



# On the stability of linear differential equations of second order

Abbas Najati<sup>a,\*</sup>, Mohammad Reza Abdollahpour<sup>a</sup>, Choonkil Park<sup>b</sup>

<sup>a</sup>Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran <sup>b</sup>Department of Mathematics, Hanyang University, Seoul, 133–791, South Korea

(Communicated by H. Khodaei)

## Abstract

The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation

$$y''(x) + \alpha y'(x) + \beta y(x) = f(x)$$

in general case, where  $y \in C^2[a, b]$ ,  $f \in C[a, b]$  and  $-\infty < a < b < +\infty$ . The result of this paper improves a result of Li and Shen [Hyers-Ulam stability of linear differential equations of second order, Appl. Math. Lett. 23 (2010) 306–309].

*Keywords:* Hyers-Ulam stability; linear differential equation of second order. 2010 MSC: Primary 34K20, 26D10; Secondary 34K06, 39B52, 39B82.

## 1. Introduction and preliminaries

Let X be a normed space and I be an open interval in  $\mathbb{R}$ , the set of all real numbers. We say that the differential equation

$$a_n(x)y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \dots + a_1(x)y'(x) + a_0y(x) + h(x) = 0, \quad x \in I,$$
(1.1)

has the Hyers-Ulam stability if, for any mapping  $f: I \to X$  satisfying the differential inequality

$$||a_n(x)f^{(n)}(x) + a_{n-1}(x)f^{(n-1)}(x) + \dots + a_1(x)f'(x) + a_0f(x) + h(x)|| \le \varepsilon$$

\*Corresponding author

*Email addresses:* a.nejati@yahoo.com (Abbas Najati), mrabdollahpour@yahoo.com (Mohammad Reza Abdollahpour), baak@hanyang.ac.kr (Choonkil Park)

for all  $x \in I$  and  $\varepsilon \ge 0$ , there exists a solution  $g: I \to X$  of (1.1) such that  $||f(x) - g(x)|| \le K(\varepsilon)$ for all  $x \in I$ , where  $K(\varepsilon)$  is an expression for  $\varepsilon$  only.

The question concerning the stability of group homomorphisms was posed by Ulam [27]. More precisely, He proposed the following problem: Given a group  $(G_1, \cdot)$ , a metric group  $(G_2, *, d)$  and a positive number  $\epsilon$ , does there exist a  $\delta > 0$  such that if a function  $f: G_1 \to G_2$  satisfies the inequality  $d(f(x.y), f(x) * f(y)) < \delta$  for all  $x, y \in G_1$ , then there exists a homomorphism  $T: G_1 \to G_2$  such that  $d(f(x), T(x)) < \epsilon$  for all  $x \in G_1$ ? If this problem has a solution, we say that the homomorphisms from  $G_1$  to  $G_2$  are stable. In 1941, Hyers [7] gave a partial solution of Ulam's problem for the case of approximate additive mappings under the assumption that  $G_1$  and  $G_2$  are Banach spaces. Aoki [3] and Th.M. Rassias [24] provided a generalization of the Hyers' theorem for additive and linear mappings, respectively, by allowing the Cauchy difference to be unbounded. In fact an answer has been given in the following way.

**Theorem 1.1.** Suppose X and Y are two real Banach spaces and  $f : X \to Y$  is a mapping such that f(tx) is continuous in  $t \in \mathbb{R}$  for each fixed  $x \in X$ . If there exist  $\theta \ge 0$  and  $p \in \mathbb{R} \setminus \{1\}$  such that

$$||f(x+y) - f(x) - f(y)|| \le \theta(||x||^p + ||y||^p), \quad x, y \in X,$$

then there is a unique linear mapping  $T: X \to Y$  such that

$$||f(x) - T(x)|| \leq \frac{2\theta}{|2 - 2^p|} ||x||^p, \quad x \in X.$$

In 1941, Hyers [7] obtained the result for p = 0. And then, Aoki [3] and Th. M. Rassias [24] generalized the above result of Hyers to the case where  $0 \le p < 1$ . Moreover, Th. M. Rassias noticed in [24] that the proof also works for p < 0. A similar result was obtained by Gajda [8] for p > 1. In the same paper, Gajda showed that a similar result does not hold for p = 1 (see also [25].) Since then, the stability problems of various functional equations have been investigated by many authors. We refer the interested reader to [15] and papers [6, 5, 9, 23] for the stability problems of functional equations in details.

