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Abstract

In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone b-
metric spaces over Banach algebras. By omitting the assumption of normality we establish common
fixed point theorems for the generalized quasi-contractions with the spectral radius r(λ) of the quasi-
contractive constant vector λ satisfying r(λ) ∈ [0, 1

s
) in the setting of cone b-metric spaces over

Banach algebras, where the coefficient s satisfies s ≥ 1. As consequences, we obtain common fixed
point theorems for the generalized g-quasi-contractions in the setting of such spaces. The main results
generalize, extend and unify several well-known comparable results in the literature. Moreover, we
apply our main results to some nonlinear equations, which shows that these results are more general
than corresponding ones in the setting of b-metric or metric spaces.
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1. Introduction

Huang and Zhang [1] introduced the concept of cone metric space, proved the properties of sequences
on cone metric spaces and obtained various fixed point theorems for contractive mappings. The
existence of a common fixed point on cone metric space was considered in [2, 3]. Also, Ilić and
Rakočević [8] introduced quasi-contraction on cone metric space when the underlying cone is normal.
Later on, Kadelburg et al. [5] obtained a fixed point result without the normality of the underlying
cone, but only in the case of a quasi-contractive constant λ ∈ [0, 1/2) (see [5, Theorem 2.2]). However,
Gajić and Rakočević [4] proved that result is true for λ ∈ [0, 1) on cone metric spaces which answered
the open question whether the result is true for λ ∈ [0, 1). Recently, Hussain and Shah [9] introduced
cone b-metric spaces, as a generalization of b-metric spaces and cone metric spaces, and established
some important topological properties in such spaces. Following Hussain and Shah, Huang and Xu
[8] obtained some interesting fixed point results for contractive mappings in cone b-metric spaces.
Inspired by [4], Shi and Xu [20] presented a similar common fixed point result in the case of the
contractive constant λ ∈ [0, 1/s) in cone b-metric spaces without the assumption of normality (see
[20]. Similar results can be seen in [21].

Let (X, d) be a complete metric space. Recall that a mapping T : X → X is called a quasi-
contraction if, for some k ∈ [0, 1) and for all x, y ∈ X, one has

d(Tx, Ty) 6 kmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Ćirić [12] introduced and studied quasi-contractions as one of the most general classes of contractive-
type mappings. He proved the well-known theorem that any quasi-contraction T has a unique fixed
point. Recently, scholars obtained various similar results on cone metric spaces. See, for instance,
[4, 5, 6].

Recently, some authors investigated the problem of whether cone metric spaces are equivalent
to metric spaces in terms of the existence of the fixed points of the mappings involved. They used
to establish the equivalence between some fixed point results in metric and in (topological vector
spaces valued) cone metric spaces (see [10, 16, 22]. Very recently, Liu and Xu [13] introduced the
concept of cone metric spaces with Banach algebras, replacing Banach spaces by Banach algebras
as the underlying spaces of cone metric spaces. Although they proved some fixed point theorems of
quasi-contractions, the proof relied strongly on the assumption that the underlying cone is normal.
We may state that it is significant to introduce the concept of cone metric spaces with Banach
algebras (which we call in this paper cone metric spaces over Banach algebras). This is because
there are examples to show that one is unable to conclude that the cone metric space (X, d) with a
Banach algebra A discussed is equivalent to the metric space (X, d∗), where the metric d∗ is defined
by d∗ = ξe ◦ d, here the nonlinear scalarization function ξe : A→ R (e ∈ intP ) is defined by

ξe(y) = inf{r ∈ R : y ∈ re− P}.

See [10, 13, 16, 17] for more details.
In the present paper we introduce the concept of generalized quasi-contractions (g-quasi-contractions)

in cone b-metric spaces over Banach algebras and obtain fixed point theorems (as a result, common
fixed point theorems) for a self-mapping (two weakly compatible self-mappings) satisfying the quasi-
contractive (g-quasi-contractive) condition in the case of the quasi-contractive (g-quasi-contractive)
constant vector with r(λ) ∈ [0, 1/s) in cone b-metric spaces without the assumption of normality,
where the coefficient s satisfies s ≥ 1. As consequences, our main results not only extend the
fixed point theorem of quasi-contractions in cone b-metric spaces to the case in cone b-metric spaces
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over Banach algebras, but also yield new corresponding results concerning the generalized quasi-
contractions in cone metric spaces over Banach algebras. Our main results generalize and extend the
relevant results in the literature (see, for example, [14, 15, 24]).

2. Preliminaries

Let A always be a real Banach algebra. That is, A is a real Banach space in which an operation of
multiplication is defined, subject to the following properties (for all x, y, z ∈ A, α ∈ R):

1. (xy)z = x(yz);

2. x(y + z) = xy + xz and (x+ y)z = xz + yz;

3. α(xy) = (αx)y = x(αy);

4. ‖xy‖ 6 ‖x‖ ‖y‖.

Throughout this paper, we shall assume that a Banach algebra A has a unit (i.e., a multiplicative
identity) e such that ex = xe = x for all x ∈ A. An element x ∈ A is said to be invertible if there
is an inverse element y ∈ A such that xy = yx = e. The inverse of x is denoted by x−1. For more
details, we refer to [11].

The following proposition is well known (see [11]).

Proposition 2.1. Let A be a Banach algebra with a unit e, and x ∈ A. If the spectral radius r(x)
of x is less than 1, i.e.,

r(x) = lim
n→∞

‖xn‖
1
n = inf

n>1
‖xn‖

1
n < 1,

then e− x is invertible. Actually,

(e− x)−1 =
∞∑
i=0

xi.

