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Abstract

In the present article, we introduce Chlodowsky variant of (p, q)-Bernstein operators and compute
the moments for these operators which are used in proving our main results. Further, we study some
approximation properties of these new operators, which include the rate of convergence using usual
modulus of continuity and also the rate of convergence when the function f belongs to the class
LipM(α). Moreover, we also discuss convergence and rate of approximation in weighted spaces and
weighted statistical approximation properties of the sequence of positive linear operators defined by
us.
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1. Introduction

In the field of approximation theory, the Bernstein polynomials discovered by S.N. Bernstein [3]
in 1912, possess many remarkable properties, so new generalizations and applications are being
discovered of it. The aim of these generalizations is to provide appropriate and powerful tools
to application areas such as numerical analysis, computer-aided geometric design and solutions of
differential equations etc.
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During the last two decades, the applications of q-calculus emerged as a new area in the field
of approximation theory. The rapid development of q-calculus has led to the discovery of various
generalizations of Bernstein polynomials involving q-integers. The first q-analogue of the well-known
Bernstein polynomials was introduced by Lupaş [16] and another generalization of it was due to
Phillips [24]. Since approximation by q-Bernstein polynomials is better than classical one under
convenient choice of q, many authors introduced q-generalization of various operators and investigated
several approximation properties, for more details we refer the readers to [13, 17, 19].

Recently, Mursaleen et al introduced (p, q)-calculus in approximation theory and constructed the
(p, q)-analogue of Bernstein operators [20] and (p, q)-analogue of Bernstein-Stancu operators [21],
(p, q)-analogue of Bleimann-Butzer-Hahn operators [22], Bernstein-Schurer operarors [23] and investi-
gated their approximation properties. The (p, q)-analog of Szász-Mirakyan operators [1], Kantorovich
type Bernstein-Stancu-Schurer operators [4] and Kantorovich variant of (p, q)-Szász-Mirakjan oper-
ators [18] have recently been studied too.

Motivated by their work, in this article, we introduce Chlodowsky variant of (p, q)-Bernstein op-
erators. We have organised our paper as follows: In Section 2, we define (p, q)-Bernstein-Chlodowsky
operators and estimate the moments for these operators which are used in proving main results.
Section 3 is devoted to study some approximation properties of these new operators, which include
the rate of convergence using usual modulus of continuity and also the rate of convergence when the
function f belongs to the class LipM(α). In section 4, we discuss convergence and rate of approxi-
mation in weighted spaces. Moreover, we study weighted statistical approximation properties of the
operators in the last section.

Let us recall certain definitions and notations of (p, q)-calculus:
The (p, q)-integer was introduced in order to generalize or unify several forms of q-oscillator

algebras well known in the earlier physics literature related to the representation theory of single
parameter quantum algebras [5]. The (p, q)-integer [n]p,q is defined by

[n]p,q :=
pn − qn

p− q
, n = 0, 1, 2, . . . , 0 < q < p ≤ 1.

The (p, q)-factorial [n]p,q! and the (p, q)-binomial coefficients are defined as :

[n]p,q! :=

{
[n]p,q [n− 1]p,q . . . [1]p,q , n ∈ N
1, n = 0

and [
n
k

]
p,q

=
[n]p,q!

[k]p,q! [n− k]p,q!
, 0 ≤ k ≤ n.

Further, the (p, q)-binomial expansions are given as

(ax+ by)np,q =
n∑
k=0

p
(n−k)(n−k−1)

2 q
k(k−1)

2 an−kbkxn−kyk,

and
(x− y)np,q = (x− y)(px− qy)(p2x− q2y) . . . (pn−1x− qn−1y).

Details on (p, q)-calculus can be found in [9, 11, 25, 26]. For p = 1, all the notions of (p, q)-calculus
are reduced to q-calculus [12].
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2. Construction of operators

For a function f defined on the interval [0, bn], the q-Bernstein-Chlodowsky operators Cn,q(f), n ≥ 1
[14] are defined as:

(Cn,qf) (x) =
n∑
k=0

f

(
[k]q
[n]q

bn

)[
n
k

]
q

(
x

bn

)k n−k−1∏
s=0

(
1− qs x

bn

)n−k
, 0 ≤ x ≤ bn,

where (bn) is a positive increasing sequence of real numbers with bn → ∞ as n → ∞. Some
approximation properties of the above said operators including the rate of convergence studied in
[14].

