Mazur-Ulam theorem in probabilistic normed groups

Alireza Pourmoslemi ${ }^{\text {a }}$, Kourosh Nourouzi ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Payame Noor University, Tehran, Iran
${ }^{b}$ Faculty of Mathematics, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
(Communicated by C. Park)

Abstract

In this paper, we give a probabilistic counterpart of Mazur-Ulam theorem in probabilistic normed groups. We show, under some conditions, that every surjective isometry between two probabilistic normed groups is a homomorphism.

Keywords: Probabilistic normed groups; Invariant probabilistic metrics; Mazur-Ulam Theorem. 2010 MSC: Primary 54E70; Secondary 20F38.

1. Introduction and preliminaries

Mazur and Ulam showed that every bijective isometry between real normed spaces is affine [5]. Since then it has attracted the attention of some researchers in order to generalize this result (see e.g. [8]). In particular, the Mazur-Ulam theorem has been investigated in normed and metric groups [3, 10] and in probabilistic and random normed spaces [1, 6].

In this paper we give a probabilistic counterpart of the Mazu-Ulam theorem in probabilistic normed groups introduced by the authors in [7]. We begin with some basic notions which will be needed in this paper.

A distribution function is a function F from the extended real line $[-\infty,+\infty]$ to the interval $[0,1]$ such that F is nondecreasing and left-continuous and satisfies $F(-\infty)=0, F(+\infty)=1 \mathcal{A}$. We denote the set of all distribution functions by Δ. A subset of Δ consisting of all distribution functions F with $F(0)=0$ will be denoted by Δ^{+}. The subset D^{+}of Δ^{+}is defined as follows:

$$
D^{+}=\left\{F \in \Delta^{+}: l^{-} F(+\infty)=1\right\},
$$

[^0]where $l^{-} f(x)$ denotes the left limit of the function f at the point x. For $F, G \in \Delta^{+}$we mean $F \leq G$ by $F(x) \leq G(x)$, for all $x \in \mathbb{R}$. The distribution function \mathcal{H}_{a} is given by
\[

\mathcal{H}_{a}(x)= $$
\begin{cases}0, & \text { if } x \leq a, \\ 1, & \text { if } x>a,\end{cases}
$$
\]

for all $a, x \in \mathbb{R}$. The maximal element for Δ^{+}(and also for D^{+}) according to the presented order is the distribution function \mathcal{H}_{0}.

A triangular norm (briefly t-norm) is a binary function T from $[0,1] \times[0,1]$ to $[0,1]$ which is associative, commutative, nondecreasing in each place and $T(a, 1)=a$, for all $a \in[0,1]$. A triangle function is a function $\tau: \Delta^{+} \times \Delta^{+} \rightarrow \Delta^{+}$such that τ is associative, commutative, nondecreasing for all $F, G, H \in \Delta^{+}$and it has \mathcal{H}_{0} as unit [4]. A sequence $\left\{F_{n}\right\}$ in Δ^{+}converges weakly to a distribution function F, written by $F_{n} \xrightarrow{w} F$, if and only if the sequence $\left\{F_{n}(x)\right\}$ converges to $F(x)$ at each continuity point x of F (see Definition 4.2.4. in [9]). A triangle function τ is said to be continuous if $F_{n} \xrightarrow{w} F$ and $G_{n} \xrightarrow{w} G$ in Δ^{+}imply that $\tau\left(F_{n}, G_{n}\right) \rightarrow \tau(F, G)$. For example, if T is a continuous t-norm, then τ_{T} is a continuous triangle function, where τ_{T} is defined by

$$
\begin{equation*}
\tau_{T}(F, G)(x)=\sup _{s+t=x} T(F(s), G(t)) \tag{1.1}
\end{equation*}
$$

for all $F, G \in \Delta^{+}$and every $x, s, t \in \mathbb{R}$.
Definition 1.1. [7] A triple (G, F, τ) is called a probabilistic normed group, where G is a group with identity element e, τ is a continuous triangle function and F is a mapping from G into Δ^{+} satisfying the following conditions:
(PGN1) $F_{x}=\mathcal{H}_{0}$ if and only if $x=e$,
(PGN2) $F_{x y} \geq \tau\left(F_{x}, F_{y}\right)$, whenever $x, y \in G$,
(PGN3) $F_{x^{-1}}=F_{x}$, where x^{-1} is the inverse element of x.
Then F is called a probabilistic group-norm on G. The probabilistic group-norm F is called abelian if $F_{x y}=F_{y x}$, for each $x, y \in G$.