Now let us recall the concepts of cone and semi-order for a Banach algebra A. A subset P of A
is called a cone if

1. P is non-empty closed and {θ, e} ⊂ P ;

2. αP + βP ⊂ P for all non-negative real numbers α, β;

3. P 2 = PP ⊂ P ;

4. P ∩ (−P ) = {θ},

where θ denotes the null of the Banach algebra A. For a given cone P ⊂ A, we can define a partial
ordering � with respect to P by x � y if and only if y − x ∈ P . x ≺ y will stand for x � y and
x 6= y, while x� y will stand for y − x ∈ intP , where intP denotes the interior of P.

The cone P is called normal if there is a number M > 0 such that for all x, y ∈ A,

θ � x � y ⇒ ‖x‖ 6M‖y‖.

The least positive number satisfying above is called the normal constant of P .
In the following we always assume that P is a cone in Banach algebra A with intP 6= ∅ and � is

the partial ordering with respect to P .
Now, let us recall the basic concepts concerning cone metric spaces over Banach algebras, as is

indicated in the following two definitions.
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Definition 2.2. (See [1], [13] and [14]) Let X be a non-empty set. Suppose the mapping d :
X ×X → A satisfies

1. 0 � d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x) for all x, y ∈ X;

3. d(x, y) � d(x, z) + d(z, x) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space over a Banach algebra
A.

Definition 2.3. (See [1], [13] and [14]) Let (X, d) be a cone metric space over a Banach algebra
A, x ∈ X and {xn} a sequence in X. Then

1. {xn} converges to x whenever for each c ∈ A with θ � c there is a natural number N such
that d(xn, x)� c for all n > N . We denote this by limn→∞ xn = x or xn → x.

2. {xn} is a Cauchy sequence whenever for each c ∈ A with θ � c there is a natural number N
such that d(xn, xm)� c for all n, m > N .

3. (X, d) is a complete cone metric space if every Cauchy sequence is convergent.

Now, we shall appeal to the following lemmas in the sequel.

Lemma 2.4. If E is a real Banach space with a cone P and if a � λa with a ∈ P and 0 ≤ λ < 1,
then a = θ.

Lemma 2.5. [15] If E is a real Banach space with a solid cone P and if θ < u� c for each θ � c,
then u = θ.

Lemma 2.6. [15] If E is a real Banach space with a solid cone P and if ‖xn‖ → 0(n → ∞), then
for any θ � ε, there exists N ∈ N such that for any n > N , we have xn � ε.

Finally, let us recall the concept of generalized quasi-contraction defining on the cone metric
spaces over Banach algebras, which is introduced in [14]. Note that it is called quasi-contraction in
[14].

Definition 2.7. [14] Let (X, d) be a cone metric space over a Banach algebra A. A mapping
T : X → X is called a generalized quasi-contraction if for some k ∈ P with r(k) < 1 and for all
x, y ∈ X, one has

d(Tx, Ty) � ku,

where
u ∈ {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Remark 2.8. If r(k) < 1, then ‖km‖ → 0 (m→∞).

Similarly, the basic concepts concerning cone b-metric spaces over Banach algebras are necessary,
as is indicated in the following definitions.



Fixed point theorems for generalized quasi-contractions . . . 8 (2017) No. 2, 335-353 339

Definition 2.9. [9] Let X be a nonempty set and s ≥ 1 a given real number. A mapping d :
X × X → A is said to be a cone b-metric if and only if for all x, y, z ∈ X the following conditions
are satisfied:

(i) θ ≺ d(x, y) with x 6= y and d(x, y) = θ if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) � s[d(x, z) + d(z, y)].

The pair (X, d) is called a cone b-metric space over a Banach algebra A.

Example 2.10. Denote by Lp(0 < p < 1) the set of all real measurable functions x(t)(t ∈ [0, 1]) such

that
∫ 1

0
|x(t)|pdt <∞. Let X = Lp, E = R2, P = {(x, y) ∈ E | x, y ≥ 0} ⊂ R2 and d : X ×X → E

such that

d(x, y) =

(
α

{∫ 1

0

|x(t)− y(t)|pdt
} 1

p

, β

{∫ 1

0

|x(t)− y(t)|pdt
} 1

p
)
,

where α, β ≥ 0 are constants. Then (X, d) is a cone b-metric space over a Banach algebra with the

coefficient s = 2
1
p
−1 (see the subsequent Example 3.2 for details).

Example 2.11. Let X = R, E = C1
R[0, 1] and P = {f ∈ E : f ≥ 0}. Define d : X × X → E by

d(x, y) = |x − y|1.5ϕ(t) where ϕ : [0, 1] → R is a function such that ϕ(t) = et. It is easy to see that
(X, d) is a cone b-metric space over a Banach algebra with the coefficient s = 20.5, but it is not a
cone metric space.

Definition 2.12. [9] Let (X, d) be a cone b-metric space over a Banach algebra A, x ∈ X and {xn}
be a sequence in X. We say

(i) {xn} converges to x whenever for every c ∈ E with θ � c there is a natural number N such
that d(xn, x)� c for all n ≥ N . We denote this by lim

n→∞
xn = x or xn → x(n→∞).

(ii) {xn} is a Cauchy sequence whenever for every c ∈ E with θ � c there is a natural number
N such that d(xn, xm)� c for all n,m ≥ N .

(iii) (X, d) is a complete cone b-metric space over a Banach algebra A if every Cauchy sequence
is convergent.

Lemma 2.13. [9] Let � be the partial ordering with respect to P , where P is the given cone P
of the Banach algebra A. The following properties are often used while dealing with cone b-metric
spaces where the underlying cone is not necessarily normal.

