
Int. J. Nonlinear Anal. Appl. 8 (2017) No. 2, 327-333
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2017.1281.1318

Mazur-Ulam theorem in probabilistic normed groups

Alireza Pourmoslemia, Kourosh Nourouzib,∗

aDepartment of Mathematics, Payame Noor University, Tehran, Iran
bFaculty of Mathematics, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran

(Communicated by C. Park)

Abstract

In this paper, we give a probabilistic counterpart of Mazur-Ulam theorem in probabilistic normed
groups. We show, under some conditions, that every surjective isometry between two probabilistic
normed groups is a homomorphism.

Keywords: Probabilistic normed groups; Invariant probabilistic metrics; Mazur-Ulam Theorem.
2010 MSC: Primary 54E70; Secondary 20F38.

1. Introduction and preliminaries

Mazur and Ulam showed that every bijective isometry between real normed spaces is affine [5]. Since
then it has attracted the attention of some researchers in order to generalize this result (see e.g. [8]).
In particular, the Mazur-Ulam theorem has been investigated in normed and metric groups [3, 10]
and in probabilistic and random normed spaces [1, 6].

In this paper we give a probabilistic counterpart of the Mazu-Ulam theorem in probabilistic
normed groups introduced by the authors in [7]. We begin with some basic notions which will be
needed in this paper.

A distribution function is a function F from the extended real line [−∞,+∞] to the interval
[0, 1] such that F is nondecreasing and left-continuous and satisfies F (−∞) = 0, F (+∞) = 1A.
We denote the set of all distribution functions by ∆. A subset of ∆ consisting of all distribution
functions F with F (0) = 0 will be denoted by ∆+. The subset D+ of ∆+ is defined as follows:

D+ = {F ∈ ∆+ : l−F (+∞) = 1},
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where l−f(x) denotes the left limit of the function f at the point x. For F,G ∈ ∆+ we mean F ≤ G
by F (x) ≤ G(x), for all x ∈ R. The distribution function Ha is given by

Ha(x) =

{
0, if x ≤ a,
1, if x > a,

for all a, x ∈ R. The maximal element for ∆+ (and also for D+) according to the presented order is
the distribution function H0.

A triangular norm (briefly t-norm) is a binary function T from [0, 1] × [0, 1] to [0, 1] which is
associative, commutative, nondecreasing in each place and T (a, 1) = a, for all a ∈ [0, 1]. A triangle
function is a function τ : ∆+ × ∆+ → ∆+ such that τ is associative, commutative, nondecreasing
for all F,G,H ∈ ∆+ and it has H0 as unit [4]. A sequence {Fn} in ∆+ converges weakly to a
distribution function F , written by Fn

w−→ F , if and only if the sequence {Fn(x)} converges to F (x)
at each continuity point x of F (see Definition 4.2.4. in [9]). A triangle function τ is said to be
continuous if Fn

w−→ F and Gn
w−→ G in ∆+ imply that τ(Fn, Gn) → τ(F,G). For example, if T is a

continuous t-norm, then τT is a continuous triangle function, where τT is defined by

τT (F,G)(x) = sup
s+t=x

T (F (s), G(t)), (1.1)

for all F,G ∈ ∆+ and every x, s, t ∈ R.

Definition 1.1. [7] A triple (G,F, τ) is called a probabilistic normed group, where G is a group
with identity element e, τ is a continuous triangle function and F is a mapping from G into ∆+

satisfying the following conditions:

(PGN1) Fx = H0 if and only if x = e,

(PGN2) Fxy ≥ τ(Fx, Fy), whenever x, y ∈ G,

(PGN3) Fx−1 = Fx, where x−1 is the inverse element of x.
Then F is called a probabilistic group-norm on G. The probabilistic group-norm F is called abelian
if Fxy = Fyx, for each x, y ∈ G.

In a probabilistic normed group (G,F, τ), for each x in G and λ > 0, the strong λ-neighborhood
of x is the set

Nx(λ) = {y ∈ G : Fxy−1(λ) > 1− λ}.

The strong neighborhood system for G is the union
⋃

x∈GNx where Nx = {Nx(λ) : λ > 0}. Note
that the strong neighborhood system for G determines a Hausdorff topology for G (see Theorem
12.1.2 in [9]).

2. Main theorem

Definition 2.1. [2] A group G is called divisible if for every g ∈ G, and every positive integer n
there exists y ∈ G such that yn = g. We say that group G is 2-divisible if for each g ∈ G there exists
y ∈ G such that y2 = g. The algebraic center of points x, y ∈ G is an element z ∈ G, denoted by√
xy, such that z2 = xy.

Definition 2.2. Let (G,F, µ) and (G′, F ′, τ) be two probabilistic normed groups. A mapping T :
(G,F, µ)→ (G′, F ′, τ) is called an isometry if for each x, y ∈ G,

F ′T (x)T (y)−1 = Fxy−1 .
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Let (G,F, τ) be a probabilistic normed group. Consider the following conditions:

(C1) There exists a constant c > 1 such that Fx2(t) ≤ Fx( t
c
), for all x ∈ G and t > 0.