In a probabilistic normed group (G, F, τ), for each x in G and $\lambda>0$, the strong λ-neighborhood of x is the set

$$
N_{x}(\lambda)=\left\{y \in G: F_{x y^{-1}}(\lambda)>1-\lambda\right\} .
$$

The strong neighborhood system for G is the union $\bigcup_{x \in G} \mathcal{N}_{x}$ where $\mathcal{N}_{x}=\left\{N_{x}(\lambda): \lambda>0\right\}$. Note that the strong neighborhood system for G determines a Hausdorff topology for G (see Theorem 12.1.2 in [9]).

2. Main theorem

Definition 2.1. [2] A group G is called divisible if for every $g \in G$, and every positive integer n there exists $y \in G$ such that $y^{n}=g$. We say that group G is 2-divisible if for each $g \in G$ there exists $y \in G$ such that $y^{2}=g$. The algebraic center of points $x, y \in G$ is an element $z \in G$, denoted by $\sqrt{x y}$, such that $z^{2}=x y$.
Definition 2.2. Let (G, F, μ) and $\left(G^{\prime}, F^{\prime}, \tau\right)$ be two probabilistic normed groups. A mapping T : $(G, F, \mu) \rightarrow\left(G^{\prime}, F^{\prime}, \tau\right)$ is called an isometry if for each $x, y \in G$,

$$
F_{T(x) T(y)^{-1}}^{\prime}=F_{x y^{-1}} .
$$

Let (G, F, τ) be a probabilistic normed group. Consider the following conditions:
(C1) There exists a constant $c>1$ such that $F_{x^{2}}(t) \leq F_{x}\left(\frac{t}{c}\right)$, for all $x \in G$ and $t>0$.
(C2) $F_{x} \in D^{+}$, for all $x \in G$.
(C3) $\tau\left(D^{+} \times D^{+}\right) \subseteq D^{+}$.
The following example gives a probabilistic normed group satisfying the conditions (C1),(C2) and (C3).

Example 2.3. Consider the probabilistic normed group $\left(\mathbb{R}, F, \tau_{T}\right)$, where \mathbb{R} is the additive group of real numbers and $F_{x}=\mathcal{H}_{|x|}$, for all $x \in \mathbb{R}$. We have $F_{x^{n}}=\mathcal{H}_{n|x|}$, for each $n \in \mathbb{N}$ and each $x \in \mathbb{R}$. Therefore

$$
F_{x^{n}}(t)=\left\{\begin{array}{ll}
0, & \text { if } t \leq n|x| \\
1, & \text { if } t>n|x|
\end{array}=\left\{\begin{array}{ll}
0, & \text { if } \frac{t}{n} \leq|x| \\
1, & \text { if } \frac{t}{n}|x|
\end{array}=F_{x}\left(\frac{t}{n}\right),\right.\right.
$$

for each $x, t \in \mathbb{R}$ and every $n \in \mathbb{N}$. Now for $n \geq 2$, choosing $1<c \leq n$ we get

$$
F_{x^{n}}(t)=F_{x}\left(\frac{t}{n}\right) \leq F_{x}\left(\frac{t}{c}\right)
$$

for each $x, t \in \mathbb{R}$. Particularly, for $n=2$ putting $1<c \leq 2$, we get

$$
F_{x^{2}}(t) \leq F_{x}\left(\frac{t}{c}\right),
$$

for all $x, t \in \mathbb{R}$. It is obvious that for every $x \in \mathbb{R}, F_{x}=\mathcal{H}_{|x|} \in D^{+}$. Since $\tau_{T}\left(\mathcal{H}_{|x|}, \mathcal{H}_{|y|}\right)=\mathcal{H}_{|x|+|y|}$, for all $x, y \in \mathbb{R}$, we get

