Int. J. Nonlinear Anal. Appl. 8 (2017) No. 2, 99-107 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2017.1365.1340

Translation invariant mappings on KPC-hypergroups

Seyved Mohammad Tabatabaie*, Faranak Haghighifar

Department of Mathematics, University of Qom, Qom, Iran

(Communicated by Themistocles M. Rassias)

Abstract

In this paper, we give an extension of the Wendel's theorem on KPC-hypergroups. We also show that every translation invariant mapping is corresponding with a unique positive measure on the KPC-hypergroup.

Keywords: DJS-hypergroup; KPC-hypergroup; Translation Invariant Mapping; Wendel's Theorem.

2010 MSC: Primary 43A62.

1. Introduction

Locally compact hypergroups, as extensions of locally compact groups, were introduced in a series of papers by Dunkl [2], Jewett [4], and Spector [10] in 70's (we refer to this definition of hypergroup as DJS-hypergroup). For more details about DJS-hypergroups we refer to [1] and [9]. In 2010, Kalyuzhnyi, Podkolzin, and Chapovsky [5] have introduced new axioms for hypergroups. This new concept is an extension of DJS-hypergroups, and generalizes a normal hypercomplex system with a basis unity to the nonunimodular case. We refer to this notion as KPC-hypergroup. They show that there is an example of a compact KPC-hypergroup related to the generalized Tchebycheff polynomials, which is not a DJS-hypergroup [5]. Kalyuzhnyi et al, study harmonic analysis on KPChypergroups in [5] (see also [11]). In this paper, for a KPC-hypergroup Q, we give an extension of Wendel's theorem which presents some equivalence conditions for bounded linear operators on $L^1(Q)$ commute with translation operators. This theorem was proved for locally compact abelian groups by Larsen in 1971 [8]. Then, Lasser extended this theorem on locally compact commutative DJShypergroups in 1982 [7]. In 2010, Youmbi proved it for not necessarily commutative DJS-hypergroups [12]. In this paper, we give an extension of this theorem for cocommutative KPC-hypergroups. Also, we show that any translation invariant mapping on a cocommutative KPC-hypergroup corresponds with a unique positive measure.

^{*}Corresponding author

Email addresses: sm.tabatabaie@qom.ac.ir (Seyyed Mohammad Tabatabaie), f.haghighifar@yahoo.com (Faranak Haghighifar)

2. Preliminaries

Let Q be a locally compact Hausdorff space. We denote by M(Q) the space of all complex Radon measures on Q, by $M_b(Q)$ the set of all bounded measures in M(Q), and by $M^+(Q)$ the set of all positive measures in M(Q). The spaces of complex-valued functions that are continuous, continuous and bounded, continuous with compact support, continuous and equal to zero at infinity are denoted by C(Q), $C_b(Q)$, $C_c(Q)$, and $C_0(Q)$, respectively. The support of a function f is denoted by $\sup(f)$.

First, we recall the definition and some properties of the locally compact cocommutative KPChypergroups. For more details we refer to [5].

Definition 2.1. Let Q be a locally compact second countable Hausdorff space with an involutive homeomorphism $\star : Q \longrightarrow Q$ satisfying the following conditions:

- 1. there is an element $e \in Q$ such that $e^* = e$;
- 2. there is a \mathbb{C} -linear mapping $\Delta : C(Q) \to C(Q \times Q)$ such that
 - i. Δ is co-associative, that is,

$$(\Delta \times \mathrm{id}) \circ \Delta = (\mathrm{id} \times \Delta) \circ \Delta;$$

- ii. Δ is positive, that is, $\Delta f \ge 0$ for all $f \in C(Q)$ such that $f \ge 0$;
- iii. Δ preserves the identity, that is, $(\Delta 1)(p,q) = 1$ for all $p, q \in Q$;
- iv. For all $f, g \in C_c(Q)$ we have $(1 \otimes f) \cdot (\Delta g) \in C_c(Q \times Q)$ and $(f \otimes 1) \cdot (\Delta g) \in C_c(Q \times Q)$.
- 3. the homomorphism $\epsilon : C(Q) \to \mathbb{C}$ defined by $\epsilon(f) = f(e)$, satisfies the counit property, that is,

$$(\epsilon \times \mathrm{id}) \circ \Delta = (\mathrm{id} \times \epsilon) \circ \Delta = \mathrm{id},$$

in other words, $(\Delta f)(e, p) = (\Delta f)(p, e) = f(p)$ for all $p \in Q$.

