Int. J. Nonlinear Anal. Appl. 4 (2013) No. 1, 55-58 ISSN: 2008-6822 (electronic) http://www.ijnaa.semnan.ac.ir

Some Results of 2π -Periodic Functions by Fourier Sums in the Space $L_p(2\pi)$

M. El Hamma^{a,*}, R. Daher^b

^aDepartment of Mathematics, Faculty of Science Aïn Chock, University Hassan II, Casablanca, Morocco ^bDepartment of Mathematics, Faculty of Science Aïn Chock, University Hassan II, Casablanca, Morocco

Abstract

In this paper, using the Steklov function, we introduce the generalized continuity modulus and define the class of functions $W_{p,\varphi}^{r,k}$ in the space L_p . For this class, we prove an analog of the estimates in [1] in the space L_p .

Keywords: 2π -periodic function, approximation by Fourier sums, Steklov function. 2010 MSC: 42B12, 42B99.

1. Introduction and preliminaries

Suppose that $L_p = L_p(2\pi)$, (1 , is the space of*p* $-power integrable <math>2\pi$ -periodic functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ on $[0, 2\pi)$ with the norm

$$||f||_p = \left(\frac{1}{\pi} \int_0^{2\pi} |f(x)|^p dx\right)^{1/p}.$$

By

$$E_n(f) = \inf_{T_n} \|f - T_n\|_p$$

we denote the best approximation of a function $f \in L_p$ by trigonometric polynomials $T_n(x)$ of order at most n-1, $n \in \mathbb{N}$, in the space L_p .

In this paper, we prove an analog of some results in [1] in the space L_p .

In L_p , consider the operator (Steklov's function)

*Corresponding author

Received: May 2012 Revised: January 2013

Email addresses: m_elhamma@yahoo.fr (M. El Hamma), rjdaher024@gmail.com (R. Daher)

$$F_h f(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(t) dt, \ h > 0,$$

(see[3]).

The finite differences of the first and higher orders are defined as followos

$$\Delta_h f(x) = F_h f(x) - f(x) = (F_h - E) f(x),$$
$$\Delta_h^k f(x) = \Delta_h (\Delta_h^{k-1} f(x)) = (F_h - E)^k f(x) = \sum_{i=0}^k (-1)^{k-i} {k \choose i} F_h^i f(x),$$

where

$$\mathbf{F}_{h}^{0}f(x) = f(x); \ \mathbf{F}_{h}^{i}f(x) = \mathbf{F}_{h}(\mathbf{F}_{h}^{i-1}f(x)); \ i = 1, 2, ..., k; \ k = 1, 2, ...$$

and E is the unit operator in the space L_p .

The kth-order generalized continuity modulus of the function $f \in L_p$ has the form

$$\Omega_k(f,\delta) = \sup_{0 < h \le \delta} \|\Delta_h^k f(x)\|_p$$

Let L_p^r is the class of functions $f \in L_p$ having generalized derivatives f'(x), f''(x),, $f^{(r)}(x)$ in the sense of Levi ([2], p. 172) belonging to the space L_p .

 $\mathbf{W}_{p,\varphi}^{r,k}$ is the class of functions $f\in\mathbf{L}_p^r$ such that

$$\Omega_k(f^{(r)},\delta) = O(\varphi(\delta^k)), \ r \in \mathbb{Z}_+, \ k \in \mathbb{N}$$

where $\varphi(t)$ is a continuous increasing function defined on $[0, +\infty)$ and $\varphi(0) = 0$.

Suppose that $f \in L_p$

$$f(x) \sim \frac{a_0}{2} + \sum_{i=1}^{\infty} a_i \cos ix + b_i \sin ix,$$
 (1.1)

where

$$a_i = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos it dt; \ b_i = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin it dt$$

is its Fourier series, and

$$S_n(f;x) = \frac{a_0}{2} + \sum_{i=1}^{n-1} a_i \cos ix + b_i \sin ix$$

are the partial sums of the series (1.1).

It is well know that

$$||f||_p = \left(\sum_{i=0}^{\infty} |c_i(f)|^p\right)^{1/p}, \ E_n(f) = ||f - S_n(f)||_p = \left(\sum_{i=n}^{\infty} |c_i(f)|^p\right)^{1/p},$$
(1.2)

Moreover, it is readily verified that if $f \in L_p^r$, then

$$\sum_{i=1}^{\infty} (1 - \frac{\sin ih}{ih})^{qk} i^{qr} |c_i(f)|^q \le \|\Delta_h^k f^{(r)}(x)\|_p^q,$$
(1.3)

where $\frac{1}{p} + \frac{1}{q} = 1$.