$$
\tau_{T}\left(F_{x}, F_{y}\right) \in D^{+}
$$

Now consider the probabilistic normed group $\left(\mathbb{R}_{+}, F, \tau_{T}\right)$, where \mathbb{R}_{+}is the multiplicative group with $e=1$. Let $F_{h}=\mathcal{H}_{|\log (h)|}$, for all $h \in \mathbb{R}_{+}$. We have

$$
F_{h^{2}}(t)=\mathcal{H}_{\left|\log h^{2}\right|}(t)=\mathcal{H}_{2|\log h|}(t)=\mathcal{H}_{|\log h|}\left(\frac{t}{2}\right),
$$

for each $t, h \in \mathbb{R}_{+}$. Putting $1<c \leq 2$, we have $F_{h^{2}}(t) \leq F_{h}\left(\frac{t}{c}\right)$.
Theorem 2.4. Let (G, F, μ) and $\left(G^{\prime}, F^{\prime}, \tau\right)$ be two probabilistic normed groups such that both G, G^{\prime} are uniquely 2-divisible abelian groups, and conditions $(C 1),(C 2)$ and $(C 3)$ hold for both $\left(G^{\prime}, F^{\prime}, \tau\right)$ and (G, F, μ). If $T: G \rightarrow G^{\prime}$ is a surjective isometry, then

$$
F_{T(\sqrt{x y})(\sqrt{T(x) T(y)})^{-1}}^{\prime}=\mathcal{H}_{0}
$$

for all $x, y \in G$.
Proof . Let $x, y \in G$ and set

$$
a=\sqrt{x y}, \quad b=\sqrt{T(x) T(y)}, \quad E=F^{\prime} \sqrt{T(x) T(y)^{-1}} .
$$

Let $\left\{q_{n}\right\}$ be a sequence of maps form G^{\prime} to itself, defined for each $z \in G^{\prime}$ by

$$
q_{0}(z)=T\left(a^{2}\left(T^{-1}(z)\right)^{-1}\right), \quad q_{1}(z)=b^{2} z^{-1}
$$

and for $n \in \mathbb{N}$,

$$
q_{n+1}=q_{n-1} \circ q_{n} \circ q_{n-1}^{-1} .
$$

For $n \in \mathbb{N}$ define $\left\{p_{n}\right\}$, a sequence of points in G^{\prime}, by

$$
p_{1}=b, \quad p_{n+1}=q_{n-1}\left(p_{n}\right) .
$$

By induction, one can see that for all $n \in \mathbb{N}_{0}$ we have

$$
\begin{equation*}
q_{n}(T(x))=T(y), \quad q_{n}(T(y))=T(x) . \tag{2.1}
\end{equation*}
$$

We show that for each $u, v \in G^{\prime}$ and all $n \in \mathbb{N}_{0}$,

$$
F_{q_{n}(u) q_{n}(v)^{-1}}^{\prime}=F_{u v^{-1}}^{\prime} .
$$

For $n=0$,

$$
\begin{aligned}
F_{q_{0}(u) q_{0}(v)^{-1}}^{\prime} & =F_{T\left(a^{2}\left(T^{-1}(u)\right)^{-1}\right)\left(T\left(a^{2}\left(T^{-1}(v)^{-1}\right)\right)\right)^{-1}}^{\prime} \\
& =F_{a^{2}\left(T^{-1}(u)\right)^{-1}\left(a^{2}\left(T^{-1}(v)\right)^{-1}\right)^{-1}}=F_{a^{2} a^{-2}\left(T^{-1}(u)\right)^{-1} T^{-1}(v)} \\
& =F_{T^{-1}(u)^{-1} T^{-1}(v)}=F_{\left(T^{-1}(u)^{-1} T^{-1}(v)\right)^{-1}}=F_{T^{-1}(u) T^{-1}(v)^{-1}} \\
& =F_{\left(T T^{-1}(u)\right)\left(T T^{-1}(v)^{-1}\right)}^{\prime} \\
& =F_{u v^{-1}}^{\prime} .
\end{aligned}
$$