(1) If u� v and v � w, then u� w.
(2) If θ � u� c for each c ∈ intP , then u = θ.
(3) If a � b+ c for each c ∈ intP , then a � b.
(4) If c ∈ intP and an → θ, then there exists n0 ∈ N such that an � c for all n > n0.
(5) Let (X, d) be a cone b-metric space over a Banach algebra A, x ∈ X and {xn} be a sequence

in X. If d(xn, x) � bn and bn → θ, then xn → x.

Lemma 2.14. The limit of a convergent sequence in cone b-metric space is unique.

Now let us introduce the concepts of generalized quasi-contraction and generalized g-quasi-
contraction defined on a cone b-metric space over a Banach algebra, which is necessary in the
subsequent discussions.
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Definition 2.15. Let (X, d) be a cone b-metric space with the coefficient s ≥ 1 over a Banach
algebra A. A mapping f : X → X is called a generalized quasi-contraction on X, if for some λ ∈ P
with r(λ) ∈ [0, 1/s) and for all x, y ∈ X, one has

d(fx, fy) � λu,

where
u ∈ C(x, y) = {d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)}. (2.1)

Definition 2.16. Let (X, d) be a cone b-metric space with the coefficient s ≥ 1 over a Banach
algebra A. A mapping f : X → X is called a generalized g-quasi-contraction on X where g : X → X,
f(X) ⊂ g(X), if for some λ ∈ P with r(λ) ∈ [0, 1/s) and for all x, y ∈ X, one has

d(fx, fy) � λu,

where
u ∈ C(g;x, y) = {d(gx, gy), d(gx, fx), d(gy, fy), d(gx, fy), d(gy, fx)}. (2.2)

The concept of c-sequence in a solid cone in a Banach space is crucial to the arguments when one
copes with the case without the assumption of normality.

Definition 2.17. (See [18] and [19]) Let P be a solid cone in a Banach space A. A sequence
{un} ⊂ P is a c-sequence if for each c� θ there exists n0 ∈ N such that un � c for n ≥ n0.

It is easy to show the following propositions.

Proposition 2.18. [18] Let P be a solid cone in a Banach space A and let {un} and {vn} be
sequences in P. If {un} and {vn} are c-sequences and α, β > 0, then {αun + βvn} is a c-sequence.

In addition to Proposition 2.18 above, the following propositions are crucial to the proof of our
main result.

Proposition 2.19. [18] Let P be a solid cone in a Banach algebra A and let {un} be a sequence in
P. Then the following conditions are equivalent.

(1) {un} is a c-sequence.
(2) For each c� θ there exists n0 ∈ N such that un ≺ c for n ≥ n0.
(3) For each c� θ there exists n1 ∈ N such that un � c for n ≥ n1.

Proposition 2.20. [23] Let P be a solid cone in a Banach algebra A and let {un} be a sequence in
P. Suppose that k ∈ P is an arbitrarily given vector and {un} is a c-sequence in P. Then {kun} is a
c-sequence.

Proposition 2.21. [23] Let A be a Banach algebra with a unit e, P be a cone in A and � be the
semi-order be yielded by the cone P . Let λ ∈ P . If the spectral radius r(λ) of λ is less than 1, then
the following assertions hold true.

(i) If λ � θ, then we have (e− λ)−1 � θ. In addition, we have θ � (e− λ)−1λn � (e− λ)−1λ for
any integer n ≥ 1.

(ii) For any u � θ, we have u 6� λu. Moreover, we have u 6� λnu for any integer n ≥ 1.
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Proposition 2.22. [23] Let (X, d) be a complete cone metric space with a Banach algebra A and
let P be the underlying solid cone in Banach algebra A. Let {xn} be a sequence in X. If {xn}
converges to x ∈ X, then we have

(i) {d(xn, x)} is a c-sequence;
(ii) for any p ∈ N, {d(xn, xn+p)} is a c-sequence.

3. Main results

In this section, we give some fixed point theorems for a self-mapping satisfying the quasi-contractive
(g-quasi-contractive) condition in the case of the quasi-contractive (g-quasi-contractive) constant
vector with r(λ) ∈ [0, 1/s) in cone b-metric spaces without the assumption of normality, where the
coefficient s satisfies s ≥ 1. Consequently, common fixed point results for two weakly compatible
self-mappings concerning generalized g-quasi-contraction in the setting of such spaces are obtained
as its corollaries.

Theorem 3.1. Let (X, d) be a cone b-metric space over a Banach algebra A with the coefficient s ≥ 1
and the underlying solid cone P . Let the mapping f : X → X be the generalized quasi-contraction
with the quasi-contractive constant vector satisfying r(λ) ∈ [0, 1/s). If f(X) is a complete subspace
of X, then f has a unique common fixed point in X.

We begin the proof of Theorem 3.1 with a useful lemma. For each x0 ∈ X, set x1 = fx0 and
xn+1 = fxn. We will prove that {xn} is a Cauchy sequence. First, we shall show the following
lemmas. Note that for these lemmas, we suppose that all the conditions in Theorem 3.1 are satisfied.

Lemma 3.2. For any N ≥ 2 and 1 ≤ m ≤ N − 1, one has that

d(xN , xm) � sλ(e− sλ)−1d(x1, x0). (3.1)

Proof . We now prove Lemma 3.2 by induction. When N = 2,m = 1, since f : X → X is a
quasi-contraction, there exists

u1 ∈ C(x1, x0) = {d(x1, x0), d(x1, x2), d(x0, x1), d(x1, x1), d(x0, x2)}

such that
d(x2, x1) � λu1.

Hence, u1 = d(x1, x0) or u1 = d(x0, x2). (Note that it is obvious that u1 6= d(x1, x2) since d(x2, x1) �
λd(x1, x2) and u1 6= d(x1, x1) since d(x1, x2) 6= θ.)

