \alpha < 1$ and $\lambda \ge 0$, then we have

$$\mathcal{L}^{\lambda}(\alpha) \subset \mathcal{L}^{\lambda+1}(\delta),$$

where

$$\delta = \delta(\alpha) = 2\alpha - 1 + 2(1 - \alpha)\ln 2,$$

and the result is sharp.

Theorem 3.3. Let $h \in H(\Delta)$, with h(0) = 1 and $h'(0) \neq 0$, which verifies the inequality $Re[1 + \frac{zh''(z)}{h'(z)}] > -\frac{1}{2}$. If $f \in A$ and satisfies the differential subordination

$$L_a^{\lambda}(b,c;\beta)f(z) \prec h(z), \tag{3.2}$$

then

$$L_a^{\lambda+1}(b,c;\beta)f(z) \prec q(z), \tag{3.3}$$

where

$$q(z) = \frac{a}{z^a} \int_0^z h(t) t^{a-1} dt$$

 \mathbf{Proof} . Let

$$p(z) = L_a^{\lambda+1}(b,c;\beta)f(z).$$
(3.4)

Differentiating (3.4) with respect to z, we have $p'(z) = (L_a^{\lambda+1}(b,c;\beta)f(z))'$. From the relation (1.1) we have

$$\frac{zp'(z)}{a} + p(z) = L_a^{\lambda}(b,c;\beta)f(z).$$

Now, in view of (2.4), we obtain the following subordination

$$\frac{zp'(z)}{a} + p(z) \prec h(z).$$

Then from Lemma 2.3 for $\gamma = a$ we conclude that

$$p(z) = L_a^{\lambda+1}(b,c;\beta)f(z) \prec q(z),$$

where

$$q(z) = \frac{a}{z^a} \int_0^z h(t) t^{a-1} dt$$

and q(z) is the best dominant. \Box

Taking $\lambda = 0$ in Theorem 3.3, we arrive the following corollary.

Corollary 3.4. Let $h \in H(\Delta)$, with $h(0) = 1, h'(0) \neq 0$, and $Re\left(1 + \frac{zh''(z)}{h'(z)}\right) > -\frac{1}{2}$. If $f \in A$ and satisfies $\left(\frac{f(z)}{z}\right)^{\beta} \prec h(z)$, then $L_a(b,c;\beta) \prec q(z)$ where $q(z) = \frac{a}{z^a} \int_0^z h(t) t^{a-1} dt$. The function q(z) is the best dominant.

By setting $a = \gamma + \beta$, $\lambda = 0$ and b = c = 1 in Theorem 3.3, we get the following corollary.

Corollary 3.5. Let $h \in H(\Delta)$, with h(0) = 1 and $h'(0) \neq 0$, which satisfies the inequality $Re\left(1 + \frac{zh''(z)}{h'(z)}\right) > -\frac{1}{2}$. If $f \in A$ and satisfies the differential subordination $(\frac{f(z)}{z})^{\beta} \prec h(z)$, then

$$\frac{\gamma+\beta}{z^{\gamma+\beta}}\int_0^z u^{\gamma-1}(f(u))^\beta du \prec \frac{1}{z}\int_0^z h(u)du$$

The function $\frac{1}{z} \int_0^z h(u) du$ is the best dominant.

Corollary 3.6. Let $0 < R \le 1$ and let h(z) be convex in Δ , defined by $h(z) = 1 + Rz + \frac{Rz}{2+Rz}$, with h(0) = 1. If $f \in A$ satisfies in the following differential subordination

$$L_a^{\lambda}(b,c;\beta)f(z) \prec h(z),$$

then

$$L_a^{\lambda+1}(b,c;\beta)f(z) \prec q(z),$$

where

$$q(z) = \frac{a}{z^a} \int_0^z \left(1 + Rt + \frac{Rt}{2 + Rt} t^{a-1} \right) dt$$
$$= z^{a-1} + Ra \left(\frac{z^a}{a+1} + \frac{M(z)}{z} \right),$$

with

$$M(z) = \int_0^z \frac{t^a}{2 + Rt} dt.$$

If a = 1, Corollary 3.6 becomes:

Corollary 3.7. Let $0 < R \le 1$ and let h(z) be convex in Δ , defined by $h(z) = 1 + Rz + \frac{Rz}{2+Rz}$, with h(0) = 1. If $f \in A$ and suppose that

$$L^{\lambda}(b,c;\beta)f(z) \prec h(z),$$

then

$$L^{\lambda+1}(b,c;\beta)f(z) \prec q(z)(z \in \Delta)$$

where

$$q(z) = \frac{1}{z} \int_0^z \left(1 + Rt + \frac{Rt}{2 + Rt} \right) dt$$

= $2 + \frac{Rz}{2} - \frac{2}{Rz} \log(2 + Rz),$

The function q(z) is convex and is the best dominant.

