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Abstract

The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation

y′′(x) + αy′(x) + βy(x) = f(x)

in general case, where y ∈ C2[a, b], f ∈ C[a, b] and −∞ < a < b < +∞. The result of this paper
improves a result of Li and Shen [Hyers-Ulam stability of linear differential equations of second order,
Appl. Math. Lett. 23 (2010) 306–309].
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1. Introduction and preliminaries

Let X be a normed space and I be an open interval in R, the set of all real numbers. We say that
the differential equation

an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a1(x)y′(x) + a0y(x) + h(x) = 0, x ∈ I, (1.1)

has the Hyers-Ulam stability if, for any mapping f : I → X satisfying the differential inequality

‖an(x)f (n)(x) + an−1(x)f (n−1)(x) + · · ·+ a1(x)f ′(x) + a0f(x) + h(x)‖ 6 ε
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for all x ∈ I and ε ≥ 0, there exists a solution g : I → X of (1.1) such that ‖f(x) − g(x)‖ 6 K(ε)
for all x ∈ I, where K(ε) is an expression for ε only.

The question concerning the stability of group homomorphisms was posed by Ulam [27]. More
precisely, He proposed the following problem: Given a group (G1, ·), a metric group (G2, ∗, d) and a
positive number ε, does there exist a δ > 0 such that if a function f : G1 → G2 satisfies the inequality
d(f(x.y), f(x)∗f(y)) < δ for all x, y ∈ G1, then there exists a homomorphism T : G1 → G2 such that
d(f(x), T (x)) < ε for all x ∈ G1? If this problem has a solution, we say that the homomorphisms
from G1 to G2 are stable. In 1941, Hyers [7] gave a partial solution of Ulam’s problem for the case
of approximate additive mappings under the assumption that G1 and G2 are Banach spaces. Aoki
[3] and Th.M. Rassias [24] provided a generalization of the Hyers’ theorem for additive and linear
mappings, respectively, by allowing the Cauchy difference to be unbounded. In fact an answer has
been given in the following way.

Theorem 1.1. Suppose X and Y are two real Banach spaces and f : X → Y is a mapping such
that f(tx) is continuous in t ∈ R for each fixed x ∈ X. If there exist θ > 0 and p ∈ R \ {1} such that

‖f(x+ y)− f(x)− f(y)‖ 6 θ(‖x‖p + ‖y‖p), x, y ∈ X,

then there is a unique linear mapping T : X → Y such that

‖f(x)− T (x)‖ 6 2θ

|2− 2p|
‖x‖p, x ∈ X.

In 1941, Hyers [7] obtained the result for p = 0. And then, Aoki [3] and Th. M. Rassias [24]
generalized the above result of Hyers to the case where 0 6 p < 1. Moreover, Th. M. Rassias noticed
in [24] that the proof also works for p < 0. A similar result was obtained by Gajda [8] for p > 1.
In the same paper, Gajda showed that a similar result does not hold for p = 1 (see also [25].) Since
then, the stability problems of various functional equations have been investigated by many authors.
We refer the interested reader to [15] and papers [6, 5, 9, 23] for the stability problems of functional
equations in details.

In connection with the stability of exponential functions, the Hyers-Ulam stability of differential
equations has been investigated by Alsina and Ger [4] (see also [20, 22]): If ε > 0 and a differentiable
function f : I → R satisfies the differential inequality |y′(x)− y(x)| 6 ε, where I is an open interval
of R, then there exists a differentiable function f0 : I → R satisfying f ′0(x) = f0(x) such that
|f(x)− f0(x)| 6 3ε for all x ∈ I.

The above result by Alsina and Ger was generalized by Miura, Takahasi and Choda [19], by
Miura [16], also by Takahasi, Miura and Miyajima [26]. Indeed, they dealt with the Hyers-Ulam
stability of the differential equation y′(t) = λy(t), while Alsina and Ger investigated the differential
equation y′(t) = y(t). Miura et al [18] proved the Hyers-Ulam stability of the first-order linear
differential equations y′(t) + g(t)y(t) = 0, where g(t) is a continuous function, while Jung [12] proved
the Hyers-Ulam stability of differential equations of the form ϕ(t)y′(t) = y(t).