Now, by means of (p, q)-calculus, we introduce (p, q)-analogue of Bernstein-Chlodowsky operators
as follows:

Cn,p,q (f ;x) =
1

pn(n−1)/2

n∑
k=0

[
n
k

]
p,q

pk(k−1)/2
(
x

bn

)k (
1− x

bn

)n−k
p,q

f

(
[k]p,q

pk−n [n]p,q
bn

)
, (2.1)

where (
1− x

bn

)n−k
p,q

=
n−k−1∏
s=0

(
ps − qs x

bn

)
.

For p = 1, the sequence of operators (2.1) turns out to be the classical q-Bernstein-Chlodowsky
operators defined in [14].

Now, we need the following basic lemmas for studying our main results:

Lemma 2.1. (i) Cn,p,q (e0;x) = 1,

(ii) Cn,p,q (e1;x) = x,

(iii) Cn,p,q (e2;x) = pn−1bn
[n]p,q

x+ q[n−1]p,q
[n]p,q

x2,

(iv) Cn,p,q (e3;x) = b2nx
[n]2p,q

p2n−2 + (2p+q)q[n−1]p,qx2bn
[n]2p,q

pn−1 + q3[n−1]p,q [n−2]p,qx3
[n]2p,q

,

(v)

Cn,p,q (e4;x) =
b3nx

[n]3p,q
p3n−3 +

q(3p2 + 3qp+ q3)[n− 1]p,qb
2
nx

2

[n]3p,q
p2n−4

+
q3(3p2 + 2pq + q2)[n− 1]p,q[n− 2]p,qbnx

3

[n]3p,q
pn−3

+
q6[n− 1]p,q[n− 2]p,q[n− 3]p,qx

4

[n]3p,q
,

where ev(t) = tv, v = 0, 1, 2, 3, 4.

Proof . It is obvious that (i)

Cn,p,q (e0;x) =
1

pn(n−1)/2

n∑
k=0

[
n
k

]
p,q

pk(k−1)/2
(
x

bn

)k (
1− x

bn

)n−k−1
p,q

= 1.
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(ii)

Cn,p,q (e1;x)

=
1

pn(n−1)/2

n∑
k=0

[
n
k

]
p,q

pk(k−1)/2
(
x

bn

)k (
1− x

bn

)n−k−1
p,q

[k]p,q
[n]p,q p

k−n bn

=
bn

pn(n−3)/2[n]p,q

n∑
k=1

[
n− 1
k − 1

]
p,q

[n]p,qp
(k+1)(k−2)/2

(
x

bn

)k (
1− x

bn

)n−k−1
p,q

=
bnx

bnp(n−1)(n−2)/2

n−1∑
k=0

[
n− 1
k

]
p,q

pk(k−1)/2
(
x

bn

)k+1(
1− x

bn

)n−k−2
p,q

= x.

(iii)

Cn,p,q (e2;x)

=
1

pn(n−5)/2

n∑
k=0

[
n
k

]
p,q

p(k+1)(k−4)/2
(
x

bn

)k (
1− x

bn

)n−k−1
p,q

[k]2p,q

[n]2p,q
b2n

=
b2n

pn(n−5)/2[n]p,q

n∑
k=0

[
n− 1
k

]
p,q

[k + 1]p,qp
(k+1)(k−4)/2

(
x

bn

)k+1(
1− x

bn

)n−k−2
p,q

From [k + 1]p,q = pk + q[k]p,q, we get

Cn,p,q (e2;x)

=
b2n

pn(n−5)/2[n]p,q

n−1∑
k=0

[
n− 1
k

]
p,q

p(k+1)(k−4)/2
(
px

bn

)k+1(
1− x

bn

)n−k−2
p,q

(pk + q[k]p,q)

=
b2n

pn(n−5)/2[n]p,q

x

bn

n−1∑
k=0

[
n− 1
k

]
p,q

p(k
2−k−4)/2

(
px

bn

)k+1(
1− x

bn

)n−k−2
p,q

+
b2nq[n− 1]p,q

p(n−2)(n−3)/2[n]p,q

x2

b2n

n−2∑
k=0

[
n− 2
k

]
p,q

(
x

bn

)k+2(
1− x

bn

)n−k−3
p,q

=
pn−1xbn

[n]p,q
+
q[n− 1]p,qx

2

[n]p,q
.