In connection with the stability of exponential functions, the Hyers-Ulam stability of differential equations has been investigated by Alsina and Ger [4] (see also [20, 22]): If  $\varepsilon > 0$  and a differentiable function  $f: I \to \mathbb{R}$  satisfies the differential inequality  $|y'(x) - y(x)| \leq \varepsilon$ , where I is an open interval of  $\mathbb{R}$ , then there exists a differentiable function  $f_0: I \to \mathbb{R}$  satisfying  $f'_0(x) = f_0(x)$  such that  $|f(x) - f_0(x)| \leq 3\varepsilon$  for all  $x \in I$ .

The above result by Alsina and Ger was generalized by Miura, Takahasi and Choda [19], by Miura [16], also by Takahasi, Miura and Miyajima [26]. Indeed, they dealt with the Hyers-Ulam stability of the differential equation  $y'(t) = \lambda y(t)$ , while Alsina and Ger investigated the differential equation y'(t) = y(t). Miura et al [18] proved the Hyers-Ulam stability of the first-order linear differential equations y'(t) + g(t)y(t) = 0, where g(t) is a continuous function, while Jung [12] proved the Hyers-Ulam stability of differential equations of the form  $\varphi(t)y'(t) = y(t)$ .

**Theorem 1.2.** [12] Let  $\varphi : I = (a, b) \to \mathbb{R}$  be a given function for which the integral  $\int_a^t dx/\varphi(x)$  exists for any  $t \in I$ . If either  $\varphi(t) > 0$  holds for all  $t \in I$  or  $\varphi(t) < 0$  holds for all  $t \in I$ , and if a differentiable function  $y: I \to \mathbb{R}$  satisfies inequality

$$|\varphi(t)y'(t) - y(t)| \leqslant \varepsilon, \quad t \in I,$$

then there exists a real number c such that

$$\left|y(t) - c \exp\left\{\int_{a}^{t} \frac{dx}{\varphi(x)}\right\}\right| \leq \varepsilon, \quad t \in I.$$

Recently, Li and Shen [21] have investigated the Hyers-Ulam stability of the following linear differential equations of second order

$$y''(x) + \alpha y'(x) + \beta y(x) = f(x),$$
 (1.2)

where  $y \in C^2[a, b]$ ,  $f \in C[a, b]$  and  $-\infty < a < b < +\infty$ . Indeed, they proved that, if the characteristic equation  $\lambda^2 + \alpha \lambda + \beta = 0$  has two different positive roots, then the differential equation  $y''(x) + \alpha y'(x) + \beta y(x) = f(x)$  has the Hyers-Ulam stability.

The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation (1.2) in general case. More precisely, we prove that the equation  $y''(x) + \alpha y'(x) + \beta y(x) = f(x)$  always has the Hyers-Ulam stability and the proof methods are different from those of [21] and others.

# 2. Hyers-Ulam stability of the differential equation $y'' + \alpha y' + \beta y = f(x)$

In the following theorem, we prove the Hyers-Ulam stability of the differential equation (1.2), which obviously improves a result of Li and Shen [21]. Throughout this section, a and b are real numbers with  $-\infty < a < b < +\infty$ .

**Theorem 2.1.** The differential equation  $y'' + \alpha y' + \beta y = f(x)$  has the Hyers-Ulam stability, where  $y \in C^2[a, b]$  and  $f \in C[a, b]$ .

**Proof**. Suppose that  $\mu, \lambda$  are the (real or complex) roots of  $z^2 + \alpha z + \beta = 0$ . Let  $\mu = p + ic$  and  $\lambda = q + id$  for  $p, c, q, d \in \mathbb{R}$ . Let  $\varepsilon > 0$  and  $y \in C^2[a, b]$  with  $|y'' + \alpha y' + \beta y - f(x)| \leq \varepsilon$ . Let  $g(x) = y'(x) - \lambda y(x)$  and  $z(x) = e^{\mu(x-b)}g(b) - e^{\mu x} \int_x^b f(t)e^{-\mu t} dt$  for all  $x \in [a, b]$ . Then we have

$$z'(x) = \mu z(x) + f(x)$$
(2.1)

for all  $x \in [a, b]$ . It is clear that

$$|g'(x) - \mu g(x) - f(x)| = |y''(x) + \alpha y'(x) + \beta y(x) - f(x)| \le \varepsilon$$