4. the function \check{f} defined by $\check{f}(q) = f(q^*)$ for $f \in C(Q)$ satisfies

$$(\Delta \check{f})(p,q) = (\Delta f)(q^{\star}, p^{\star}).$$

5. there exists a positive measure m on Q, supp m = Q, such that

$$\int_{Q} (\Delta f)(p,q)g(q)dm(q) = \int_{Q} f(q)(\Delta g)(p^{\star},q)dm(q)$$

for all $f \in C_b(Q)$ and $g \in C_c(Q)$, or $f \in C_c(Q)$ and $g \in C_b(Q)$, $p \in Q$; such a measure *m* will be called a left Haar measure on Q.

Then (Q, \star, e, Δ, m) , or simply Q, is called a locally compact KPC-hypergroup.

Notation. In the above definition, we have used the following notations:

$$\begin{split} &[(\Delta \times \mathrm{id}) \circ \Delta(f)](p,q,r) := \Delta(\Delta f(p,\cdot))(q,r), \\ &[(\mathrm{id} \times \Delta) \circ \Delta(f)](p,q,r) := \Delta(\Delta f(\cdot,q))(p,r), \\ &[(\epsilon \times \mathrm{id}) \circ \Delta(f)](p) := \epsilon(\Delta f(p,\cdot)) = \Delta f(p,e), \\ &[(\mathrm{id} \times \epsilon) \circ \Delta(f)](p) := \epsilon(\Delta f(\cdot,p)) = \Delta f(e,p), \\ &(f \otimes 1)(p,q) \cdot (\Delta g)(p,q) = f(p)1(q) \cdot \Delta g(p,q), \\ &(1 \otimes f)(p,q) \cdot (\Delta g)(p,q) := 1(p)f(q) \cdot \Delta g(p,q), \end{split}$$

where $f \in C(Q)$ and $p, q, r \in Q$.

A KPC-hypergroup Q is called cocommutative if $\Delta f(p,q) = \Delta f(q,p)$, for all $f \in C_b(Q)$ and all $p, q \in Q$.

Throughout this paper Q is a locally compact cocommutative KPC-hypergroup and m is a left Haar measure on Q.

Definition 2.2. Let $\mu, \nu \in M(Q)$ be such that the linear functional $\mu * \nu$ defined by

$$(\mu * \nu)(f) = \int_Q \int_Q \Delta(f)(p,q) d\mu(p) d\nu(q), \qquad (f \in C_c(Q))$$

is a measure. Then the measures μ and ν are called convolvable. Specially, we have $(\delta_p * \delta_q)(f) = (\Delta f)(p,q)$, where $p,q \in Q$.

If $\mu, \nu \in M(Q)$ are bounded, then μ and ν are convolvable ([5], Lemma 3.3).

Definition 2.3. Let m be a left Haar measure on Q. The convolution of complex-valued Borel measurable functions f and g on Q is denoted by f * g and is defined by

$$(f*g)(q) = \int_Q f(p)(\Delta g)(p^\star, q) dm(p),$$

where $q \in Q$.

Definition 2.4. Let A be a C^* -algebra and $B \subseteq A$ be a C^* -subalgebra of A. A bounded linear map $P: A \longrightarrow B$ is called a conditional expectation if it satisfies in the following properties:

- (i) $P^2 = P$ and ||P|| = 1;
- (ii) P is positive, that is $P(a^*a) \ge 0$ for any $a \in A$;
- (iii) $P(b_1ab_2) = b_1P(a)b_2$ for any $a \in A$ and $b_1, b_2 \in B$;
- (iv) $P(a^*)P(a) \leq P(a^*a)$ for all $a \in A$. It follows from (ii) and the polarization identity that
- (v) $P(a^*) = P(a)^*$ for all $a \in A$.