Suppose that the statement holds for some $n \in \mathbb{N}$. Then we get

$$
\begin{aligned}
F_{q_{n+1}(u) q_{n+1}(v)^{-1}}^{\prime} & =F_{q_{n-1} \circ q_{n} \circ q_{n-1}^{-1}(u)\left(q_{n-1} \circ q_{n} \circ q_{n-1}^{-1}(v)\right)^{-1}}^{\prime} \\
& =F_{q_{n} \circ q_{n-1}^{-1}(u)\left(q_{n} \circ q_{n-1}^{-1}(v)\right)^{-1}}^{\prime} \\
& =F_{q_{n-1}^{-1}(u)\left(q_{n-1}^{-1}(v)\right)^{-1}}^{\prime-1} \\
& =F_{q_{n-1} \circ q_{n-1}^{-1}(u)\left(q_{n-1} \circ q_{n-1}^{-1}(v)\right)^{-1}}^{\prime} \\
& =F_{u v^{-1}}^{\prime} .
\end{aligned}
$$

So

$$
F_{q_{n}(u) q_{n}(v)^{-1}}^{\prime}=F_{u v^{-1}}^{\prime},
$$

for each $u, v \in G^{\prime}$ and all $n \in \mathbb{N}_{0}$. Now by induction we are going to show that

$$
\begin{equation*}
F_{p_{n} T(x)^{-1}}^{\prime}=E, \quad F_{p_{n} T(y)^{-1}}^{\prime}=E, \tag{2.2}
\end{equation*}
$$

for $n \in \mathbb{N}$. For $n=1$, we have

$$
F_{p_{1} T(x)^{-1}}^{\prime}=F_{\sqrt{T(x) T(y) T(x)^{-1}}}^{\prime}=F_{\sqrt{T(y) T(x)^{-1}}}^{\prime}=E .
$$

(Note that in the above equation we use the fact that if $s^{2}=\operatorname{tr}$ and $v^{2}=m n$, then $s^{2} v^{2}=(s v)^{2}$ and $s v=\sqrt{\operatorname{trmn}}=\sqrt{\operatorname{tr}} \sqrt{m n}$, for all $s, v, r, t, m, n \in G^{\prime}$.)
Likewise,

$$
F_{p_{1} T(y)^{-1}}^{\prime}=F_{\sqrt{T(y) T(x)^{-1}}}^{\prime}=E .
$$

Hence (2.2) holds for $n=1$. Suppose that (2.2) holds for some $n \in \mathbb{N}$. Then by using (2.1) and the induction hypothesis we get

$$
F_{p_{n+1} T(x)^{-1}}^{\prime}=F_{q_{n-1}\left(p_{n}\right)\left(q_{n-1}(T(y))\right)^{-1}}^{\prime}=F_{p_{n} T(y)^{-1}}^{\prime}=E .
$$

Similarly we have

$$
F_{p_{n+1} T(y)^{-1}}^{\prime}=E .
$$

Now by (2.2) for $n \geq 2$,

$$
\begin{equation*}
F_{p_{n} p_{n-1}^{-1}}^{\prime}=F_{p_{n} T(x)^{-1} T(x) p_{n-1}^{-1}}^{\prime} \geq \tau\left(F_{p_{n} T(x)^{-1}}^{\prime}, F_{T(x) p_{n-1}^{-1}}^{\prime}\right)=\tau(E, E) . \tag{2.3}
\end{equation*}
$$

Again, by induction we prove that there is constant $c>1$ such that

$$
\begin{equation*}
F_{q_{n}(z) z^{-1}}^{\prime}(t) \leq F_{p_{n} z^{-1}}^{\prime}\left(\frac{t}{c}\right), \tag{2.4}
\end{equation*}
$$

for each $z \in G^{\prime}, t>0$ and $n \in \mathbb{N}$. For $\mathrm{n}=1$, we have

$$
F_{q_{1}(z) z^{-1}}^{\prime}=F_{b^{2} z^{-1} z^{-1}}^{\prime}=F_{b^{2}\left(z^{-1}\right)^{2}}^{\prime}=F_{\left(b z^{-1}\right)^{2}}^{\prime} .
$$