(iv)

Cn,p,q (e3;x)

=
1

pn(n−7)/2

n∑
k=0

[
n
k

]
p,q

pk(k−7)/2
(
x

bn

)k (
1− x

bn

)n−k−1
p,q

[k]3p,q

[n]3p,q
b3n

=
b3n

pn(n−7)/2 [n]2p,q

n−1∑
k=0

[
n− 1
k

]
p,q

p(k+1)(k−6)/2[k + 1]2p,q

(
x

bn

)k+1(
1− x

bn

)n−k−2
p,q

.
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By [k + 1]2p,q = p2k + 2qpk[k]p,q + q2[k]2p,q, we have

Cn,p,q (e3;x)

=
b3n

pn(n−7)/2[n]2p,q

n−1∑
k=0

[
n− 1
k

]
p,q

p(k
2−k−6)/2

(
x

bn

)k+1(
1− x

bn

)n−k−2
p,q

+ 2q
b3n

pn(n−7)/2[n]2p,q

n−1∑
k=0

[
n− 1
k

]
p,q

[k]p,qp
(k2−3k−6)/2

(
x

bn

)k+1(
1− x

bn

)n−k−2
p,q

+
q2b3n

pn(n−7)/2[n]2p,q

n−1∑
k=0

[
n− 1
k

]
p,q

[k]2p,qp
(k+1)(k−6)/2

(
x

bn

)k+1(
1− x

bn

)n−k−2
p,q

=
b2nx

[n]2p,q
p2n−2 +

2q[n− 1]p,qx
2bn

[n]2p,q
pn−1 +

pn−2q2[n− 1]p,qbnx
2

[n]2p,q
+
q3[n− 1]p,q[n− 2]p,qx

3

[n]2p,q

=
b2nx

[n]2p,q
p2n−2 +

(2p+ q)q[n− 1]p,qx
2bn

[n]2p,q
pn−2 +

q3[n− 1]p,q[n− 2]p,qx
3

[n]2p,q
.

(v)

Cn,p,q (e4;x)

=
1

pn(n−9)/2

n∑
k=0

[
n
k

]
p,q

(
x

bn

)k (
1− x

bn

)n−k−1
p,q

pk(k−1)/2p−4k
[k]4p,q

[n]4p,q
b4n

=
b4n

pn(n−9)/2[n]3p,q

n−1∑
k=0

[
n− 1
k

]
p,q

p(k+1)(k−8)/2[k + 1]3p,q

(
x

bn

)k+1(
1− x

bn

)n−k−2
p,q

.

Using the fact [k + 1]3p,q = p3k + 3p2kq[k]p,q + 3pkq2[k]2p,q + q3[k]3p,q, we obtain

Cn,p,q (e4;x)

=
b4np

3n−3

p(n−1)(n−2)/2[n]3p,q

n−1∑
k=0

[
n− 1
k

]
p,q

pk(k−1)/2
(
x

bn

)k+1(
1− x

bn

)n−k−2
p,q

+
3qb4n

pn(n−9)/2[n]3p,q

n−1∑
k=0

[
n− 1
k

]
p,q

[k]p,qp
(k2−3k−8)/2

(
x

bn

)k+1(
1− x

bn

)n−k−2
p,q

+
3q2b4n

pn(n−9)/2[n]3p,q

n−1∑
k=0

[
n− 1
k

]
p,q

[k]2p,qp
(k2−5k−8)/2

(
x

bn

)k+1(
1− x

bn

)n−k−2
p,q

+
q3b4n

pn(n−9)/2[n]3p,q

n−1∑
k=0

[
n− 1
k

]
p,q

[k]3p,qp
(k+1)(k−8)/2

(
x

bn

)k+1(
1− x

bn

)n−k−2
p,q

=
b3nx

[n]3p,q
p3n−3 +

q(3p2 + 3qp+ q2)[n− 1]p,qb
2
nx

2

[n]3p,q
p2n−4

+
q3(3p2 + 2pq + q2)[n− 1]p,q[n− 2]p,qbnx

3

[n]3p,q
pn−3 +

q6[n− 1]p,q[n− 2]p,q[n− 3]p,qx
4

[n]3p,q
.