(C2) Fx ∈ D+, for all x ∈ G.

(C3) τ(D+ ×D+) ⊆ D+.

The following example gives a probabilistic normed group satisfying the conditions (C1),(C2) and
(C3).

Example 2.3. Consider the probabilistic normed group (R, F, τT ), where R is the additive group of
real numbers and Fx = H|x|, for all x ∈ R. We have Fxn = Hn|x|, for each n ∈ N and each x ∈ R.
Therefore

Fxn(t) =

{
0, if t ≤ n | x |
1, if t > n | x | =

{
0, if t

n
≤| x |

1, if t
n
| x | = Fx(

t

n
),

for each x, t ∈ R and every n ∈ N. Now for n ≥ 2, choosing 1 < c ≤ n we get

Fxn(t) = Fx(
t

n
) ≤ Fx(

t

c
),

for each x, t ∈ R. Particularly, for n = 2 putting 1 < c ≤ 2, we get

Fx2(t) ≤ Fx(
t

c
),

for all x, t ∈ R. It is obvious that for every x ∈ R, Fx = H|x| ∈ D+. Since τT (H|x|,H|y|) = H|x|+|y|,
for all x, y ∈ R, we get

τT (Fx, Fy) ∈ D+.

Now consider the probabilistic normed group (R+, F, τT ), where R+ is the multiplicative group with
e = 1. Let Fh = H| log(h)|, for all h ∈ R+. We have

Fh2(t) = H| log h2|(t) = H2| log h|(t) = H| log h|(
t

2
),

for each t, h ∈ R+. Putting 1 < c ≤ 2, we have Fh2(t) ≤ Fh( t
c
).

Theorem 2.4. Let (G,F, µ) and (G′, F ′, τ) be two probabilistic normed groups such that both G,G′

are uniquely 2-divisible abelian groups, and conditions (C1), (C2) and (C3) hold for both (G′, F ′, τ)
and (G,F, µ). If T : G→ G′ is a surjective isometry, then

F ′
T (
√
xy)(
√

T (x)T (y))−1
= H0,

for all x, y ∈ G.

Proof . Let x, y ∈ G and set

a =
√
xy, b =

√
T (x)T (y), E = F ′√

T (x)T (y)−1
.

Let {qn} be a sequence of maps form G′ to itself, defined for each z ∈ G′ by

q0(z) = T (a2(T−1(z))−1), q1(z) = b2z−1,
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and for n ∈ N,
qn+1 = qn−1 ◦ qn ◦ q−1n−1.

For n ∈ N define {pn}, a sequence of points in G′, by

p1 = b, pn+1 = qn−1(pn).

By induction, one can see that for all n ∈ N0 we have

qn(T (x)) = T (y), qn(T (y)) = T (x). (2.1)

We show that for each u, v ∈ G′ and all n ∈ N0,

F ′qn(u)qn(v)−1 = F ′uv−1 .

For n = 0,

F ′q0(u)q0(v)−1 = F ′T (a2(T−1(u))−1)(T (a2(T−1(v)−1)))−1

= Fa2(T−1(u))−1(a2(T−1(v))−1)−1 = Fa2a−2(T−1(u))−1T−1(v)

= FT−1(u)−1T−1(v) = F(T−1(u)−1T−1(v))−1 = FT−1(u)T−1(v)−1

= F ′(TT−1(u))(TT−1(v)−1)

= F ′uv−1 .

Suppose that the statement holds for some n ∈ N. Then we get

F ′qn+1(u)qn+1(v)−1 = F ′
qn−1◦qn◦q−1

n−1(u)(qn−1◦qn◦q−1
n−1(v))

−1

= F ′
qn◦q−1

n−1(u)(qn◦q
−1
n−1(v))

−1

= F ′
q−1
n−1(u)(q

−1
n−1(v))

−1

= F ′
qn−1◦q−1

n−1(u)(qn−1◦q−1
n−1(v))

−1

= F ′uv−1 .

So
F ′qn(u)qn(v)−1 = F ′uv−1 ,

for each u, v ∈ G′ and all n ∈ N0. Now by induction we are going to show that

F ′pnT (x)−1 = E, F ′pnT (y)−1 = E, (2.2)

for n ∈ N. For n = 1, we have

F ′p1T (x)−1 = F ′√
T (x)T (y)T (x)−1

= F ′√
T (y)T (x)−1

= E.

(Note that in the above equation we use the fact that if s2 = tr and v2 = mn, then s2v2 = (sv)2 and
sv =

√
trmn =

√
tr
√
mn, for all s, v, r, t,m, n ∈ G′.)