Example 2.5. Let (Q, \star, e, Δ, m) be a KPC-hypergroup, A denote the C^* -algebra $C_b(Q)$, A_0 its C^* -subalgebra $C_0(Q)$, and let I be the ideal of A consisting of functions with compact support. Let $P: A \longrightarrow A$ be a conditional expectation such that $B := P(A_0)$ is a C^* -algebra, $P(I) \subseteq I$, and the following hold:

$$((P \times id) \circ \Delta \circ P)(f) = ((id \times P) \circ \Delta \circ P)(f) = ((P \times P) \circ \Delta)(f),$$
$$P(\check{f}) = (P(f)\check{)},$$

for all $f \in A$. Denote by \tilde{Q} the spectrum of the commutative algebra B, which is a Hausdorff locally compact space. For each $g \in B \subset A$, let

$$\tilde{\Delta}(g) = ((P \times P) \circ \Delta)(g).$$

If $\tilde{q} \in \tilde{Q}$ and $g \in B$, then we set

 $\tilde{q}^{\star}(g) = \check{g}(q), \quad \tilde{e} = \epsilon,$

and $\tilde{\mu}$ is defined by

 $\tilde{m} = m \circ P.$

Then $(\hat{Q}, \star, \tilde{e}, \hat{\Delta}, \tilde{m})$ is a KPC-hypergroup [6].

Definition 2.6. We denote the convolution of the function $f \in C_c(Q)$ and the measure $\mu \in M_b(Q)$ by $\mu * f$ and define as following

$$(\mu * f)(q) := \int_Q \Delta f(p^\star, q) d\mu(p). \quad (q \in Q)$$

Proposition 2.7. Let $\mu \in M_b(Q)$ and $f \in C_c(Q)$. Then $\mu * f$ is an element of $L^1(Q)$.

Proof. Let $\mu \in M_b(Q)$ and $f \in C_c(Q)$. We have $|\Delta f(p,q)| = |\int f(t)d(\delta_p * \delta_q)(t)| \le \int |f(t)|d(\delta_p * \delta_q)(t)|d(\delta_p * \delta_q)(t)| \le \int |f(t)|d(\delta_p * \delta_q)(t)|d(\delta_p * \delta_q)(t)| \le \int |f(t)|d(\delta_p * \delta_q)(t)|d(\delta_p * \delta_q)(t)|d(\delta_p * \delta_q)(t)| \le \int |f(t)|d(\delta_p * \delta_q)(t)|d(\delta_p * \delta_q)(t)$

$$\begin{split} \|\mu * f\|_{1} &= \int_{Q} |(\mu * f)(q)| dm(q) \\ &\leq \int_{Q} \left(\int_{Q} |\Delta f(p^{\star}, q)| d|\mu|(p) \right) dm(q) \\ &\leq \int_{Q} \left(\int_{Q} \Delta |f|(p^{\star}, q) dm(q) \right) d|\mu|(p) \\ &= \int_{Q} \left(\int_{Q} 1(q) \Delta |f|(p^{\star}, q) dm(q) \right) d|\mu|(p) \\ &= \int_{Q} \left(\int_{Q} \Delta 1(p, q)|f|(q) dm(q) \right) d|\mu|(p) \\ &= \int_{Q} \int_{Q} |f|(q) dm(q) d|\mu|(p) \\ &= \|f\|_{1} \int_{Q} d|\mu|(p) = \|f\|_{1} \|\mu\| < \infty. \end{split}$$

Then $\mu * f \in L^1(Q)$. \Box

Corollary 2.8. Let $\mu \in M_b(Q)$ and $f \in L^1(Q)$. Let $(f_n)_{n=1}^{\infty} \subseteq C_c(Q)$ such that $f_n \to f$ in $L^1(Q)$ as $n \to \infty$. Then $\lim_{n\to\infty} (\mu * f_n)$ exists, is an element of $L^1(Q)$, and is independent from the choice of $(f_n)_{n=1}^{\infty}$.

Proof. Under the hypothesis, by Proposition 2.7, the function $\mu * f$ is an element of $L^1(Q)$ and for $m, n \in \mathbb{N}$ we have

$$\|\mu * f_n - \mu * f_m\|_1 = \|\mu * [f_n - f_m]\|_1 \le \|\mu\| \cdot \|f_n - f_m\|_1.$$