Theorem 1.2. [12] Let ϕ : I = (a, b) → R be a given function for which the integral
∫ t
a
dx/ϕ(x)

exists for any t ∈ I. If either ϕ(t) > 0 holds for all t ∈ I or ϕ(t) < 0 holds for all t ∈ I, and if a
differentiable function y : I → R satisfies inequality

|ϕ(t)y′(t)− y(t)| 6 ε, t ∈ I,

then there exists a real number c such that∣∣∣y(t)− c exp
{∫ t

a

dx

ϕ(x)

}∣∣∣ 6 ε, t ∈ I.
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The above result has been generalized by some authors. We refer the interested readers to
[1, 2, 11, 12, 14, 16, 17].

Recently, Li and Shen [21] have investigated the Hyers-Ulam stability of the following linear
differential equations of second order

y′′(x) + αy′(x) + βy(x) = f(x), (1.2)

where y ∈ C2[a, b], f ∈ C[a, b] and−∞ < a < b < +∞. Indeed, they proved that, if the characteristic
equation λ2 + αλ + β = 0 has two different positive roots, then the differential equation y′′(x) +
αy′(x) + βy(x) = f(x) has the Hyers-Ulam stability.

The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation
(1.2) in general case. More precisely, we prove that the equation y′′(x)+αy′(x)+βy(x) = f(x) always
has the Hyers-Ulam stability and the proof methods are different from those of [21] and others.

2. Hyers-Ulam stability of the differential equation y′′ + αy′ + βy = f(x)

In the following theorem, we prove the Hyers-Ulam stability of the differential equation (1.2), which
obviously improves a result of Li and Shen [21]. Throughout this section, a and b are real numbers
with −∞ < a < b < +∞.

Theorem 2.1. The differential equation y′′ + αy′ + βy = f(x) has the Hyers-Ulam stability, where
y ∈ C2[a, b] and f ∈ C[a, b].

Proof . Suppose that µ, λ are the (real or complex) roots of z2 + αz + β = 0. Let µ = p + ic
and λ = q + id for p, c, q, d ∈ R. Let ε > 0 and y ∈ C2[a, b] with |y′′ + αy′ + βy − f(x)| 6 ε. Let

g(x) = y′(x)− λy(x) and z(x) = eµ(x−b)g(b)− eµx
∫ b
x
f(t)e−µt dt for all x ∈ [a, b]. Then we have

z′(x) = µz(x) + f(x) (2.1)

for all x ∈ [a, b]. It is clear that

|g′(x)− µg(x)− f(x)| = |y′′(x) + αy′(x) + βy(x)− f(x)| 6 ε

and

|z(x)− g(x)| =
∣∣∣eµ(x−b)g(b)− g(x)− eµx

∫ b

x

f(t)e−µt dt
∣∣∣

= |eµx|
∣∣∣e−µbg(b)− e−µxg(x)−

∫ b

x

f(t)e−µt dt
∣∣∣

= epx
∣∣∣∣∫ b

x

[e−µtg(t)]′ dt−
∫ b

x

f(t)e−µt dt

∣∣∣∣
= epx

∣∣∣∣∫ b

x

e−µt[g′(t)− µg(t)− f(t)] dt

∣∣∣∣
6 epx

∫ b

x

|e−µt||g′(t)− µg(t)− f(t)| dt

6 epx
∫ b

x

e−pt|g′(t)− µg(t)− f(t)| dt

6 εepx
∫ b

x

e−pt dt
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for all x ∈ [a, b]. Therefore, it follows that

|z(x)− g(x)| 6


1− e−p(b−a)

p
ε, if p 6= 0;