By taking R = 1 in Corollary 3.7 we have the following corollaries.

Corollary 3.8. Let h(z) be convex in Δ , defined by $h(z) = 1 + z + \frac{z}{2+z}$, with h(0) = 1. If $f \in A$, satisfies in the differential subordination

$$L^{\lambda}(b,c;\beta)f(z) \prec h(z),$$

then

$$L^{\lambda+1}(b,c;\beta)f(z) \prec q(z),$$

where

$$q(z) = 2 + \frac{z}{2} - \frac{2}{z}\log(2+z).$$

The function q(z) is convex and is the best dominant.

Corollary 3.9. Let h(z) be convex in Δ , defined by $h(z) = 1 + z + \frac{z}{2+z}$, with h(0) = 1. Suppose that $\gamma \in \mathbb{C}$, $a = \gamma + \beta$, $\lambda = 0$ and b = c = 1. If $f \in A$ and satisfies the differential subordination $(\frac{f(z)}{z})^{\beta} \prec h(z)$, then

$$\frac{\gamma+\beta}{z^{\gamma+\beta}} \int_0^z u^{\gamma-1} (f(u))^\beta du \prec q(z) = 2 + \frac{z}{2} - \frac{2}{z} \log(2+z)$$

The function q(z) is convex and is the best dominant.

Corollary 3.10. Let $h(z) = \frac{1+(2\alpha-1)z}{1+z}$ be convex function in Δ , with h(0) = 1. If $f \in \mathcal{L}^{\lambda}(\alpha)$ and $L^{\lambda}(b,c;\beta)f(z) \prec h(z)$ then

$$L^{\lambda+1}(b,c;\beta)f(z) \prec q(z),$$

where

$$q(z) = 2\alpha - 1 + 2(1 - \alpha) \frac{\log(1 + z)}{z}.$$

Theorem 3.11. Let q(z) be a convex function with q(0) = 1, and let h be a function such that $h(z) = q(z) + \frac{zq'(z)}{q(z)}$. If $f \in H(\Delta)$ and satisfies the differential subordination

$$L_a^{\lambda}(b,c;\beta)f(z) \prec h(z), \tag{3.5}$$

then

$$L_a^{\lambda+1}(b,c;\beta)f(z) \prec q(z)$$

and this result is sharp.

Proof . We have

$$z(L_a^{\lambda+1}(b,c;\beta)f(z))' = aL_a^{\lambda}(b,c;\beta)f(z) - aL_a^{\lambda+1}(b,c;\beta)f(z).$$
(3.6)

Let $p(z) = L_a^{\lambda+1}(b,c;\beta)f(z)$, then from (3.5) and (3.6) , we have

$$p(z) + \frac{zp'(z)}{a} \prec q(z) + \frac{zq'(z)}{a}$$

An application of Lemma 2.6, we conclude that $p(z) \prec q(z)$ or $L_a^{\lambda+1}(b,c;\beta)f(z) \prec q(z)$ and this result is sharp. \Box

Theorem 3.12. Let $h \in H(\Delta)$, with h(0) = 1, and $h'(0) \neq 0$, which satisfies in the inequality $Re\left(1 + \frac{zh''(z)}{h'(z)}\right) > -\frac{1}{2}$. If $f \in A$ and satisfies the differential subordination

$$(L_a^{\lambda+1}(b,c;\beta)f(z))' \prec h(z),$$

then

$$\frac{L_a^{\lambda+1}(b,c;\beta)f(z)}{z} \prec q(z)$$

where

$$q(z) = \frac{1}{z} \int_0^z h(t) t^{a-1} dt,$$

the function q(z) is the best dominant.

Proof. Let us define the function f by

$$f(z) = \frac{L_a^{\lambda+1}(b,c;\beta)f(z)}{z}.$$
(3.7)

Differentiating with respect to z logarithmically, we have

$$\frac{zp'(z)}{p(z)} = \frac{z(L_a^{\lambda+1}(b,c;\beta)f(z))'}{L_a^{\lambda+1}(b,c;\beta)f(z)} - 1$$

and

$$p(z) + zp'(z) = (L_a^{\lambda+1}(b,c;\beta)f(z))^{\lambda+1}$$

Now, from (3.7) we obtain

$$p(z) + zp'(z) \prec h(z)$$

Then, by Lemma 2.3 , for $\gamma=1$ we have $p(z)\prec q(z)$ or

$$\frac{L_a^{\lambda+1}(b,c;\beta)f(z)}{z}\prec \frac{1}{z}\int_0^z h(t)dt$$

and the function q(z) is the best dominant. Therefore, we complete the proof of theorem 3.12. \Box

Suppose that $\lambda = 0$ and in Theorem 3.12 we have the following result.