When u1 = d(x1, x0), then we have

d(x2, x1) � λd(x0, x1)

� sλd(x0, x1) � sλ(e− sλ)−1d(x1, x0).

When u1 = d(x2, x0), then we have

d(x2, x1) � λd(x2, x0) � sλ[d(x2, x1) + d(x1, x0)].
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So we get
(e− sλ)d(x2, x1) � sλd(x1, x0),

which implies that
d(x2, x1) � sλ(e− sλ)−1d(x1, x0).

Hence, (3.1) holds for N = 2 and m = 1.
Suppose that for some N ≥ 2 and for any 2 ≤ p ≤ N and 1 ≤ n ≤ p, one has

d(xp, xn) � sλ(e− sλ)−1d(x1, x0). (3.2)

That is,
d(xp, x1) � sλ(e− sλ)−1d(x1, x0), (3.3)

d(xp, x2) � sλ(e− sλ)−1d(x1, x0), (3.4)

...

d(xp, xp−1) � sλ(e− sλ)−1d(x1, x0). (3.5)

Then, we need to prove that for N + 1 ≥ 2 and any 1 ≤ n < N + 1, one has

d(xN+1, xn) � sλ(e− sλ)−1d(x1, x0). (3.6)

That is,
d(xN+1, x1) � sλ(e− sλ)−1d(x1, x0), (3.7)

d(xN+1, x2) � sλ(e− sλ)−1d(x1, x0), (3.8)

...

d(xN+1, xN−1) � sλ(e− sλ)−1d(x1, x0), (3.9)

d(xN+1, xN) � sλ(e− sλ)−1d(x1, x0). (3.10)

In fact, since f : X → X is a quasi-contraction, there exists

u1 ∈ C(xN , x0) = {d(xN , x0), d(xN , xN+1), d(x0, x1), d(xN , x1), d(x0, xN+1)}

such that
d(xN+1, x1) � λu1.

If u1 = d(xN , x1), then by (3.3) we have

d(xN+1, x1) � sλ2(e− sλ)−1d(x1, x0) � (sλ)2(e− sλ)−1d(x1, x0) � sλ(e− sλ)−1d(x1, x0).

If u1 = d(x0, x1), then we have

d(xN+1, x1) � λd(x1, x0) � sλd(x1, x0) � sλ(e− sλ)−1d(x1, x0).

If u1 = d(xN , x0), then by (3.3) we have

d(xN+1, x1) � λd(xN , x0) � sλ(d(xN , x1) + d(x1, x0))

� sλ(sλ(e− sλ)−1d(x1, x0) + d(x1, x0))

= sλ((sλ)−1 + e)d(x1, x0)

= sλ(e− sλ)−1d(x1, x0).
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If u1 = d(x0, xN+1), then we have

d(xN+1, x1) � λd(x0, xN+1) � sλ(d(x0, x1) + d(x1, xN+1)).

Hence, we see
(e− sλ)d(xN+1, x1) � sλd(x0, x1),

which implies that
d(xN+1, x1) � (e− sλ)−1sλd(x0, x1).

Without loss of generality, suppose that u1 = d(xN , xN+1). Since f : X → X is a quasi-
contraction, there exists u2 ∈ C(xN−1, xN) such that

u1 = d(xN , xN+1) � λu2,

where

C(xN−1, xN) = {d(xN−1, xN), d(xN−1, xN), d(xN , xN+1), d(xN−1, xN+1), d(xN , xN)}.

So, we get
d(xN+1, x1) � λu1 � λ2u2.

Similarly, it is easy to see that u2 6= d(xN , xN) since u2 6= θ and u2 6= d(xN , xN+1) since
d(xN , xN+1) � λ2d(xN , xN+1).

If u2 = d(xN−1, xN), then by the induction assumption (3.2) we have

d(xN+1, x1) � λ2u2 � sλ3(e− sλ)−1d(x1, x0)

� (sλ)3(e− sλ)−1d(x1, x0)

� sλ(e− sλ)−1d(x1, x0).

Without loss of generality, suppose that u2 = d(xN−1, xN+1). There exists u3 ∈ C(xN−2, xN) such
that

u2 = d(xN−1, xN+1) � λu3,

where

C(xN−2, xN) = {d(xN−2, xN), d(xN−2, xN−1), d(xN , xN+1), d(xN−2, xN+1), d(xN , xN−1)}.

In general, suppose that ui−1 = d(xN−i+2, xN+1). Since f : X → X is a quasi-contraction, by the
similar arguments above, there exists ui ∈ C(xN−i+1, xN) such that

ui−1 = d(xN−i+2, xN+1) � λui,

for which we obtain

d(xN+1, x1) � λu1 � λ2u2 � · · · � λiui,

where

C(xN−i+1, xN) = {d(xN−i+1, xN), d(xN−i+1, xN−i+2), d(xN , xN+1),

d(xN−i+1, xN+1), d(xN , xN−i+2)}.
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Similarly, it is easy to see that ui 6= d(xN , xN+1). This is because by Proposition 2.21(iii) we have

u1 = d(xN , xN+1) � λi−1d(xN , xN+1).

So we know that if ui = d(xN−i+1, xN) or ui = d(xN−i+1, xN−i+2) or ui = d(xN , xN−i+2) then by the
induction assumption (3.2) we have ui � sλ(e− sλ)−1d(x1, x0). Hence,

d(xN+1, x1) � λiui � sλi+1(e− sλ)−1d(x1, x0)

� (sλ)i+1(e− sλ)−1d(x1, x0)

� sλ(e− sλ)−1d(x1, x0),

which means that (3.7) holds true. Without loss of generality, suppose that ui = d(xN−i+1, xN+1).
Then by the similar arguments as above we have ui � λui+1, where ui+1 ∈ C(xN−i, xN). Hence,
there is a sequence {un} such that

d(xN+1, x1) � λu1 � λ2u2 � · · · � λN−1uN−1 � λNuN ,

where
uN−1 = d(x2, xN+1) � λuN

and
uN ∈ C(g;x1, xN) = {d(x1, xN), d(x1, x2), d(xN , xN+1), d(xN , x2), d(x1, xN+1)}.