2. Main result

Theorem 2.1. For any function $f \in L_p^r$ the following estimate holds

$$E_n(f) \le \left(\frac{qn^q}{\pi^q - q^2}\right)^k n^{-r} \left(\int_0^{\pi/n} h^{q-1} \Omega_k^{1/k}(f^{(r)}, h) dh\right)^k, \ r \in \mathbb{Z}_+, \ n \in \mathbb{N}.$$

Proof. Suppose that $f \in L_p^r$. By Hölder's inequality, using (1.2) and (1.3) for k = 1, 2, ..., we have

$$\begin{split} E_n^q(f) &- \sum_{i=n}^{\infty} \frac{\sin ih}{ih} |c_i(f)|^q = \sum_{i=n}^{\infty} \left(1 - \frac{\sin ih}{ih} \right) |c_i(f)|^q \\ &= \sum_{i=n}^{\infty} |c_i(f)|^{q-\frac{1}{k}} |c_i(f)|^{\frac{1}{k}} \left(1 - \frac{\sin ih}{ih} \right) \\ &\leq \left(\sum_{i=n}^{\infty} |c_i(f)|^q \right)^{\frac{qk-1}{qk}} \left(\sum_{i=n}^{\infty} (1 - \frac{\sin ih}{ih})^{qk} |c_i(f)|^q \right)^{\frac{1}{qk}} \\ &\leq \left(\sum_{i=n}^{\infty} |c_i(f)|^q \right)^{\frac{qk-1}{qk}} n^{-r/k} \left(\sum_{i=n}^{\infty} (1 - \frac{\sin ih}{ih})^{qk} i^{qr} |c_i(f)|^q \right)^{\frac{1}{qk}} \\ &\leq (E_n(f))^{\frac{qk-1}{qk}} n^{-r/k} ||\Delta_h^k f^{(r)}(x)||_p^{1/k}. \end{split}$$

Hence

$$E_n^q(f) \le (E_n(f))^{\frac{qk-1}{qk}} n^{-r/k} \|\Delta_h^k f^{(r)}(x)\|_p^{1/k} + \sum_{i=n}^{\infty} \frac{\sin ih}{ih} |c_i(f)|^q$$

It follows that

$$E_n^q(f) \le (E_n(f))^{\frac{qk-1}{qk}} n^{-r/k} \Omega_k^{1/k}(f^{(r)}, h) + \sum_{i=n}^{\infty} \frac{\sin ih}{ih} |c_i(f)|^q$$

multiplying both sides of the last inequality by $h^{q-1} > 0$ and integrating the resulting inequality between the limits $h \in [0, \pi/n]$ we have

$$\frac{\pi^q}{qn^q} E_n^q(f) \le \left(E_n(f)\right)^{\frac{qk-1}{qk}} n^{-r/k} \int_0^{\pi/n} h^{q-1} \Omega_k^{1/k}(f^{(r)},h) dh + \frac{q}{n^q} \sum_{i=n}^\infty |c_i(f)|^q.$$

Hence it is easy to note that

$$\frac{\pi^q - q^2}{qn^q} E_n^q(f) \le (E_n(f))^{\frac{qk-1}{qk}} n^{-r/k} \int_0^{\pi/n} h^{q-1} \Omega_k^{1/k}(f^{(r)}, h) dh$$

it follows that

$$E_n^q(f) \le \left(\frac{qn^q}{\pi^q - q^2}\right)^{qk} n^{-rq} \left(\int_0^{\pi/n} h^{q-1} \Omega_k^{1/k}(f^{(r)}, h) dh\right)^{qk}$$

Then

$$E_n(f) \le \left(\frac{qn^q}{\pi^q - q^2}\right)^k n^{-r} \left(\int_0^{\pi/n} h^{q-1} \Omega_k^{1/k}(f^{(r)}, h) dh\right)^k$$

and hence Theorem is proved. \Box

Corollary 2.2. The following estimate holds

$$\sup_{f \in \mathbf{W}_{p,\varphi}^{r,k}} E_n(f) = O(n^{-r}\varphi((\frac{\pi}{n})^k)).$$

Corollary 2.3. Let $f \in W_{p,t^{\alpha}}^{r,k}$ $(\alpha > 0)$, then

$$E_n(f) = O(n^{-r-k\alpha}),$$

 $r \in \mathbb{Z}_+$ and $k, n \in \mathbb{N}$.

Proof. Suppose that $f \in W^{r,k}_{p,t^{\alpha}}$. Then by Corollary 2.2 and $\varphi(t) = t^{\alpha}$, we have the proof of Corollary 2.3. \Box

References

- V. A. Abilov and F. V. Abilova, Problems in the Approximation of 2π-Periodic Functions by Fourier Sums in the Space L₂(2π), Mathematical Notes, Vol. 76, No. 6, 2004, pp. 749–757.
- [2] S. M. Nikol'skii, Approximation of Functions of Several Variables and Embedding Theorems, [in Russian], Nauka, Moscow, 1969.
- [3] F. I. Kharshiladze, On Steklov functions, Soobshch. AN Gruz. SSR, .14 (1953), no. 3, 139–144.