(b− a)ε, if p = 0

(2.2)

for all x ∈ [a, b]. Now, we define

u(x) = y(b)eλ(x−b) − eλx
∫ b

x

z(t)e−λt dt

for all x ∈ [a, b]. It is clear that u ∈ C2[a, b] and u′(x) = λu(x) + z(x). Hence (2.1) implies that
u′′(x) + αu′(x) + βu(x) = f(x) for all x ∈ [a, b]. Also, u satisfies the following

|y(x)− u(x)| =
∣∣∣∣y(x)− y(b)eλ(x−b) + eλx

∫ b

x

z(t)e−λt dt

∣∣∣∣
= |eλx|

∣∣∣∣y(x)e−λx − y(b)e−λb +

∫ b

x

z(t)e−λt dt

∣∣∣∣
= eqx

∣∣∣∣∫ b

x

z(t)e−λt dt−
∫ b

x

[y′(t)− λy(t)]e−λt dt

∣∣∣∣
= eqx

∣∣∣∣∫ b

x

[z(t)− y′(t) + λy(t)]e−λt dt

∣∣∣∣
6 eqx

∫ b

x

|z(t)− y′(t) + λy(t)||e−λt| dt

6 eqx
∫ b

x

|z(t)− g(t)|e−qt dt

for all x ∈ [a, b]. It follows from (2.2) that

|y(x)− u(x)| 6



[1− e−p(b−a)][1− e−q(b−a)]
pq

ε, if p, q 6= 0;

[1− e−p(b−a)](b− a)

p
ε, if p 6= 0, q = 0;

[1− e−q(b−a)](b− a)

q
ε, if p = 0, q 6= 0;

(b− a)2ε, if p, q = 0

for all x ∈ [a, b]. This completes the proof. �

In the following corollaries we assume that α, β ∈ R.

Corollary 2.2. Let y ∈ C2[a, b] and f ∈ C[a, b]. If ε > 0 and |y′′(x) + αy′(x) − f(x)| 6 ε for all
x ∈ [a, b], then there exists u ∈ C2[a, b] satisfying u′′(x) + αu′(x) = f(x) and

|y(x)− u(x)| 6


[eα(b−a) − 1](b− a)

α
ε, if α 6= 0;

(b− a)2ε, if α = 0
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for all x ∈ [a, b]

Corollary 2.3. Let y ∈ C2[a, b] and f ∈ C[a, b]. If ε > 0 and |y′′(x) + βy(x) − f(x)| 6 ε for all
x ∈ [a, b], then there exists u ∈ C2[a, b] satisfying u′′(x) + βu(x) = f(x) and

|y(x)− u(x)| 6


[1− e−

√
−β(b−a)][1− e

√
−β(b−a)]

β
ε, if β < 0;

(b− a)2ε, if β > 0

for all x ∈ [a, b]

Remark 2.4. The Hyers-Ulam stability the second order linear differential equation y′′+β(x)y = 0
with boundary conditions y(a) = y(b) = 0 or with initial conditions y(a) = y′(a) = 0 has been
investegated in [10]. Indeed the following results have been proved.

Theorem 2.5. Let a, b ∈ R, a < b, y ∈ C2([a, b]) and β ∈ C([a, b]). If max |β(x)| < 8
(b−a)2 , then the

second order linear differential equation y′′+ β(x)y = 0 has the Hyers-Ulam stability with boundary
conditions y(a) = y(b) = 0.

Theorem 2.6. Let a, b ∈ R, a < b, y ∈ C2([a, b]) and β ∈ C([a, b]). If max |β(x)| < 2
(b−a)2 , then the

second order linear differential equation y′′+ β(x)y = 0 has the Hyers-Ulam stability with boundary
conditions y′(a) = y(a) = 0.
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[9] P. Gǎvruta and L. Gǎvruta, A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear

Anal. Appl. 2 (2010) 11–18.
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