Likewise,
F ′p1T (y)−1 = F ′√

T (y)T (x)−1
= E.
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Hence (2.2) holds for n = 1. Suppose that (2.2) holds for some n ∈ N. Then by using (2.1) and the
induction hypothesis we get

F ′pn+1T (x)−1 = F ′qn−1(pn)(qn−1(T (y)))−1 = F ′pnT (y)−1 = E.

Similarly we have
F ′pn+1T (y)−1 = E.

Now by (2.2) for n ≥ 2,

F ′
pnp

−1
n−1

= F ′
pnT (x)−1T (x)p−1

n−1
≥ τ(F ′pnT (x)−1 , F ′T (x)p−1

n−1
) = τ(E,E). (2.3)

Again, by induction we prove that there is constant c > 1 such that

F ′qn(z)z−1(t) ≤ F ′pnz−1(
t

c
), (2.4)

for each z ∈ G′, t > 0 and n ∈ N. For n=1, we have

F ′q1(z)z−1 = F ′b2z−1z−1 = F ′b2(z−1)2 = F ′(bz−1)2 .

By the condition (C1), there exists constant c > 1 such that

F ′(bz−1)2(t) ≤ F ′bz−1(
t

c
),

for each z ∈ G′ and t > 0. Hence

F ′q1(z)z−1(t) ≤ F ′p1z−1(
t

c
),

for each z ∈ G′ and t > 0. Now suppose that the statement holds for some natural number n. Then
for each z ∈ G′ and t > 0,

F ′qn+1(z)z−1(t) = F ′
qn−1qnq

−1
n−1(z)(qn−1q

−1
n−1(z))

−1(t)

= F ′
qnq

−1
n−1(z)(q

−1
n−1(z))

−1(t)

≤ F ′
pn(q

−1
n−1(z))

−1(
t

c
)

= F ′
q−1
n−1qn−1(pn)(q

−1
n−1(z))

−1(
t

c
)

= F ′qn−1(pn)z−1(
t

c
) = F ′pn+1z−1(

t

c
).

In the inequality (2.4) replace z by pn+1. Then for n ∈ N and t > 0, we obtain

F ′
qn(pn+1)p

−1
n+1

(t) ≤ F ′
pnp

−1
n+1

(
t

c
) = F ′

(pnp
−1
n+1)

−1(
t

c
).

Therefore

F ′
pn+2p

−1
n+1

(t) ≤ F ′
pn+1p

−1
n

(
t

c
),

and for n ≥ 3 and each t > 0, we have

F ′
pnp

−1
n−1

(t) ≤ F ′
pn−1p

−1
n−2

(
t

c
) ≤ · · · ≤ F ′

p2p
−1
1

(
t

cn−2
). (2.5)
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By (2.3) and (2.5) for n ≥ 3 we get

τ(E,E)(t) ≤ F ′
p2p

−1
1

(
t

cn−2
). (2.6)

On the other hand, there is c1 > 1 such that

F ′
p2p

−1
1

(t) = F ′T (a2(T−1(b))−1)(TT−1(b))−1(t)

= Fa2((T−1(b))−1)2(t) = F(a(T−1(b))−1)2(t)

≤ Fa(T−1(b))−1(
t

c1
)

= F ′T (a)(TT−1(b))−1(
t

c1
)

= F ′T (a)b−1(
t

c1
).

for each t > 0. Consequently,

τ(E,E)(c1c
n−2t) ≤ F ′

p2p
−1
1

(c1t) ≤ F ′T (a)b−1(t),

for each t > 0. Since F ′z ∈ D+ for each z ∈ G′, and τ(D+ ×D+) ⊆ D+ we have

lim
n→+∞

τ(E,E)(c1c
n−2t) = 1,

for each t > 0. But H0 is a maximal element of D+, therefore

F ′T (a)b−1 = H0.

�

Theorem 2.5. Suppose that (G,F, µ) and (G′, F ′, τ) are two probabilistic normed groups such that
both G,G′ are uniquely 2-divisible abelian groups. Let the conditions (C1), (C2) and (C3) hold for
both (G′, F ′, τ) and (G,F, µ). If U : (G,F, µ) → (G′, F ′, τ) is a surjective isometry with U(e) = e,
then U is a homomorphism.

Proof . We can apply Theorem 2.4 for surjective isometry U . For each x, y ∈ G we have

F ′
U(
√
xy)(
√

U(x)U(y))−1
= H0.

Thus
U(
√
xy)(

√
U(x)U(y))−1 = e,

for each x, y ∈ G. That is,
U(
√
xy) =

√
U(x)U(y), (2.7)

for each x, y ∈ G. In the equation (2.7), let y = e. Since U(e) = e, we have

U(
√
x) =

√
U(x),

for each x ∈ G. Now for arbitrary x, y ∈ G we get

U(xy) = (U(
√
xy))2 = (

√
U(x)U(y))2 = U(x)U(y),

i.e., U is a homomorphism. �
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