�
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Form Lemma 2.1, we have the following equalities:

Cn,p,q
(
(t− x);x

)
= 0, Cn,p,q

(
(t− x)2;x

)
=
pn−1x(bn − x)

[n]p,q
. (2.2)

Remark 2.2. For q ∈ (0, 1) and p ∈ (q, 1] it is obvious that (i) when p = 1, lim
n→∞

[n]p,q = lim
n→∞

1−qn
1−q =

1
1−q and (ii) when p < 1, lim

n→∞
[n]p,q = lim

n→∞
pn−qn
p−q = 0. This implies that Cn,p,q(e2;x) and Cn,p,q

(
(t −

x)2;x
)

do not converge to x2 and 0, respectively, as n → ∞, as in the case of original (p, q)-
Bernstein-Chlodowsky operators. This situation arises due to two reasons. The first one belongs to
(p, q)-integers and the second one belongs to the sequence (bn). In order to reach to convergence
results of the operators Cn,p,q we take sequences qn ∈ (0, 1) and pn ∈ (qn, 1] such that lim

n→∞
pn = 1

lim
n→∞

qn = 1. So we get lim
n→∞

[n]pn,qn =∞ and lim
n→∞

bn
[n]pn,qn

= 0.

To solve the difficulty about (bn), one can study point-wise convergence, uniform convergence on
any closed finite subinterval of [0,∞) and also on weighted spaces.

Lemma 2.3. Let q := (qn), p := (pn), 0 < qn < pn ≤ 1, be sequences such that pn, qn −→ 1 and
pnn −→ a, qnn −→ b as n −→∞. Then, we have the following limits:

(i) lim
n→∞

[n]qn
bn
Cn,pn,qn((t− x)2;x) = ax,

(ii) lim
n→∞

[n]2qn
b2n
Cn,pn,qn((t− x)4;x) = 3ax2.

Proof . (i) From (2.2), we have

Cn,pn,qn((t− x)2;x) =
−pn−1n x2

[n]qn
+
xpn−1n bn

[n]qn
.

Then, we get

[n]pn,qn
bn

Cn,pn,qn((t− x)2;x) =
−pn−1n x2

bn
+ xpn−1n .

Let us take the limit of both sides of the above equality as n→∞, we have

lim
n→∞

[n]qn
bn

{
Cn,pn,qn((t− x)2, x)

}
= lim

n→∞

{
−pn−1n x2

bn
+ xpn−1n

}
= ax.

(ii) Again from Lemma 2.1 and by the linearity of the operators Cn,pn,qn(f ;x), we get

Cn,pn,qn((t− x)4;x) = A1,nx
4 + A2,nx

3 + A3,nx
2 + A4,nx

where

A1,n

=
pn−3n [n]2pn,qn(−p2n + 2pnqn − q2n) + pn−5n [n]pn,qn(−p3n + 3pnq

2
n + q3n)− p3n−6n (p2n + p3n + 2pnq

2
n + q3n)

[n]3pn,qn
,
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A2,n =
pn−3n [n]2pn,qn(p2n − 2pnqn + q2n)

[n]3pn,qn
bn

+
p2n−5[n]pn,qn(−q3n − 4pnq

2
n − 3p2nqn + 2p3n)− p3n−6n (3p3n + 3pnq

2
n + 5p2nqn + q3n)

[n]3pn,qn
bn,

A3,n =
p2n−4n [n]pn,qn(−p2n + 3pnqn + q2n)− p3n−5n (3p2n + q2n + 3pnqn)

[n]3qn
b2n,

A4,n =
p3n−3b3n

[n]3qn
.

Taking the limit of both sides of A1,n, we get

lim
n→∞

[n]2qn
b2n
{A1,n}

= lim
n→∞

{
−pn−3n [n]pn,qn(pn − qn)2

b2n
+
pn−5n (−p3n + 3pnq

2
n + q3n)

b2n
− p3n−6n (p2n + p3n + 2pnq

2
n + q3n)

[n]qnb
2
n

}
= lim

n→∞

{
−pn−3n (pnn − qnn)(pn − qn)

b2n
+
pn−5(−p3n + 3pnq

2
n + q3n)

b2n
− p3n−6n (p2n + p3n + 2pnq

2
n + q3n)

[n]qnb
2
n

}
= 0. (2.3)

Similarly, we can compute

lim
n→∞

[n]2qn
b2n
{A2,n} = 0, (2.4)

lim
n→∞

[n]2qn
b2n
{A3,n} = 3ax2 (2.5)

and

lim
n→∞

[n]2qn
b2n
{A4,nx} = 0. (2.6)

By combining (2.3)-(2.6), we attain our desired result. �

3. Local approximation properties of Cn,p,q(f ;x)

In this section, we study the Korovkin’s approximation property [15], order of convergence under
usual modulus of continuity and Peetre’s K-functional, and the rate of convergence when the function
f belongs to the class LipM(α), etc.

