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Abstract

In this paper, using the Steklov function, we introduce the generalized continuity modulus and define
the class of functions W;:’; in the space L,. For this class, we prove an analog of the estimates in [I]
in the space L.
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1. Introduction and preliminaries

Suppose that L, = L,(27), (1 < p < 2), is the space of p-power integrable 27-periodic functions
f:R — Ron [0,27) with the norm

2 1/p
I, = (2 [ stras)

Ea(f) = inf I = Tl

we denote the best approximation of a function f € L, by trigonometric polynomials T,,(z) of
order at most n — 1, n € N, in the space L,.

In this paper, we prove an analog of some results in [I] in the space L,.

In L,, consider the operator (Steklov’s function)
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Fufe) = 5 [ Z Ftydt, b0,
(see[d]).

The finite differences of the first and higher orders are defined as followos

Apf(z) =Fpf(x) = f(x) = (Fr — E) f(2),

AL f(x) = Ap(AF f(x) = (Fr — E)* f(x) = Z(—l)’“_i(f)FZf(I),
where

F)f(z) = f(x); Fif(z) =Fu(F, ' f(); i=1,2,..,k k=1,2,....

and E is the unit operator in the space L,,.
The kth-order generalized continuity modulus of the function f € L, has the form
Q. (f,0) = sup [[ARf(2)]l,
0<h<d

Let L is the class of functions f € L, having generalized derivatives f'(z), f"(z),....., f )(x) in
the sense of Levi ([2], p. 172) belonging to the space L,,.

W;}”; is the class of functions f € L such that

U(f",8) = 0(p(8"), r € Zy, k€N

where ¢(t) is a continuous increasing function defined on [0, +00) and ¢(0) = 0.

Suppose that f € L,

o0
flx) ~ %—FZaicosz’x—l—bisiniaz, (1.1)
i=1

where

1 2 1 2
a; = —/ f(t) cositdt; b; = —/ f(t)sinatdt
0 0

™ ™

is its Fourier series, and

n—1
Su(f;x) = % + ;ai cosix + b; sinix
are the partial sums of the series (|1.1).

It is well know that
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00 1/p 1/p
”f”p:(Z‘Ci(f)’p) , En(f) =1 =SSPl = (ZI@ > , (1.2)

Moreover, it is readily verified that if f € L, then

(1= S yakiore ()js < kO ) (1.3

=1

1,1 _
Whereg—i—a—l.

2. Main result

Theorem 2.1. For any function f € L the following estimate holds

k
q k w/n
En(f)§< = ) o ( / hQ‘IQi/‘%f(”,h)dh) L T€Zy, nEN.
0

il —q

Proof .Suppose that f € Lj. By Holder’s inequality, using and (| . ) for Kk =1,2,...., we have

inih - inzh
mm-—ifmwxwzz(hsm)mmw
- Skl (1-25)
> STl ik o
< @JMMﬂ <2ﬂ—:iwmm@
o TS o ik o
< (; \ci(f)yq> nor/k (;u — %)q’“iq’”lci(ﬁl‘])

< (Ba(f)"® n 7R AR PO ()|

Hence

BI() < (Bl T Ak O @I + 30 R el

It follows that

EU(f) < (Eu(f)"F n/hy/ b (r0,m) + Y 2

multiplying both sides of the last inequality by h9~! > 0 and integrating the resulting inequality
between the limits h € [0, 7/n] we have

il gk—1 m/n 1
B0 < B [ o+ 8 e

gn?
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Hence it is easy to note that

7Tq — q2 gk—1

ER(f) < (Eu(f)) o

wr [ a0, man
gn? 0 ’ ’

it follows that

q qk w/n ak
Ei(f) < ( n ) n~" (/ hqlgi/’f(f(r),h)dh> .
0

T — g2

Then

k
q k w/n
En(f) < (quf qg) n’ ( / h“ﬂi“(f(”,h)dh)
0

and hence Theorem is proved. [

Corollary 2.2. The following estimate holds

sup B, (f) = O(n™"p(()1).

K
FeEWR%

Corollary 2.3. Let f € Wik, (a > 0), then

p7ta

re€Zy and k,n € N.

Proof . Suppose that f € W;zl:a. Then by Corollary and ¢(t) = t*, we have the proof of
Corollary 2.3 O
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