Then, since $f_n \to f$ in $L^1(Q)$ as $n \to \infty$, $(\mu * f_n)_{n=1}^{\infty}$ is a cauchy (and so convergence) sequence in $L^1(Q)$. Let $f \in L^1(Q)$, and $(f_n)_{n=1}^{\infty}, (h_n)_{n=1}^{\infty} \subseteq C_c(Q)$ such that $f_n \to f$ and $h_n \to f$ in $L^1(Q)$ as $n \to \infty$. Then by Proposition 2.7, we have

$$\begin{aligned} \|\mu * f_n - \mu * h_n\|_1 &= \|\mu * (f_n - h_n)\|_1 \\ &\leq \|\mu\| \|f_n - h_n\|_1 \\ &= \|\mu\| \|f_n - h_n + f - f\|_1 \\ &\leq \|\mu\| \left(\|f_n - f\|_1 + \|h_n - f\|_1\right). \end{aligned}$$

So $\|\mu * f_n - \mu * h_n\|_1 \to 0$, and hence, $\lim_{n\to\infty} \mu * f_n = \lim_{n\to\infty} \mu * h_n$. \Box

Definition 2.9. Let μ , f, and $(f_n)_{n=1}^{\infty}$ be as in Corollary 2.8. We call the function $\lim_{n\to\infty} (\mu * f_n)$, the convolution of μ and f, and denote it by $\mu * f$.

3. Translation invariant mappings on KPC-hypergroups

Definition 3.1. A positive linear mapping $T : C_c(Q) \longrightarrow C(Q)$ is called translation invariant if for any $p \in Q$ and $f \in C_c(Q), T(\delta_p * f) = \delta_p * Tf$.

Theorem 3.2. A mapping $T : C_c(Q) \longrightarrow C(Q)$ is translation invariant if and only if there exists a unique positive measure $\mu \in M_b(Q)$ such that $Tf = \mu * f$ for any f in $C_c(Q)$.

Proof. Suppose that there exists a unique positive measure $\mu \in M_b(Q)$ such that $Tf = \mu * f$, for all $f \in C_c(Q)$. Since Δ is a positive mapping, $\mu * f$, T is positive too. Clearly, T is linear, and since Q is cocommutative, we have

$$\begin{aligned} (\mu * \nu)(f) &= \int_Q \int_Q \Delta f(p,q) d\mu(p) d\nu(q) \\ &= \int_Q \int_Q \Delta f(q,p) d\nu(q) d\mu(p) \\ &= (\nu * \mu)(f). \end{aligned}$$

In particular, $\mu * \delta_a = \delta_a * \mu$, for all $a \in Q$. Therefore,

$$T(\delta_p * f) = \mu * (\delta_p * f) = (\mu * \delta_p) * f = (\delta_p * \mu) * f = \delta_p * (\mu * f) = \delta_p * Tf,$$

where $p \in Q$, i.e. T is translation invariant. Conversely, let T be a translation invariant mapping. Then, the mapping $f \mapsto T(\check{f})(e)$ is bounded, linear and positive. By Riesz representation theorem, there is a measure $\mu \in M(Q)$ such that $T(\check{f})(e) = \int f(p)d\mu(p)$, for all $f \in C_c(Q)$. Also, if $f \in C_c(Q)$ and $p \in Q$, we have

$$\begin{aligned} (\mu * f)(p) &= \int_Q \Delta f(q^\star, p) d\mu(q) = \int_Q \Delta f(p, q^\star) d\mu(q) = \int_Q \int_Q \Delta f(t, q^\star) d\delta_p(t) d\mu(q) \\ &= \int_Q \int_Q \Delta f(t^\star, q^\star) d\delta_p(t^\star) d\mu(q) = \int_Q \int_Q \Delta f(t^\star, q^\star) d\delta_{p^\star}(t) d\mu(q) = \int_Q (\delta_{p^\star} * f)(q^\star) d\mu(q) \\ &= T(\delta_{p^\star} * f)(e) = \delta_{p^\star} * Tf(e) = \int_Q \Delta Tf(q^\star, e) d\delta_{p^\star}(q) = \Delta Tf(p, e) = Tf(p) \end{aligned}$$

and the proof is completed. \Box

Definition 3.3. A function $\chi \in C_b(Q)$ is called a character of a cocommutative KPC-hypergroup Q if $(\Delta \chi)(p,q) = \chi(p)\chi(q)$ and $\chi(p^*) = \overline{\chi(p)}$, for all $p, q \in Q$.