and

$$\begin{aligned} |z(x) - g(x)| &= \left| e^{\mu(x-b)}g(b) - g(x) - e^{\mu x} \int_{x}^{b} f(t)e^{-\mu t} dt \right| \\ &= |e^{\mu x}| \left| e^{-\mu b}g(b) - e^{-\mu x}g(x) - \int_{x}^{b} f(t)e^{-\mu t} dt \right| \\ &= e^{px} \left| \int_{x}^{b} [e^{-\mu t}g(t)]' dt - \int_{x}^{b} f(t)e^{-\mu t} dt \right| \\ &= e^{px} \left| \int_{x}^{b} e^{-\mu t} [g'(t) - \mu g(t) - f(t)] dt \right| \\ &\leqslant e^{px} \int_{x}^{b} |e^{-\mu t}| |g'(t) - \mu g(t) - f(t)| dt \\ &\leqslant e^{px} \int_{x}^{b} e^{-pt} |g'(t) - \mu g(t) - f(t)| dt \\ &\leqslant e^{px} \int_{x}^{b} e^{-pt} dt \end{aligned}$$

for all  $x \in [a, b]$ . Therefore, it follows that

$$|z(x) - g(x)| \leqslant \begin{cases} \frac{1 - e^{-p(b-a)}}{p}\varepsilon, & \text{if } p \neq 0;\\ (b-a)\varepsilon, & \text{if } p = 0 \end{cases}$$

$$(2.2)$$

for all  $x \in [a, b]$ . Now, we define

$$u(x) = y(b)e^{\lambda(x-b)} - e^{\lambda x} \int_x^b z(t)e^{-\lambda t} dt$$

for all  $x \in [a, b]$ . It is clear that  $u \in C^2[a, b]$  and  $u'(x) = \lambda u(x) + z(x)$ . Hence (2.1) implies that  $u''(x) + \alpha u'(x) + \beta u(x) = f(x)$  for all  $x \in [a, b]$ . Also, u satisfies the following

$$\begin{aligned} y(x) - u(x)| &= \left| y(x) - y(b)e^{\lambda(x-b)} + e^{\lambda x} \int_{x}^{b} z(t)e^{-\lambda t} dt \right| \\ &= \left| e^{\lambda x} \right| \left| y(x)e^{-\lambda x} - y(b)e^{-\lambda b} + \int_{x}^{b} z(t)e^{-\lambda t} dt \right| \\ &= e^{qx} \left| \int_{x}^{b} z(t)e^{-\lambda t} dt - \int_{x}^{b} [y'(t) - \lambda y(t)]e^{-\lambda t} dt \right| \\ &= e^{qx} \left| \int_{x}^{b} [z(t) - y'(t) + \lambda y(t)]e^{-\lambda t} dt \right| \\ &\leqslant e^{qx} \int_{x}^{b} |z(t) - y'(t) + \lambda y(t)| |e^{-\lambda t}| dt \\ &\leqslant e^{qx} \int_{x}^{b} |z(t) - g(t)|e^{-qt} dt \end{aligned}$$

for all  $x \in [a, b]$ . It follows from (2.2) that

$$|y(x) - u(x)| \leqslant \begin{cases} \frac{[1 - e^{-p(b-a)}][1 - e^{-q(b-a)}]}{pq}\varepsilon, & \text{if } p, q \neq 0; \\ \frac{[1 - e^{-p(b-a)}](b-a)}{p}\varepsilon, & \text{if } p \neq 0, q = 0; \\ \frac{[1 - e^{-q(b-a)}](b-a)}{q}\varepsilon, & \text{if } p = 0, q \neq 0; \\ (b-a)^2\varepsilon, & \text{if } p, q = 0 \end{cases}$$

for all  $x \in [a, b]$ . This completes the proof.  $\Box$ 

In the following corollaries we assume that  $\alpha, \beta \in \mathbb{R}$ .

**Corollary 2.2.** Let  $y \in C^2[a, b]$  and  $f \in C[a, b]$ . If  $\varepsilon \ge 0$  and  $|y''(x) + \alpha y'(x) - f(x)| \le \varepsilon$  for all  $x \in [a, b]$ , then there exists  $u \in C^2[a, b]$  satisfying  $u''(x) + \alpha u'(x) = f(x)$  and

$$|y(x) - u(x)| \leqslant \begin{cases} \frac{[e^{\alpha(b-a)} - 1](b-a)}{\alpha}\varepsilon, & \text{if } \alpha \neq 0; \\ (b-a)^2\varepsilon, & \text{if } \alpha = 0 \end{cases}$$

for all  $x \in [a, b]$ 

**Corollary 2.3.** Let  $y \in C^2[a, b]$  and  $f \in C[a, b]$ . If  $\varepsilon \ge 0$  and  $|y''(x) + \beta y(x) - f(x)| \le \varepsilon$  for all  $x \in [a, b]$ , then there exists  $u \in C^2[a, b]$  satisfying  $u''(x) + \beta u(x) = f(x)$  and

$$|y(x) - u(x)| \leqslant \begin{cases} \frac{[1 - e^{-\sqrt{-\beta}(b-a)}][1 - e^{\sqrt{-\beta}(b-a)}]}{\beta}\varepsilon, & \text{if } \beta < 0; \\ (b-a)^2\varepsilon, & \text{if } \beta \ge 0 \end{cases}$$

for all  $x \in [a, b]$ 

**Remark 2.4.** The Hyers-Ulam stability the second order linear differential equation  $y'' + \beta(x)y = 0$  with boundary conditions y(a) = y(b) = 0 or with initial conditions y(a) = y'(a) = 0 has been investigated in [10]. Indeed the following results have been proved.