From Lemma 2.1, we can immediately give the following Bohman-Korovkin-type theorem:

Theorem 3.1. Let (pn), (qn) be sequences of real numbers such that 0 < qn < pn ≤ 1 and A > 0.
Then for each f ∈ C[0,∞), the sequence of operators Cn,pn,qn(f ;x), 0 ≤ x ≤ bn converges to f
uniformly to f(x) on any finite closed subinterval [0, A] provided limn→∞ pn = 1 and limn→∞ qn = 1.

Now we will compute the rate of convergence in terms of modulus of continuity.

Theorem 3.2. Let (pn), (qn) be sequences of real numbers such that 0 < qn < pn ≤ 1 and
limn→∞ pn = 1 and limn→∞ qn = 1. If f ∈ C[0,∞), we have

∣∣Cn,pn,qn(f ;x)− f(x)
∣∣≤ 2ω

(
f,

√
pn−1x(bn − x)

[n]pn,qn

)
. (3.1)
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Proof . Taking into account the sequence of positive linear operators Cn,p,q for p = pn and q = qn,
we have∣∣Cn,pn,qn(f ;x)− f(x)

∣∣
=

∣∣∣∣ 1

pn(n−1)/2

n∑
k=0

[
n
k

]
p,q

pk(k−1)/2
(
x

bn

)k (
1− x

bn

)n−k
p,q

f

(
[k]p,q

pk−n [n]p,q
bn

)
− f(x)

∣∣∣∣
≤ 1

pn(n−1)/2

n∑
k=0

[
n
k

]
p,q

pk(k−1)/2
(
x

bn

)k (
1− x

bn

)n−k
p,q

∣∣∣∣f
(

[k]p,q
pk−n [n]p,q

bn

)
− f(x)

∣∣∣∣
≤ 1

pn(n−1)/2

n∑
k=0

[
n
k

]
p,q

pk(k−1)/2
(
x

bn

)k (
1− x

bn

)n−k
p,q

1 +

∣∣∣ [k]p,q
pk−n[n]p,q

bn − x
∣∣∣

δ

ω(f, δ)

=
ω(f, δ)

pn(n−1)/2

n∑
k=0

[
n
k

]
p,q

pk(k−1)/2
(
x

bn

)k (
1− x

bn

)n−k
p,q

+
ω(f, δ)

δ

1

pn(n−1)/2

n∑
k=0

[
n
k

]
p,q

pk(k−1)/2
(
x

bn

)k (
1− x

bn

)n−k
p,q

∣∣∣∣∣ [k]p,q
pk−n [n]p,q

bn − x

∣∣∣∣∣
= ω(f, δ) +

ω(f, δ)

δ

 1

pn(n−1)/2

n∑
k=0

[
n
k

]
p,q

pk(k−1)/2
(
x

bn

)k (
1− x

bn

)n−k
p,q

(
[k]p,q

pk−n [n]p,q
bn − x

)2


1
2

= ω(f, δ) +
ω(f, δ)

δ

{
pn−1n x(bn − x)

[n]pn,qn

} 1
2

.

By choosing δn = δn(x) = pn−1
n x(bn−x)
[n]pn,qn

, we have

∣∣Cn,pn,qn(f ;x)− f(x)
∣∣≤ 2ω

(
f,

√
pn−1n x(bn − x)

[n]pn,qn

)
.

This completes the proof of the theorem. �

It is easy to see that, the right hand side of of relation (3.1) can diverge. Indeed, for x = bn
2

we

have δ = pn−1
n b2n

[n]pn,qn
. We can not guarantee δ → 0 as n→∞ in this case.

In view of the previous theorem, we can give the following results on the degree of pointwise
convergence and uniform convergence as follows:

Theorem 3.3. Let (pn), (qn) be sequences of real numbers such that 0 < qn < pn ≤ 1 and
limn→∞ pn = 1 and limn→∞ qn = 1. If f ∈ C[0, bn], then

∣∣Cn,pn,qn(f ;x0)− f(x0)
∣∣≤ 2ω

(
f,

√
pn−1n x0bn
[n]pn,qn

)
,

where x0 is any fixed point.