Corollary 3.13. Let $h \in H(\Delta)$, with h(0) = 1 and $h'(0) \neq 0$, which satisfies in the inequality

$$Re(1+\frac{zh''(z)}{h'(z)})>-\frac{1}{2}$$

. If $f \in A$ and $(L_a(b,c;\beta)f(z))' \prec h(z)$ then $\frac{L_a(b,c;\beta)f(z)}{z} \prec \frac{1}{z} \int_0^z h(t)dt$, and the function $\frac{1}{z} \int_0^z h(t)dt$ is the best dominant.

By taking $\gamma \in \mathbb{C}$, $a = \gamma + \beta$, $\lambda = 0$, and b = c = 1 in the Theorem 3.12 we get the following result.

Corollary 3.14. Let $f \in A$, $h \in H(\Delta)$ and h(0) = 1, $h'(0) \neq 0$. If $Re(1 + \frac{zh''(z)}{h'(z)}) > -\frac{1}{2}$

$$\frac{-(\gamma+\beta)}{z^{\gamma+\beta+1}}\int_0^z u^{\gamma-1}(f(u))^\beta du + \frac{\gamma+\beta}{z^{\beta+1}} \prec h(z),$$

then

$$\frac{\gamma+\beta}{z^{\gamma+\beta-1}}\int_0^z u^{\gamma-1}(f(u))^\beta du \prec \frac{1}{z}\int_0^z h(u)du$$

The function $\frac{1}{z} \int_0^z h(u) du$ is the best dominant.

Corollary 3.15. Let $0 < R \le 1$ and let h(z) be convex in Δ , defined by $h(z) = 1 + Rz + \frac{Rz}{2+Rz}$, with h(0) = 1. If $f \in A$ satisfies in the following differential subordination

$$(L^{\lambda+1}(b,c;\beta)f(z))' \prec h(z),$$

then

$$\frac{L^{\lambda+1}(b,c;\beta)f(z)}{z} \prec q(z),$$

where

$$q(z) = \frac{1}{z} \int_0^z \left(1 + Rt + \frac{Rt}{2 + Rt} \right) dt$$
$$= 1 + \frac{Rz}{2} + \frac{RM(z)}{z},$$

with

$$M(z) = \frac{z}{R} - \frac{2}{R^2} \left(\ln(2 + Rz) \right) - \frac{2}{R} \ln 2$$

The function q(z) is convex and is the best dominant.

Suppose that $\gamma \in \mathbb{C}$, $a = \gamma + \beta$, $\lambda = 0$ and b = c = 1 in Corollary 3.15 we have the following corollary.

Corollary 3.16. Let h(z) be convex in Δ , defined by $h(z) = 1 + z + \frac{z}{2+z}$, with h(0) = 1. If $f \in A$, satisfies in the differential subordination

$$\frac{-(\gamma+\beta)}{z^{\gamma+\beta+1}}\int_0^z u^{\gamma-1}(f(u))^\beta du + \frac{\gamma+\beta}{z^{\beta+1}} \prec h(z),$$

then

$$\frac{\gamma+\beta}{z^{\gamma+\beta-1}}\int_0^z u^{\gamma-1}(f(u))^\beta du \prec \frac{1}{z}\int_0^z h(u)du,$$

where

$$q(z) = 2 + \frac{z}{2} - \frac{2}{z}\log(2+z).$$

Corollary 3.17. Let $h(z) = \frac{1+(2\alpha-1)z}{1+z}$ be convex function in Δ , with h(0) = 1. If $f \in \mathcal{L}^{\lambda}(\alpha)$ and $(L^{\lambda+1}(b,c;\beta)f(z))' \prec h(z),$

then

$$\frac{L^{\lambda+1}(b,c;\beta)f(z)}{z} \prec q(z),$$

where

$$q(z) = 2\alpha - 1 + 2(1 - \alpha) \frac{\log(1 + z)}{z}.$$

The function q(z) is convex and is the best dominant.