Obviously, uN 6= d(x1, xN+1) and uN 6= d(xN , xN+1). On the contrary, if uN = d(x1, xN+1), then
uN � λNuN , a contradiction. If uN = d(xN , xN+1) = u1, then we have

u1 = d(xN , xN+1) � λ2u2 � · · · � λN−1uN−1 � λN−1u1,

a contradiction. Hence, it follows that uN = d(x1, xN), uN = d(x1, x2) or uN = d(xN , x2). By the
induction assumption (3.2), in any case, we have

uN � sλ(e− sλ)−1d(x1, x0). (3.11)

Therefore, we get

d(xN+1, x1) � λu1 � λ2u2 � · · · � λNuN

� λN(e− sλ)−1sλd(x1, x0)

� (sλ)N+1(e− sλ)−1d(x1, x0)

� sλ(e− sλ)−1d(x1, x0).

(3.12)

That is to say, (3.7) is true. By (3.12), we have

u1 � λN−1sλ(e− sλ)−1d(x1, x0).

Thus,

d(xN , xN+1) = u1 � λN−1sλ(e− sλ)−1d(x1, x0)

� (sλ)N(e− sλ)−1d(x1, x0)

� sλ(e− sλ)−1d(x1, x0),
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which implies that (3.10) is true. Similarly, since

u2 = d(xN−1, xN+1), . . . , ui = d(xN−i+1, xN+1), . . . ,

by (3.11) and (3.12) we get

ui � λN−iuN � sλn−i+1(e− sλ)−1d(x1, x0). (3.13)

Hence, it follows from (3.13) that (3.8)-(3.9) are all true. That is, (3.6) is true. Therefore, we
conclude that Lemma 3.2 holds true. �

By Lemma 3.2, we immediately obtain the following result.

Lemma 3.3. We have that for all i, j ∈ N+

d(xi, xj) � sλ(e− sλ)−1d(x0, x1). (3.14)

Now, we begin to prove Theorem 3.1. First, we need to show that {xn} is a Cauchy sequence.
For all n > m, there exists

ν1 ∈ C(xn−1, xm−1) = {d(xn−1, xm−1), d(xn−1, xn),

d(xm−1, xm), d(xn−1, xm), d(xm−1, xn)}

such that
d(fxn−1, fxm−1) � λν1.

Using the quasi-contractive condition repeatedly, we easily show by induction that there must
exist

νk ∈ {d(xi, xj) : 0 ≤ i < j ≤ n} (k = 2, 3, . . . ,m)

such that
νk � λνk+1 (k = 1, 2, . . . ,m− 1). (3.15)

For convenience, we write νm = d(xi, xj) where 0 ≤ i < j ≤ n.
Using the triangular inequality, we have

d(xi, xj) � sd(xi, x0) + sd(x0, xj)(0 ≤ i, j ≤ n),

and by Lemma 3.3 we obtain

d(xn, xm) = d(fxn−1, fxm−1) � λν1 � λ2ν2 � · · · � λmνm

� λmd(xi, xj)

= sλm+1(e− sλ)−1d(x1, x0).

Since r(λ) < 1/s ≤ 1, by Remark 2.8 we have that sλm+1(e − sλ)−1d(x1, x0) → θ as m → ∞,
so by Proposition 2.20, it is easy to see that for any c ∈ intP , there exists n0 ∈ N such that for all
n > m > n0,

d(xn, xm) � sλm+1(e− sλ)−1d(x1, x0)� c.

So {xn} is a Cauchy sequence in X. If f(X) is complete, there exist q ∈ f(X) ⊂ X such that
xn → q as n→∞.
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Now, from (2.1) we get
d(fxn, fq) � λν

where
ν ∈ C(xn, q) = {d(xn, q), d(xn, fxn), d(q, fq), d(xn, fq), d(fxn, q)}.

Clearly at least one of the following five cases holds for infinitely many n.
(1) d(fxn, fq) � λd(xn, q) � sλd(xn+1, q) + sλd(xn+1, xn);
(2) d(fxn, fq) � λd(xn, fxn) = λd(xn, xn+1);
(3) d(fxn, fq) � λd(q, fq) � sλd(xn+1, q) + sλd(xn+1, fq),

that is, d(fxn, fq) � sλ(e− sλ)−1d(xn+1, q);
(4) d(fxn, fq) � λd(xn, fq) � sλd(xn+1, fq) + sλd(xn+1, xn),

that is, d(fxn, fq) � sλ(e− sλ)−1d(xn+1, xn);
(5) d(fxn, fq) � λd(fxn, fq) = λd(xn+1, q).
As sλ � sλ(e− sλ)−1 (since θ � sλ and r(sλ) < 1 ), we obtain that

d(xn+1, fq) � sλ(e− sλ)−1[d(xn+1, xn) + d(xn+1, q)].

Since xn → q as n → ∞, we get that for any c ∈ intP , there exists n1 ∈ N such that for all
n > n1, one has

d(xn+1, fq)� c.

By Lemmas 2.13 and 2.14, we have xn → fq as n→∞ and q = fq.
Now if u is another point such that u = fu, hence

d(u, q) = d(fu, fq) � λν,

where r(λ) ∈ [0, 1/s) and

ν ∈ C(u, q) = {d(u, q), d(u, fu), d(q, fq), d(u, fq), d(fu, q)}.