Proof . Note that
pn−1n x(bn − x)

[n]pn,qn
≤ pn−1n x0bn

[n]pn,qn
(3.2)
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for any fixed point x0. In view of the monotonicity properties of the modulus of continuity and
(3.2), the remaining part of the proof of this theorem is analogous to the proof of the Theorem 3.2,
therefore, we skip the details. �

We can also have a theorem similar to the proof of Theorem 3.2 as follows:

Theorem 3.4. Let (pn), (qn) be sequences of real numbers such that 0 < qn < pn ≤ 1 and
limn→∞ pn = 1 and limn→∞ qn = 1. If f ∈ C[0,∞), we have for sufficiently large n

∥∥Cn,pn,qn(f)− f
∥∥≤ 2ω

(
f,

√
pn−1n Abn
[n]pn,qn

)
,

where A > 0 is a constant being appeared in Theorem 3.1.

Definition 3.5. We denote by C2[a, b], the space of functions f such that f, f ′, f ′′ belong to C[a, b].
The norm on the space C2[a, b] can be defined as

‖f‖C2[a,b] =
2∑
j=0

‖f (j)‖C[a,b]. (3.3)

Definition 3.6. For f ∈ C[a, b] and t > 0, the Peetre’s K-functional is defined as

K(f, δ) := inf
g∈C2[a,b]

{
‖f − g‖C[a,b] + t‖g‖C2[a,b]

}
.

Theorem 3.7. If g ∈ C2[0, bn], then

∣∣Cn,pn,qn(g;x)− g(x)
∣∣≤ pn−1x(bn − x)

2[n]p,q
‖g‖C2[0,bn],

where 0 < q < p ≤ 1.

Proof . Using Taylor’s formula with integral remainder term, we can write

g(t) = g(x) + (t− x)
dg

dx
+

∫ t−x

0

(t− x− u)
d2g

dx2
du. (3.4)

Applying the operators Cn,p,q to (3.4), we have

|Cn,p,q(g;x)− g(x)|

=

∣∣∣∣Cn,p,q ((t− x)
dg

dx
+

∫ t−x

0

(t− x− u)
d2g

dx2
du;x

)∣∣∣∣
≤
∥∥∥∥dgdx

∥∥∥∥
C[0,bn]

|Cn,p,q ((t− x);x)|+
∥∥∥∥d2gdx2

∥∥∥∥
C[0,bn]

∣∣∣∣Cn,p,q (∫ t−x

0

(t− x− u)
d2g

dx2
du;x

)∣∣∣∣ .
Since

∫ t−x
0

(t− x− u)du = 1
2
(t− x)2, we obtain from (2.2)

|Cn,p,q(g;x)− g(x)| ≤ pn−1x(bn − x)

2[n]p,q

∥∥∥∥d2gdx2
∥∥∥∥
C[0,bn]

.
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By the relation (3.3), finally we have∣∣Cn,p,q(g;x)− g(x)
∣∣ ≤ pn−1x(bn − x)

2[n]p,q
‖g‖C2[0,bn].

This ends the proof of the theorem. �

Now, we can prove the following theorem:

Theorem 3.8. Let (pn), (qn) be sequences of real numbers such that 0 < qn < pn ≤ 1 and
limn→∞ pn = 1 and limn→∞ qn = 1. If f ∈ C[0,∞) and A > 0 a constant, then

‖Cn,pn,qn(f ;x)− f(x)‖C[0,bn]
≤ 2K

(
f,
pn−1n Abn
2[n]pn,qn

)
.

Proof . By the linearity property of Cn,pn,qn , we have∣∣Cn,pn,qn(f ;x)− f(x)
∣∣

≤ |Cn,pn,qn(f ;x)− Cn,pn,qn(g;x)|+ |Cn,pn,qn(g;x)− g(x)|+ |g(x)− f(x)|
≤ ‖f − g‖C[0,bn]

|Cn,pn,qn(1;x)|+ ‖f − g‖C[0,bn]
+ |Cn,pn,qn(g;x)− g(x)| .