Theorem 3.18. Let q(z) be a convex function in Δ , q(0) = 1 and $h(z) = q(z) + \frac{zq'(z)}{q(z)}$. If $f \in H(\Delta)$ and satisfies the differential subordination

$$(L_a^{\lambda+1}(b,c;\beta)f(z))' \prec h(z), \tag{3.8}$$

then

$$\frac{L_a^{\lambda+1}(b,c;\beta)f(z)}{z} \prec q(z)$$

and this result is sharp.

Proof. Let

$$p(z) = \frac{L_a^{\lambda+1}(b,c;\beta)f(z)}{z}.$$
(3.9)

Logarithmic differentiation of (3.9) and through a little simplification we obtain

 $p(z) + zp'(z) = (L_a^{\lambda+1}(b,c;\beta)f(z))'.$

Now by using Lemma 2.6, we conclude that the differential equation

$$\frac{L_a^{\lambda+1}(b,c;\beta)f(z)}{z} \prec q(z)$$

and this result is sharp. \Box

4. Differential superordination defined by convolution operator

The results this section are obtained with differential superordination method.

Theorem 4.1. Let h be convex function in Δ , with h(0) = 1, and $f \in A$. Assume that $L_a^{\lambda}(b,c;\beta)f(z)$ is univalent with $L_a^{\lambda+1}(b,c;\beta)f(z) \in \mathcal{H}[1,n] \cap Q$. If $h(z) \prec L_a^{\lambda}(b,c;\beta)f(z)$ then

$$q(z) \prec L_a^{\lambda+1}(b,c;\beta)f(z), \tag{4.1}$$

where

$$q(z) = \frac{a}{z^a} \int_0^z h(t) t^{a-1} dt$$

The function q(z) is the best subordinant.

 \mathbf{Proof} . If we let

$$p(z) = L_a^{\lambda+1}(b,c;\beta)f(z),$$

then from the relation (1.6) we have $p(z) + \frac{zp'(z)}{a} = L_a^{\lambda}(b,c;\beta)f(z)$. Now according to Lemma 2.4 we get the desired result (4.1). \Box

Corollary 4.2. Suppose that $\gamma \in \mathbb{C}$, $a = \gamma + \beta \lambda = 0$ and b = c = 1. Let $h \in H(\Delta)$ be convex function in Δ , with h(0) = 1, and $f \in A$. Assume that $(\frac{f(z)}{z})^{\beta}$ is univalent with $\frac{\gamma+\beta}{z^{\gamma+\beta}} \int_0^z u^{\gamma-1} (f(u))^{\beta} du \in \mathcal{H}[1,n] \cap Q$. If $h(z) \prec (\frac{f(z)}{z})^{\beta}$ then

$$\frac{1}{z} \int_0^z h(u) du \prec \frac{\gamma + \beta}{z^{\gamma + \beta}} \int_0^z u^{\gamma - 1} (f(u))^\beta du$$

and $\frac{1}{z} \int_0^z h(u) du$ is the best subordinant.

Corollary 4.3. Let h(z) be a convex mapping in Δ , defined by $h(z) = 1 + z + \frac{z}{2+z}$, with h(0) = 1. Suppose that $\gamma \in \mathbb{C}$, $a = \gamma + \beta$, $\lambda = 0$, b = c = 1, and $f \in A$ and $(\frac{f(z)}{z})^{\beta}$ is univalent with $\frac{\gamma+\beta}{z^{\gamma+\beta}} \int_0^z u^{\gamma-1} (f(u))^{\beta} du \in \mathcal{H}[1,n] \cap Q$. If $h(z) \prec (\frac{f(z)}{z})^{\beta}$ then $q(z) \prec \frac{\gamma+\beta}{z^{\gamma+\beta}} \int_0^z u^{\gamma-1} (f(u))^{\beta} du$, where $q(z) = 2 + \frac{z}{2} - \frac{2}{z} \log(2+z)$. The function q(z) is the best subordinant.

Corollary 4.4. Let $h(z) = \frac{1+(2\alpha-1)z}{1+z}$ be a convex function in Δ with h(0) = 1. Assume that $f \in \mathcal{L}^{\lambda+1}(\alpha)$ and $L^{\lambda}(b,c;\beta)f(z)$ is univalent with $L^{\lambda+1}(b,c;\beta)f(z) \in \mathcal{H}[1,n] \cap Q$. If $h(z) \prec L^{\lambda}(b,c;\beta)f(z)$ then

$$q(z) \prec L_a^{\lambda+1}(b,c;\beta)f(z),$$

where

$$q(z) = 2\alpha - 1 + 2(1 - \alpha)\frac{\log(1 + z)}{z}$$

The function q(z) is the best subordinant.