Definition 3.4. For any $f \in L^1(Q)$ and $\mu \in M(Q)$, the Fourier-Stieltjes transform $\hat{\mu}$ of μ and the Fourier transform \hat{f} of f are defined by

$$\hat{\mu}(\xi) = \int_{Q} \overline{\xi(t)} d\mu(t) \text{ and } \hat{f}(\xi) = \int_{Q} f(t) \overline{\xi(t)} dm(t),$$

respectively, where $\xi \in \hat{Q}$. For definition of \hat{Q} we refer to [5].

Lemma 3.5. Let $\mu, \nu \in M_b(Q)$. Then $(\mu * \nu) = \hat{\mu}\hat{\nu}$. In particular, $(f * g) = \hat{f}\hat{g}$, for all $f, g \in C_c(Q)$.

Proof.

$$\begin{split} \hat{\mu}(\xi)\hat{\nu}(\xi) &= \int_{Q} \bar{\xi}(p)d\mu(p) \int_{Q} \bar{\xi}(q)d\nu(q) = \int_{Q} \int_{Q} \xi(p^{\star})\xi(q^{\star})d\mu(p)d\nu(q) \\ &= \int_{Q} \int_{Q} \Delta\xi(p^{\star},q^{\star})d\mu(p)d\nu(q) = \int_{Q} \int_{Q} \Delta\xi(q^{\star},p^{\star})d\mu(p)d\nu(q) \\ &= \int_{Q} \int_{Q} \Delta\check{\xi}(p,q)d\mu(p)d\nu(q) = \int_{Q} \bar{\xi}(t)d(\mu*\nu)(t) = (\mu*\nu)\hat{\xi}(t). \end{split}$$

Similarly, one can see that $(f * g) = \hat{f}\hat{g}$, for all $f, g \in C_c(Q)$. \Box

Lemma 3.6. For any $\mu \in M_b(Q)$ and $f \in C_c(Q)$, we have $(\mu * f) = \hat{\mu} \hat{f}$.

Proof. Let $\mu \in M_b(Q)$ and $f \in C_c(Q)$. By Definition 2.1, for any $\xi \in \hat{Q}$ we have

$$\begin{aligned} (\mu * \hat{f})(\xi) &= \int (\mu * f)(p)\bar{\xi}(p)dm(p) = \int (\mu * f)(p)\xi(p^*)dm(p) \\ &= \int \int \Delta f(q^*, p)\xi(p^*)d\mu(q)dm(p) = \int \int \Delta f(q^*, p)\check{\xi}(p)dm(p)d\mu(q) \quad (H_4) \\ &= \int \int \Delta \check{\xi}(q, p)f(p)dm(p)d\mu(q) \quad (H_3) = \int \int \Delta \xi(p^*, q^*)f(p)dm(p)d\mu(q) \\ &= \int \int \xi(p^*)\xi(q^*)f(p)dm(p)d\mu(q) = \int \xi(p^*)f(p)dm(p)\int \xi(q^*)d\mu(q) \\ &= \hat{\mu}(\xi)\hat{f}(\xi). \end{aligned}$$

Thus, $(\mu * \hat{f}) = \hat{\mu}\hat{f}$. \Box

For each $f \in C_b(Q)$ and $a, p \in Q$, put $f^a(p) := \Delta f(a, p)$ and $f_a(p) := \Delta f(p, a)$.

Proposition 3.7. Let $a \in Q$ and $\gamma \in \hat{Q}$. Then for any $f \in L^1(Q)$ we have $\hat{f}_a(\gamma) = \gamma(a)\hat{f}(\gamma)$. **Proof**.

$$\begin{split} \hat{f}_a(\gamma) &= \int_Q f_a(p)\bar{\gamma}(p)dm(p) = \int_Q f_a(p)\gamma(p^\star)dm(p) \\ &= \int_Q \Delta f(a,p)\gamma(p^\star)dm(p) = \int_Q \Delta f(a,p)\check{\gamma}(p)dm(p) \\ &= \int_Q f(p)\Delta\check{\gamma}(a^\star,p)dm(p) = \int_Q f(p)\Delta\gamma(p^\star,a)dm(p) \\ &= \int_Q f(p)\gamma(p^\star)\gamma(a)dm(p) = \gamma(a)\hat{f}(\gamma). \end{split}$$

Lemma 3.8. If Q is a cocommutative KPC-hypergroup then,

i. for any $p \in Q$ we have $\delta(p) = 1$, where δ is the modular function of Q.

ii. for each $f, g \in C_c(Q)$, f * g = g * f.