It is obvious that d(u, q) = θ, i.e., u = q. Therefore, q is the unique fixed point of f in X.
Next, we obtain common fixed point results for two weakly compatible self-mappings concerning

g-quasi-contraction as corollaries of Theorem 3.1.

Corollary 3.4. Let (X, d) be a cone b-metric space over a Banach algebra A with the coefficient
s ≥ 1 and the underlying solid cone P . Let the mapping f : X → X be the g-quasi-contraction with
the g-quasi-contractive constant vector satisfying r(λ) ∈ [0, 1/s). If the range of g contains the range
of f and g(X) or f(X) is a complete subspace of X, then f and g have a unique point of coincidence
in X. Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point
in X.

Proof . Since the mapping f : X → X be the g-quasi-contraction with the g-quasi-contractive
constant vector satisfying r(λ) ∈ [0, 1/s), by Definition 2.7, for λ ∈ P with r(λ) ∈ [0, 1/s) and for all
x, y ∈ X, we have

d(fx, fy) � λu,

where
u ∈ C(g;x, y) = {d(gx, gy), d(gx, fx), d(gy, fy), d(gx, fy), d(gy, fx)}.
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Let Y = gX. Define H : Y → Y, by H(gw) = fw. Replacing fx and gx by H(gx) and H(gy),
respectively, in the above inequality we get, d(H(gx), H(gy)) � λu where,

u ∈ d(gx, gy), d(gx,H(gx)), d(gy,H(gy)), d(gx,H(gy)), d(gy,H(gx)).

Let x1 = gx, y1 = gy. By the above arguments, we have

d(Hx1, Hy1) � λu,

where
u ∈ C(x1, y1) = {d(x1, y1), d(x1, Hx1), d(y1, Hy1), d(x1, Hy1), d(y1, Hx1)},

which implies that H : Y → Y is a generalized quasi-contraction on Y . By Theorem 3.1, there exists
a unique x∗ ∈ Y such that Hx∗ = x∗. So, there is u∗ ∈ X such that x∗ = gu∗. Hence, we get
Hgu∗ = gu∗. That is, fu∗ = gu∗, i.e., f and g have the common fixed point u∗ ∈ X.

As for the uniqueness of the common fixed point and the other fixed point results concerning
point of coincidence, we omit their proofs since the the methods for proving the results are standard.
�

Corollary 3.5. Let (X, d) be a complete cone b-metric space with a Banach algebra A and let P be
the underlying cone with k ∈ P . If the mapping T : X → X is a generalized quasi-contraction, then
T has a unique fixed point in X. And for any x ∈ X, the iterative sequence {T nx} converges to the
fixed point.

Proof . Set g = IX , the identity mapping from X to X. It is obvious to see that Corollary 3.4 yields
Corollary 3.5. �

Remark 3.6. Corollary 3.4 extends [20, Theorem 2.6] to the case of cone b-metric spaces over
Banach algebras.

Remark 3.7. Corollary 3.5 does not need to require the assumption of normality of the cone P . So
Corollary 3.5 improves and generalizes Theorem 9 in [14].

Remark 3.8. From the proof of Lemma 3.2, we note that the technique of induction appearing in
Corollary 3.4 is somewhat different from that in [14, Theorem 9], and also different from that in [20,
Theorem 2.6], which is more interesting and easy to understood.

Corollary 3.9. Taking E = R, P = [0,+∞), λ ∈ [0, 1/s) in Theorem 3.1, we get Das-Naik’s result
from [9], that is, if g = IX we get Ćirić’s result from [12], both in the setting of b-metric spaces.

The following corollary is the Jungck’s result in the setting of cone b-metric spaces.

Corollary 3.10. Let (X, d) be a cone b-metric space over a Banach algebra A with the coefficient
s ≥ 1 and the underlying solid cone P . Let the mappings f, g : X → X satisfy the condition that
for λ ∈ P with r(λ) ∈ [0, 1/s) and for every x, y ∈ X holds d(fx, fy) � λd(gx, gy). If g(X) ⊂ f(X)
and g(X) or f(X) is a complete subspace of X, then f and g have a unique point of coincidence in
X. Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point.

The next result is the Banach contraction principle in the setting of cone b-metric spaces.
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Corollary 3.11. [23] Let (X, d) be a cone b-metric space over a Banach algebraA with the coefficient
s ≥ 1 and the underlying solid cone P . Let the mapping f : X → X satisfy the condition that for
λ ∈ P with r(λ) ∈ [0, 1/s) and for every x, y ∈ X holds d(fx, fy) � λd(x, y) (namely, f is a
generalized quasi-contraction). If f(X) is a complete subspace of X, then f has a unique point in
X.

We present some examples to to support the main results.

Example 3.12. Let A = C1
R [0, 1] and define a norm on A by ‖x‖ = ‖x‖∞+‖x′‖∞ for x ∈ A. Define

multiplication in A just as the pointwise multiplication. Then A is a real Banach algebra with the
unit e = 1 (e(t) = 1 for all t ∈ [0, 1]). The set P = {x ∈ A : x(t) ≥ 0 for all t ∈ [0, 1]} is a cone in
A. Moreover P is not normal.

Let X = {0, 1, 3} . Define d : X × X → A by d (0, 1) (t) = d (1, 0) (t) = et, d (0, 3) (t) =
d (3, 0) (t) = 9et, d (3, 1) (t) = d (1, 3) (t) = 4et and d (x, x) (t) = θ for all t ∈ [0, 1] and x ∈ X.
It is clear that (X, d) is a solid cone b-metric space over Banach algebra A with s = 9

5
without

normality. Further, let f : X → X be a mapping defined with f(0) = f(1) = 1 and f(3) = 0 and
k ∈ P defined by k(t) = 11

38
t + 1

4
. By the careful calculations, one can get that all conditions of

Theorem 3.1 are fulfilled. The point x = 1 is the unique fixed point of f .