Theorem 4.5. Let h be a convex function in Δ , with h(0) = 1, and $f \in A$. Assume that $(L_a^{\lambda+1}(b,c;\beta)f(z))'$ is univalent with $\frac{L_a^{\lambda+1}(b,c;\beta)f(z)}{z} \in \mathcal{H}[1,n] \cap Q$. If $h(z) \prec (L_a^{\lambda+1}(b,c;\beta)f(z))'$ then

$$q(z) \prec \frac{L_a^{\lambda+1}(b,c;\beta)f(z)}{z}$$

where

$$q(z) = \frac{1}{z} \int_0^z h(t) dt.$$

The function q(z) is the best subordinant.

5. Sandwich results

Combining results of differential subordinations and superordinations, we arrive at the following "Sandwich results".

Theorem 5.1. Let $q_1(z)$ be convex univalent in the open unit disk Δ , and $q_2(z)$ be univalent in the open unite disk Δ and $f \in A$. Also let $L_a^{\lambda}(b,c;\beta)f(z)$ be univalent with $L_a^{\lambda+1}(b,c;\beta)f(z) \in$ $\mathcal{H}[1,n] \cap Q$. The following subordinate relationship $q_1(z) \prec L_a^{\lambda}(b,c;\beta)f(z) \prec q_1(z)$ implies $q_1(z) \prec$ $L_a^{\lambda+1}(b,c;\beta)f(z) \prec q_2(z)$. Moreover the functions $q_1(z)$ and $q_2(z)$ are the best subordinant and the best dominant respectively.

147

Theorem 5.2. Suppose that $q_1(z)$ is convex univalent, and let $q_2(z)$ be univalent in Δ and $f \in A$. Let $(L_a^{\lambda+1}(b,c;\beta)f(z))'$ be univalent with $\frac{L_a^{\lambda+1}(b,c;\beta)f(z)}{z} \in \mathcal{H}[1,n] \cap Q$. If $q_1(z) \prec (L_a^{\lambda+1}(b,c;\beta)f(z))' \prec q_2(z)$ then $q_1(z) \prec \frac{L_a^{\lambda+1}(b,c;\beta)f(z)}{z} \prec q_2(z)$. Moreover the functions $q_1(z)$ and $q_2(z)$ are the best subordinant and the best dominant respectively.

References

- R. Aghalary, A. Ebadian and Zhi-Gang Wang, Subordination and superorination results involving certain convolution operator, Bull. Iranian Math. Soc. 36 (2010) 137–147.
- [2] R.M. Ali, V. Ravichandran, M.H. Khan and K.G. Sumramanian, Differential sandwish theorems for certain analytic functions, Far East J. Math. Sci. 15 (2010) 87–94.
- [3] B.C. Carlson and D.B. Shaffer, Starlike and prestalike hypergeometric functions, SIAM J. Math. Anal. 159 (1984) 737-745.
- [4] R. Fournier and S. Ruscheweyh, On two external promblems related to univalent functions, Rocky Mountain J. Math. 24 (1994) 529–538.
- [5] Y. Komatu, On analytic prolongation of a family of operators, Mathematica (Cluj) 32 (1990) 141-145.
- [6] S.S. Miller and P.T. Mocanu, *Differential subordinations, Theorey and applications*, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, USA, 2000.
- [7] S.S. Miller and P.T. Mocanu, Subordination of solutions of differential superordinations, Complex variables. 48 (2003) 815–826.
- [8] S.S. Miller, P.T. Mocanu and O. Reade, Subordination-preserving integral operator, Trans. Amer. Math. Sco. 283 (1984) 605–615.
- [9] C. Pommerenke, Univalent functions, Vanderhoeck and Ruprecht, Gotlingen. Göttingen, 1975.
- [10] S. Ponnusamy and S. Sabapathy, Polylogarithms in the theory of univalent functions, Results Math. 30 (1996) 136–150.
- [11] T.N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential sandwich theorems for some subclass of functions, Australian J. Math. Appl. 3 (2006) 1–11.
- [12] H.M. Srivastava and S. Owa(Eds), Univalent functions, Fractional Calculus and Their Applications, Halasted Press, Ellis Horwood Limted, Chichester, John Wiley and Sons New York, 1989.
- [13] H.M. Srivastava and S. Owa(Eds), Current topic in analytic functions theory, World Scientific Publishing Company, Singapore New Jersery, Londen and Hong Kong, 1992.