Proof. i. Let $f \in C_c(Q)$ and $p \in Q$. Then by Definition 2.1,

$$\begin{split} \delta(p)m(f) &= (m * \delta_{p^{\star}})(f) = \int_{Q} \int_{Q} \Delta f(q,t) dm(q) d\delta_{p^{\star}}(t) \\ &= \int_{Q} \Delta f(q,p^{\star}) dm(q) = \int_{Q} \Delta f(p^{\star},q) 1(q) dm(q) \\ &= \int_{Q} \Delta 1(p,q) f(q) dm(q) = \int_{Q} f(q) dm(q) = m(f) . \end{split}$$

So $\delta(p) = 1$ for any $p \in Q$.

ii. If $f, g \in C_c(Q)$, for any $q \in Q$ we have

$$\begin{split} (f*g)(q) &= \int_Q f(p)\Delta g(p^\star,q)dm(p) = \int_Q f(p)\Delta g^-(q^\star,p)dm(p) \\ &= \int_Q \Delta f(q,p)g^-(p)dm(p) = \int_Q \Delta f(p,q)g(p^\star)dm(p) \\ &= \int_Q \Delta f(p^\star,q)g(p)\delta(p^\star)dm(p) = \int_Q \Delta f(p^\star,q)g(p)dm(p) \\ &= (g*f)(q). \end{split}$$

The following theorem is called Wendel's Theorem.

Theorem 3.9. Let Q be a locally compact cocommutative KPC-hypergroup. Suppose that $T : L^1(Q) \to C_c(Q)$ is a bounded linear mapping. Then the following statements are equivalent:

- i. T commutes with right translation operators, that is $T(f^p) = T(f)^p$, for all $p \in Q$ and $f \in C_c(Q)$.
- ii. T(f * g) = T(f) * g, for all $f, g \in C_c(Q)$.
- iii. There exists a unique transformation ϕ on \hat{Q} such that $\widehat{T(f)} = \phi \hat{f}$, for all $f \in C_c(Q)$.
- iv. There exists a unique measure $\mu \in M(Q)$ such that $\widehat{T(f)} = \hat{\mu}\hat{f}$, for all $f \in C_c(Q)$.
- v. There exists a unique measure $\mu \in M(Q)$ such that $T(f) = f * \mu = \mu * f$, for all $f \in C_c(Q)$.

Proof. (i) implies (ii): Let T commute with right translation operators, and $k \in L^{\infty}(Q)$. We define the mapping ψ on $L^{1}(Q)$ by

$$\psi(f) = \int_Q T(f)(t)k(t^*)dm(t) \quad (f \in L^1(Q)).$$

Then ψ is a bounded linear mapping on $L^1(Q)$, because by ([5], Proposition 5.5) we have

$$\left| \int T(f)(t)k(t^{\star})dm(t) \right| \leq \|k\|_{\infty} \|T(f)\|_{1}$$
$$\leq \|k\|_{\infty} \|T\| \|f\|_{1},$$

where ||T|| denotes the usual operator norm of T. Then by ([3], 20.20) there is a function $h \in L^{\infty}(Q)$ such that

$$\int T(f)(q,p)k(q^{\star})dm(q) = \int f(q,p)h(q^{\star})dm(q) \qquad (*).$$

For each $f, g \in C_c(Q)$, we have

$$\begin{split} \int [T(f) * g](q)k(q^*)dm(q) &= \int [\int T(f)(p)g^q(p^*)dm(p)]k(q^*)dm(q) \\ &= \int [\int T(f)^p(q)g(p^*)dm(p)]k(q^*)dm(q) \\ &= \int [\int T(f^p)(q)k(q^*)dm(q)]\check{g}(p)dm(p) \\ &= \int [\int f^p(q)h(q^*)dm(q)]\check{g}(p)dm(p) \\ &= \int [\int f^p(q)\check{g}(p)dm(p)]h(q^*)dm(q) \\ &= \int [\int g^q(p^*)f(p)dm(p)]h(q^*)dm(q) \\ &= \int [(f * g)(q)]h(q^*)dm(q) \quad (by (*))) \\ &= \int [T(f * g)(q)]k(q^*)dm(q). \end{split}$$

Since $k \in L^{\infty}(Q)$ is arbitrary, we have T(f) * g = T(f * g) for all $f, g \in C_c(Q)$.