By the condition (C1), there exists constant $c>1$ such that

$$
F_{\left(b z^{-1}\right)^{2}}^{\prime}(t) \leq F_{b z^{-1}}^{\prime}\left(\frac{t}{c}\right),
$$

for each $z \in G^{\prime}$ and $t>0$. Hence

$$
F_{q_{1}(z) z^{-1}}^{\prime}(t) \leq F_{p_{1} z^{-1}}^{\prime}\left(\frac{t}{c}\right),
$$

for each $z \in G^{\prime}$ and $t>0$. Now suppose that the statement holds for some natural number n. Then for each $z \in G^{\prime}$ and $t>0$,

$$
\begin{aligned}
F_{q_{n+1}(z) z^{-1}}^{\prime}(t) & =F_{q_{n-1} q_{n} q_{n-1}^{-1}(z)\left(q_{n-1} q_{n-1}^{-1}(z)\right)^{-1}}^{\prime}(t) \\
& =F_{q_{n} q_{n-1}^{-1}(z)\left(q_{n-1}^{-1}(z)\right)^{-1}}^{\prime}(t) \\
& \leq F_{p_{n}\left(q_{n-1}^{-1}(z)\right)^{-1}}^{\prime}\left(\frac{t}{c}\right) \\
& =F_{q_{n-1}^{\prime} q_{n-1}\left(p_{n}\right)\left(q_{n-1}^{-1}(z)\right)^{-1}}^{\prime}\left(\frac{t}{c}\right) \\
& =F_{q_{n-1}\left(p_{n}\right) z^{-1}}^{\prime}\left(\frac{t}{c}\right)=F_{p_{n+1} z^{-1}}^{\prime}\left(\frac{t}{c}\right) .
\end{aligned}
$$

In the inequality (2.4) replace z by p_{n+1}. Then for $n \in \mathbb{N}$ and $t>0$, we obtain

$$
F_{q_{n}\left(p_{n+1}\right) p_{n+1}^{-1}}^{\prime}(t) \leq F_{p_{n} p_{n+1}^{-1}}^{\prime}\left(\frac{t}{c}\right)=F_{\left(p_{n} p_{n+1}^{-1}\right)^{-1}}^{\prime}\left(\frac{t}{c}\right) .
$$

Therefore

$$
F_{p_{n+2} p_{n+1}^{-1}}^{\prime}(t) \leq F_{p_{n+1} p_{n}^{-1}}^{\prime}\left(\frac{t}{c}\right),
$$

and for $n \geq 3$ and each $t>0$, we have

$$
\begin{equation*}
F_{p_{n} p_{n-1}^{-1}}^{\prime}(t) \leq F_{p_{n-1} p_{n-2}^{-1}}^{\prime}\left(\frac{t}{c}\right) \leq \cdots \leq F_{p_{2} p_{1}^{-1}}^{\prime}\left(\frac{t}{c^{n-2}}\right) . \tag{2.5}
\end{equation*}
$$

By (2.3) and (2.5) for $n \geq 3$ we get

$$
\begin{equation*}
\tau(E, E)(t) \leq F_{p_{2} p_{1}^{-1}}^{\prime}\left(\frac{t}{c^{n-2}}\right) . \tag{2.6}
\end{equation*}
$$

On the other hand, there is $c_{1}>1$ such that

$$
\begin{aligned}
F_{p_{2} p_{1}^{-1}}^{\prime}(t) & =F_{T\left(a^{2}\left(T^{-1}(b)\right)^{-1}\right)\left(T T^{-1}(b)\right)^{-1}}^{\prime}(t) \\
& =F_{a^{2}\left(\left(T^{-1}(b)\right)^{-1}\right)^{2}}^{\prime}(t)=F_{\left(a\left(T^{-1}(b)\right)^{-1}\right)^{2}}(t) \\
& \leq F_{a\left(T^{-1}(b)\right)^{-1}}\left(\frac{t}{c_{1}}\right) \\
& =F_{T(a)\left(T T^{-1}(b)\right)^{-1}}^{\prime}\left(\frac{t}{c_{1}}\right) \\
& =F_{T(a) b^{-1}}^{\prime}\left(\frac{t}{c_{1}}\right) .
\end{aligned}
$$

for each $t>0$. Consequently,

$$
\tau(E, E)\left(c_{1} c^{n-2} t\right) \leq F_{p_{2} p_{1}^{-1}}^{\prime}\left(c_{1} t\right) \leq F_{T(a) b^{-1}}^{\prime}(t),
$$