We present other examples to show that Corollary 3.11 has meaningful applications in nonlin-
ear applications. Before presenting the next example, we recall a useful known lemma. For the
completeness, we give its proof.

Lemma 3.13. Let p ≥ 1 be a given real number and f(t) be a Lebesgue measurable function defined
on [0, 1]. Then one has ∣∣∣∣ ∫ 1

0

f(t)dt

∣∣∣∣p ≤ ∫ 1

0

∣∣f(t)
∣∣pdt.

Proof . Without loss of generality, suppose p > 1. Let q ≥ 0 be an arbitrary real number satisfying
1
p

+ 1
q

= 1. Then for any Lebesgue measurable function g(t) defined on [0, 1], by Hölder inequality,
we see ∫ 1

0

∣∣f(t)g(t)
∣∣dt ≤ (∫ 1

0

|f(t)|pdt
) 1

p
(∫ 1

0

|g(t)|pdt
) 1

q

.

Now taking g(t) = 1, we get ∫ 1

0

∣∣f(t)
∣∣dt ≤ (∫ 1

0

|f(t)|pdt
) 1

p

.

Then it follows that (∫ 1

0

∣∣f(t)
∣∣dt)p

≤
∫ 1

0

|f(t)|pdt,

which implies that Lemma 3.13 holds. �

Example 3.14. Let X = C1
R [0, 1] be the set of all real continuous differential functions defined on

[0, 1]. Let A = C1
R [0, 1]. Consider the following nonlinear integral equation∫ 1

0

F (t, f(s)) ds = f(t), (3.16)
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where F satisfies:
(a) F : [0, 1]× R→ R is a continuous function,
(b) the partial derivative Fy of F with respect to y exists and |Fy(x, y)| ≤ L for some constant

L ∈ [0, 1
2
).

Theorem 3.15. The equation (3.16) has a unique solution in C1
R [0, 1].

Proof . Let A = C1
R [0, 1] and P = {x ∈ C1

R [0, 1] | x = x(t) ≥ 0,∀t ∈ [0, 1]}. Then P is a non-normal
cone of the real Banach algebra A with the unit element e = 1 (see [19]) and the operations as

(x+ y)(t) = x(t) + y(t),

(cx)(t) = cx(t),

(xy)(t) = x(t)x(t),

for all x = x(t), y = y(t) ∈ A and c ∈ R. Note that the norm on A is defined as

‖f‖ = ‖f‖∞ + ‖f ′‖∞ ,

where f ∈ A, ‖f‖∞ = sup0≤t≤1 |f(t)|. Then (X, d) is a cone b-metric space over a Banach algebra A
with the coefficient s = 2p (p > 1).

In fact, let x, y, z ∈ X, and u = x− z, v = z − y, then x− y = u+ v. By the inequality

(a+ b)p ≤ (2 max{a, b})p ≤ 2p(ap + bp), a, b > 0

we see
|x− y|p = |u+ v|p ≤ (|u|+ |v|)p ≤ 2p(|x− z|p + |z − y|p),

|x− y|pet ≤ 2p(|x− z|pet + |z − y|pet),
thus

d(x, y) � s[d(x, z) + d(z, y)],

where s = 2p > 1, but (X, d) is not a cone metric space. Let T be a self map of X defined by

Tf(t) =

∫ 1

0

F (t, f(s)) ds.

We now prove that T is a generalized contraction with the contractive constant vector Lp satisfying
r(Lp) ≤ ‖Lp‖ = Lp < 1

2p
= 1

s
. In fact, by Lemma 3.3, we have

d(Tf, Tg) = ‖(Tf − Tg)p‖∞ e
t

= et max
0≤x≤1

∣∣∣∣ ∫ 1

0

(
F (x, f(t))− F (x, g(t))

)
dt

∣∣∣∣p
≤ et max

0≤x≤1

(∫ 1

0

∣∣F (x, f(t))− F (x, g(t))
∣∣dt)p

≤ et
(∫ 1

0

L
∣∣f(t)− g(t)

∣∣dt)p

≤ et
∫ 1

0

(
L
∣∣f(t)− g(t)

∣∣)pdt
≤ Lpet max

0≤t≤1

∣∣f(t)− g(t)
∣∣p

= Lpd
(
f, g
)
.
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Then by Corollary 3.11, T has a unique fixed point in X. That is, the equation (3.16) has a unique
solution in C1

R [0, 1]. �

Remark 3.16. Compared with [24, Theorem 3.1], Example 3.14 shows that under the same condi-
tions the unique solution to the integral equation (3.9) is not only continuous but also differential,
while [24, Theorem 3.1] only shows the continuity of the solution. In addition, the technique appear-
ing in Example 3.14 is somewhat different from that in [24, Theorem 3.1], since in Example 3.14, the
proof is made in the setting of complete non-normal cone b-metric space over a Banach algebra but
in [24, Theorem 3.1], the proof is provided in the setting of cone metric space, depending strongly on
the normality of the underlying cone. So our main results generalizes the comparable results in [24].

Example 3.17. Let X = R2, f = f(s, t) : X → R, g = g(s, t) : X → R. Consider the following
group of nonlinear coupled equations

(I)

{
f(x, y) = x,
g(x, y) = y − px,

where p ≥ 0. Suppose that there exists 0 < k < 1 such that∣∣∣∣∂f∂s
∣∣∣∣ ≤ k,

∣∣∣∣∂g∂t
∣∣∣∣ ≤ k

for all (s, t) ∈ X.