(ii) implies (iii): Let T(f) * g = T(f * g), for all $f, g \in C_c(Q)$. By Lemma 3.8, we have T(f * g) = T(g * f), for all $f, g \in C_c(Q)$, and so T(g) * f = T(g * f) = T(f * g) = T(f) * g. Now, by Lemma 3.5, for all $f, g \in C_c(Q)$ we have

$$\widehat{T}(\widehat{f})\widehat{g} = \widehat{T}(\widehat{g})\widehat{f}. \qquad (**)$$

For each $\xi \in \hat{Q}$, we can choose $g \in C_c(Q)$ such that $\hat{g}(\xi) \neq 0$. If ϕ is defined by $\phi(\xi) := \frac{\widehat{T(g)}(\xi)}{\hat{g}(\xi)}$, then by (**), ϕ is independent from g. For each $\xi \in \hat{Q}$, we have

$$\widehat{T(f)}(\xi) = \widehat{f}(\xi)(\frac{\overline{T(g)}}{\widehat{g}})(\xi) = \phi(\xi)\widehat{f}(\xi) = (\phi\widehat{f})(\xi)$$

Therefore, $\widehat{T(f)} = \phi \widehat{f}$.

(iii) implies (iv): Let $\widehat{T(f)} = \phi \hat{f}$, for all $f \in L^1(Q)$. Then $\phi \hat{f} \in \widehat{C_c(Q)}$. By ([5], Remark 10.7) the Fourier transform maps $L^1(Q)$ into $C_0(\hat{Q})$. Therefore, $\phi \hat{f}$ is continuous and $\phi \in C(\hat{Q})$. Thus, by ([7], Theorem 2.1), there exists $\mu \in M(Q)$ such that $\phi = \hat{\mu}$, and so $\widehat{T(f)} = \hat{\mu}\hat{f}$.

(iv) implies (v): By (iv) and Lemma 3.6, for all $\xi \in \hat{Q}$ we have $\widehat{(Tf)} = (\hat{\mu}\hat{f})(\xi) = (\mu * \hat{f})(\xi) = (f * \mu)(\xi)$. So, since $(T(f) - \mu * f) = 0$, we have $T(f) = \mu * f = f * \mu$.

(v) implies (i): Let $f \in C_c(Q)$ and $p \in Q$. By hypothesis,

$$T(f^p) = \mu * f^p = \mu * (f * \delta_{p^*}) = (\mu * f) * \delta_{p^*} = (\mu * f)^p = T(f)^p.$$

Therefore, $T(f^p) = T(f)^p$. \Box

References

- W.R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, De Gruyter Studies in Mathematics, de Gruyter, Berlin, 1995.
- [2] C.F. Dunkl, The measure algebra of a locally compact hypergroup, Trans. Amer. Math. Soc. 179 (1973) 331–348.
- [3] E. Hewitt and K. Stromberg, *Real and Abstract Analysis*, Springer-Verlag, New York, 1975.
- [4] R.I. Jewett, Spaces with an abstract convolution of measures, Adv. Math. 18 (1975) 1–101.
- [5] A.A. Kalyuzhnyi, G.B. Podkolzin and Y.A. Chapovski, Harmonic analysis on a locally compact hypergroup, Method. Funct. Anal. Topol. 16 (2010) 304–332.
- [6] A.A. Kalyuzhnyi, G.B. Podkolzin and Y.A. Chapovski, On infinitesimal structure of a hypergroup that originates from a Lie group, Method. Funct. Anal. Topol. 17 (2011) 319–329.
- [7] R. Lasser, Fourier-Stieltjes transform on hypergroups, Anal. 2 (1982) 281–303.
- [8] R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, New York, 1971.
- [9] A.R. Medghalchi and S.M. Tabatabaie, Spectral subspaces on hypergroup algebras, Publ. Math. Debrecen 74 (2009) 307–320.
- [10] R. Spector, Measures invariant sure less hypergroups, Trans. Amer. Math. Soc. 239 (1978) 147–165.
- S.M. Tabatabaie and F. Haghighifar, The associated measure on locally compact cocommutative KPC-hypergroups, Bull. Iran. Math. Soc. 43 (2017) 1–15.
- [12] N. Youmbi, Some multipliers results on compact hypergroups, Int. Math. Forum 5 (2010) 2569–2580.