for each $t>0$. Since $F_{z}^{\prime} \in D^{+}$for each $z \in G^{\prime}$, and $\tau\left(D^{+} \times D^{+}\right) \subseteq D^{+}$we have

$$
\lim _{n \rightarrow+\infty} \tau(E, E)\left(c_{1} c^{n-2} t\right)=1,
$$

for each $t>0$. But \mathcal{H}_{0} is a maximal element of D^{+}, therefore

$$
F_{T(a) b^{-1}}^{\prime}=\mathcal{H}_{0} .
$$

Theorem 2.5. Suppose that (G, F, μ) and $\left(G^{\prime}, F^{\prime}, \tau\right)$ are two probabilistic normed groups such that both G, G^{\prime} are uniquely 2-divisible abelian groups. Let the conditions (C1), (C2) and (C3) hold for both $\left(G^{\prime}, F^{\prime}, \tau\right)$ and (G, F, μ). If $U:(G, F, \mu) \rightarrow\left(G^{\prime}, F^{\prime}, \tau\right)$ is a surjective isometry with $U(e)=e$, then U is a homomorphism.
Proof. We can apply Theorem 2.4 for surjective isometry U. For each $x, y \in G$ we have

$$
F_{U(\sqrt{x y})(\sqrt{U(x) U(y)})^{-1}}^{\prime}=\mathcal{H}_{0} .
$$

Thus

$$
U(\sqrt{x y})(\sqrt{U(x) U(y)})^{-1}=e,
$$

for each $x, y \in G$. That is,

$$
\begin{equation*}
U(\sqrt{x y})=\sqrt{U(x) U(y)}, \tag{2.7}
\end{equation*}
$$

for each $x, y \in G$. In the equation (2.7), let $y=e$. Since $U(e)=e$, we have

$$
U(\sqrt{x})=\sqrt{U(x)},
$$

for each $x \in G$. Now for arbitrary $x, y \in G$ we get

$$
U(x y)=(U(\sqrt{x y}))^{2}=(\sqrt{U(x) U(y)})^{2}=U(x) U(y),
$$

i.e., U is a homomorphism.

Acknowledgments

The authors would like to thank the reviewers for their helpful comments to improve the paper.

References

[1] S. Cobzaş, A Mazur-Ulam theorem for probabilistic normed spaces, Aequationes Math. 77 (1-2) (2009) 197-205.
[2] P. A. Griffith, Infinite abelian group theory, The University of Chicago Press, Chicago, Ill.-London 1970.
[3] O. Hatori, K. Kobayashi, T. Miura, S. Takahasi, Reflections and a generalization of the Mazur-Ulam theorem, Rocky Mountain J. Math. 42 (1) (2012) 117-150.
[4] E. Klement, R. Mesiar, E. Pap, Triangular norms, Trends in Logic, Studia Logica Library, 8. Kluwer Academic Publishers, Dordrecht, 2000.
[5] S. Mazur, S. Ulam, Sur les transformations isométriques d'espaces vectorils normés, Comp. Rend. Paris 194 (1932) 946-948.
[6] D. H. Muštari, The linearity of isometric mappings of random normed spaces, (Russian) Kazan. Gos. Univ. Uen. Zap. 128 (2) (1968) 86-90.
[7] K. Nourouzi, A. R. Pourmoslemi, Probabilistic Normed Groups, Iran. J. Fuzzy Syst. 14(1) (2017) 99-113.
[8] S. Rolewicz, A generalization of the Mazur-Ulam theorem, Studia Math. 31 (1968) 501-505.
[9] B. Schweizer, A. Sklar, Probabilistic metric spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York, 1983.
[10] M. Żołdak, On the Mazur-Ulam theorem in metric groups, Demonstratio Math. 42(1) (2009) 123-130.
[11] A. K. Seda, P. Hitzler, Generalized ultrametrics, domains and an application to computational logic, Irish Math. Soc. Bull. 41 (1998) 31-43.

[^0]: *Corresponding author
 Email addresses: a_pourmoslemy@pnu.ac.ir (Alireza Pourmoslemi), nourouzi@kntu.ac.ir (Kourosh Nourouzi)