Theorem 3.18. The coupled equations in (I) have a unique common solution in X.

Proof . Let A = R2 with the norm defined as ‖(x, y)‖ = |x| + |y| for each (x, y) ∈ A. Then A is a
Banach algebra with the operations as

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),

c(x1, y1) = (cx1, cy1),

(x1, y1)(x2, y2) = (x1x2, x1y2 + x2y1),

for all (x1, y1), (x2, y2) ∈ A and c ∈ R. Moreover, A owns the unit element e = (1, 0).
Let P = {(x, y) ∈ R2 | x, y ≥ 0}. Then P is a cone of A.
Let X = R2 and the metric d : X ×X → A be defined by

d ((x1, y1), (x2, y2)) = (|x1 − x2|, |y1 − y2|) ∈ P.

Then (X, d) is a complete cone b-metric space over a Banach algebra A with the coefficient s = 1.
Now define mapping T : X → X by

T (x, y) = (f(x, y), g(x, y) + px) . (3.17)

From Lagrange Mean Value Theorem, we have

d
(
T (x1, y1), T (x2, y2)

)
= d
(

(f(x1, y1), g(x1, y1) + px1) , (f(x2, y2), g(x2, y2) + px2)
)

=
(∣∣f(x1, y1)− f(x2, y2)

∣∣, ∣∣g(x1, y1)− g(x2, y2) + p(x1 − x2)
∣∣)

� (k|x1 − x2|, k|y1 − y2|+ p|x1 − x2|)
= (k, p)

(∣∣x1 − x2)∣∣, ∣∣y1 − y2∣∣)
= (k, p) d

(
(x1, y1), (x2, y2)

)
,
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and
‖(k, p)n‖

1
n =

∥∥(kn, pnkn−1)∥∥ 1
n = (kn + pnkn−1)

1
n → k < 1 (n→∞),

which implies r((k, p)) < 1
s
. Then by Corollary 3.11, T has a unique fixed point in X. �

The following example is a direct result of Theorem 3.18.

Example 3.19. Consider the following group of nonlinear coupled equations

(II)

{
log(m+ x) = x,
arctan(n+ y) = y − px,

where p ≥ 0,m > 1 and n ≥
√
m− 1. The coupled equations in (II) have a unique common solution.

In fact, set f(t, s) = log(m + s), g(t, s) = arctan(n + y). Then all the conditions of Theorem
3.18 are satisfied. Thus it follows from Theorem 3.18 that the coupled equations (II) have a unique
positive common solution.

Remark 3.20. In Example 3.19, if p > 1, then ‖(k, p)‖ = k+p > 1, so T is not a contraction in the
Euclidean metric on X. Hence, one is unable to directly use Banach contraction principle to show T
has a unique fixed point in X.

Remark 3.21. We must emphasize that one is unable to use the techniques presented in [24] to
show that the fixed point result in Example 3.19 obtained by the fixed point theorem in the setting
of cone b-metric space (X, d) with Banach algebra A can be derived from the existing results in the
context of b-metric space or metric space. In fact, Example 3.19 can also show that one is unable to
conclude that the cone b-metric space (X, d) over a Banach algebra A discussed is equivalent to the
b-metric space (X, d∗), where the metric d∗ is defined by d∗ = ξe ◦ d, here the nonlinear scalarization
function ξe : A→ R (e ∈ intP ) is defined by

ξe(y) = inf{r ∈ R : y ∈ re− P}.

See [10, 16, 22] for more details. In the case of Example 3.19, we have

intP = {(x, y) ∈ R2 |x, y > 0}.

For e = (e1, e2) ∈ intP , and a = (a1, a2) ∈ A,

ξe(a) = ξe
(
(a1, a2)

)
= inf{t ∈ R | (a1, a2) ≤ t(e1, e2)}

= max

{
a1
e1
,
a2
e2

}
,

and for x = (x1, y1), y = (x2, y2) ∈ X,

d∗(x, y) =
(
ξe ◦ d

)
(x, y) = ξe

(
(|x1 − x2|, |y1 − y2|)

)
= max

{
|x1 − x2|

e1
,
|y1 − y2|

e2

}
.

Now let the mapping T : X → X be defined in (3.10), namely,

T (x, y) = (f(x, y), g(x, y) + px) ,
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where f(x, y) = log(m + x), g(x, y) = arctan(n + y) and p > e2
e1

. Considering u = (1, 0), v = (0, 0),
we have

Tu = (log(m+ 1), arctann+ p), T v = (logm, arctann),

and so

d∗(Tu, Tv) = max

{
log(m+ 1)− logm

e1
,
p

e2

}
≥ p

e2
>

1

e1
= d∗(x, y),

which implies that T is not a contraction in metric space (X, d∗).

Remark 3.22. Since p > e2
e1

is arbitrary in Remark 3.20, it is obviously seen that Example 3.19
shows that there exist lots of fixed point theorems of generalized quasi-contractions in the setting
of cone b-metric spaces or cone metric spaces over Banach algebras which cannot be yielded by the
known results in the setting of b-metric space or metric spaces.

In conclusion, based on the arguments above, we hold that the fixed point results presented
in this paper in the setting of cone b-metric spaces over Banach algebras are more general than
corresponding ones in the setting of b-metric or metric spaces.
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metric spaces, Fixed Point Theory Appl. 2011 (2011): 29.

[20] L. Shi and S. Xu, Common fixed point theorems for two weakly compatible self-mappings in cone b-metric spaces,
Fixed Point Theory Appl. 2013 (2013): 120.
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