**Theorem 2.5.** Let  $a, b \in \mathbb{R}$ ,  $a < b, y \in C^2([a, b])$  and  $\beta \in C([a, b])$ . If  $\max |\beta(x)| < \frac{8}{(b-a)^2}$ , then the second order linear differential equation  $y'' + \beta(x)y = 0$  has the Hyers-Ulam stability with boundary conditions y(a) = y(b) = 0.

**Theorem 2.6.** Let  $a, b \in \mathbb{R}$ ,  $a < b, y \in C^2([a, b])$  and  $\beta \in C([a, b])$ . If  $\max |\beta(x)| < \frac{2}{(b-a)^2}$ , then the second order linear differential equation  $y'' + \beta(x)y = 0$  has the Hyers-Ulam stability with boundary conditions y'(a) = y(a) = 0.

### Acknowledgments

C. Park was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2004299).

### References

- M.R. Abdollahpour, A. Najati, C. Park, Th.M. Rassias and D.Y. Shin, Approximate perfect differential equations of second order, Adv. Difference Equ. 2012, 2012: 225, 5 pages.
- [2] M.R. Abdollahpour and A. Najati, Stability of linear differential equations of third order, Appl. Math. Lett. 24 (2011) 1827–1830.
- [3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950) 64–66.
- [4] C. Alsina and R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2 (1998) 373–380.
- [5] M. Eshaghi Gordji and A. Najati, Approximately J\*-homomorphisms: a fixed point approach, J. Geom. Phys. 60 (2010) 809–814.
- [6] G.L. Forti, Hyers-Ulam stability of functional equations in several variables, Aeq. Math. 50 (1995) 143–190.
- [7] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941) 222–224.
- [8] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991) 431-434.
- [9] P. Găvruta and L. Găvruta, A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl. 2 (2010) 11–18.
- [10] P. Găvruta, Soon-Mo Jung and Y. Li, Hyers-Ulam stability for second order linear differential equations with boundary conditions, Elect. J. Diff. Eq. 80 (2011) 5 pages.
- [11] M.B. Ghaemi, M. Eshaghi Gordji, B. Alizadeh and C. Park, Hyers-Ulam stability of exact second order linear differential equations, Adv. Diff. Eq. 2012 Art. No. 36, 7 pages.

- [12] S. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17 (2004) 1135–1140.
- [13] S. Jung, Approximation of analytic functions by Laguerre functions, Appl. Math. Comput. 218 (2011) 832–835.
- [14] S. Jung, Hyers-Ulam stability for Gegenbauer differential equations, Electron. J. Diff. Eq. 2013, No. 156, 8 pages.
- S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
- [16] T. Miura, On the Hyers-Ulam stability of a differentiable map, Sci. Math. Japon 55 (2002) 17–24.
- [17] T. Miura, S. Jung and S.-E. Takahasi, Hyers-Ulam-Rassias stability of the Banach space valued differential equations  $y' = \lambda y$ , J. Korean Math. Soc. 41 (2004) 995–1005.
- [18] T. Miura, S. Miyajima and S.-E. Takahasi, A characterization of Hyers-Ulam stability of first order linear differential operators, J. Math. Anal. Appl. 286 (2003) 136–146.
- [19] T. Miura, S.-E. Takahasi and H. Choda, On the Hyers-Ulam stability of real continuous function valued differentiable map, Tokyo J. Math. 24 (2001) 467–476.
- [20] M. Obłoza, Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat. 13 (1993) 259– 270.
- [21] Y. Li and Y. Shen, Hyers-Ulam stability of linear differential equations of second order, Appl. Math. Lett. 23 (2010) 306–309.
- [22] M. Obłoza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat. 14 (1997) 141–146.
- [23] C. Park and A. Najati, Generalized additive functional inequalities in Banach algebras, Int. J. Nonlinear Anal. Appl. 2 (2010) 54–62.
- [24] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297–300.
- [25] Th. M. Rassias and P. Šemrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992) 989993.
- [26] S.-E. Takahasi, T. Miura and S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued differential equation  $y' = \lambda y$ , B. Korean Math. Soc. 39 (2002) 309–315.
- [27] S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960.