From Theorem 3.7, we have∣∣Cn,pn,qn(f ;x)− f(x)
∣∣ ≤ 2 ‖f − g‖C[0,bn]

+
pn−1n x(bn − x)

2[n]pn,qn
‖g‖C2[0,bn],

and hence

‖Cn,pn,qn(f)− f‖C[0,bn]
≤ 2 ‖f − g‖C[0,bn]

+
pn−1n Abn
2[n]pn,qn

‖g‖C2[0,bn]. (3.5)

Taking the infimum on the right hand side of (3.5) over all g ∈ C2[0, bn], then

‖Cn,pn,qn(f ;x)− f(x)‖C[0,bn]
≤ 2K

(
f,
pn−1n Abn
2[n]pn,qn

)
.

This completes the proof. �

Now we give the rate of convergence of the operators Cn,p,q in terms of the elements of the usual
Lipschitz class LipM(α).

Theorem 3.9. Let (pn), (qn) be sequences of real numbers such that 0 < qn < pn ≤ 1 and
limn→∞ pn = 1 and limn→∞ qn = 1. If f ∈ LipM [0, bn] and x ∈ [0, A], A > 0 a constant, then

‖Cn,pn,qn(f ;x)− f(x)‖C[0,bn]
≤M

{
pn−1n Abn
[n]pn,qn

}α
2

.

Proof .∣∣Cn,pn,qn(f ;x)− f(x)
∣∣

≤ 1

p
n(n−1)/2
n

n∑
k=0

[
n
k

]
pn,qn

pk(k−1)/2n

(
x

bn

)k (
1− x

bn

)n−k
pn,qn

∣∣∣∣f
(

[k]pn,qn
pk−nn [n]pn,qn

bn

)
− f(x)

∣∣∣∣
≤ M

p
n(n−1)/2
n

n∑
k=0

[
n
k

]
pn,qn

pk(k−1)/2n

(
x

bn

)k (
1− x

bn

)n−k
pn,qn

∣∣∣∣∣ [k]pn,qn
pk−nn [n]pn,qn

bn − x

∣∣∣∣∣
α

.
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Now applying the Hölder’s inequality for the sum p1 = 2
α

and p1 = 2
2−α , we have∣∣Cn,pn,qn(f ;x)− f(x)

∣∣
≤ M

p
n(n−1)/2
n

n∑
k=0


[
n
k

]
pn,qn

pk(k−1)/2n

(
x

bn

)k (
1− x

bn

)n−k
pn,qn

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)2


α
2

×

{[
n
k

]
pn,qn

pk(k−1)/2n

(
x

bn

)k (
1− x

bn

)n−k
pn,qn

} 2−α
2

.

Form (2.2), we have

∣∣Cn,pn,qn(f ;x)− f(x)
∣∣ ≤M

{
pn−1n x(bn − x)

[n]pn,qn

}α
2

.

This implies that for x ∈ [0, A],

∥∥Cn,pn,qn(f)− f
∥∥
C[0,bn]

≤M

{
pn−1n Abn
[n]pn,qn

}α
2

,

which tends to zero as n→∞. This completes the proof of the theorem. �

Theorem 3.10. Let (pn), (qn) be sequences of real numbers such that 0 < qn < pn ≤ 1 and
limn→∞ pn = 1 and limn→∞ qn = 1. If f(x) has a continuous derivative f ′(x) and ω1(δ) is the
modulus of continuity of f ′(x) in [0, A]. Then

|Cn,pn,qn(f ;x)− f(x)| ≤ N

√
pn−1n bn
[n]pn,qn

ω1

(√
pn−1n bn
[n]pn,qn

)
,

where N is the constant independent of n.

Proof . Using the mean value theorem, we can write

f

(
[k]pn,qn

pk−nn [n]pn,qn
bn

)
− f(x) =

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)
f ′(ξ)

=

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)
f ′(x) +

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)
(f ′(ξ)− f ′(x)),

where ξ is some point between x and
[k]pn,qn

pk−nn [n]pn,qn
bn. From this equality we have

Cn,pn,qn(f ;x)− f(x)

=
1

p
n(n−1)/2
n

{
f ′(x)

n∑
k=0

[
n
k

]
pn,qn

pk(k−1)/2n

(
x

bn

)k (
1− x

bn

)n−k
pn,qn

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)

+
n∑
k=0

[
n
k

]
pn,qn

pk(k−1)/2n

(
x

bn

)k (
1− x

bn

)n−k
pn,qn

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)
(f ′(ξ)− f ′(x))

}
.



192 Ansari, Karaisa

Since

|ξ − x| ≤

∣∣∣∣∣ [k]pn,qn
pk−nn [n]pn,qn

bn − x

∣∣∣∣∣ ,
we obtain the following inequality:

Cn,pn,qn(f ;x)− f(x)

=
ω1(δ)

p
n(n−1)/2
n

n∑
k=0

[
n
k

]
pn,qn

pk(k−1)/2n

(
x

bn

)k (
1− x

bn

)n−k
pn,qn

∣∣∣∣∣ [k]pn,qn
pk−nn [n]pn,qn

bn − x

∣∣∣∣∣
+

ω1(δ)

δ.p
n(n−1)/2
n

n∑
k=0

[
n
k

]
pn,qn

pk(k−1)/2n

(
x

bn

)k (
1− x

bn

)n−k
pn,qn

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)2

.

Applying the Cauchy-Schwartz inequality for the first term in the above expression, we get

n∑
k=0

[
n
k

]
pn,qn

pk(k−1)/2n

(
x

bn

)k (
1− x

bn

)n−k
pn,qn

∣∣∣∣∣ [k]pn,qn
pk−nn [n]pn,qn

bn − x

∣∣∣∣∣
≤

 n∑
k=0

[
n
k

]
pn,qn

pk(k−1)/2n

(
x

bn

)k (
1− x

bn

)n−k
pn,qn

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)2
 1

2

≤
√
pn−1n x(bn − x)√

[n]pn,qn
≤
√
pn−1n Abn√
[n]pn,qn

.

Since x ∈ [0, A], we have

pn−1n x(bn − x)

[n]pn,qn
≤ pn−1n bnA

[n]pn,qn
,

and hence we have for the second term

ω1(δ)

δ.p
n(n−1)/2
n

n∑
k=0

[
n
k

]
pn,qn

pk(k−1)/2n

(
x

bn

)k (
1− x

bn

)n−k
pn,qn

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)2

≤ ω1(δ)

δ

pn−1n bnA

[n]pn,qn
.

Consequently

|Cn,pn,qn(f ;x)− f(x)| ≤ ω1(δ)

{√
pn−1n Abn√
[n]pn,qn

+
1

δ

pn−1n Abn
[n]pn,qn

}
.

Choosing δ = δn =
√

pn−1
n bn

[n]pn,qn
, we get the following inequality:

|Cn,pn,qn(f ;x)− f(x)| ≤ ω1

(√
pn−1n bn
[n]pn,qn

){
√
A

√
pn−1n bn
[n]pn,qn

+ A

√
pn−1n bn
[n]pn,qn

}
.

Following this, we get our desired result. �
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4. Approximation properties in weighted spaces

Now we give approximation properties of the operators Cn,p,q of the weighted spaces of continuous
functions with exponential growth on R+

0 = [0,∞) with the help of the weighted Korovkin type
theorem proved by Gadjiev in [7, 8]. For this purpose, we consider the following weighted spaces of
functions which are defined on the R+

0 = [0,∞).
Let ρ(x) be the weighted function and Mf be a positive constant. Then we define

Bρ(R+
0 ) = {f ∈ E(R+

0 ) : |f(x)| ≤Mfρ(x)},
Cρ(R+

0 ) = {f ∈ Bρ(R+
0 ) : f is continuous},

Ck
ρ (R+

0 ) =

{
f ∈ Cρ(R+

0 ) : lim
n→∞

f(x)

ρ(x)
= Kf <∞

}
.

It is obvious that Ck
ρ (R+

0 ) ⊂ Cρ(R+
0 ) ⊂ Bρ(R+

0 ). The space Bρ(R+
0 ) is a normed linear space with

the following norm:

‖f‖ρ = sup
x∈R+

0

|f(x)|
ρ(x)

.

The following results on the sequence of positive linear operators in these spaces are given in
[7, 8].

Lemma 4.1. ([7, 8]) The sequence of positive linear operators (Ln)n≥1 which act from Cρ(R+
0 ) to

Bρ(R+
0 ) if and only if there exists a positive constant k such that

Ln(ρ;x) ≤ kρ(x), i.e.

‖Ln(ρ;x)‖ρ ≤ k.

Theorem 4.2. ([7, 8]) Let (Ln)n≥1 be the sequence of positive linear operators which act from
Cρ(R+

0 ) to Bρ(R+
0 ) such that

lim
n→∞

‖Ln(ti;x)− xi‖ρ = 0, i ∈ {0, 1, 2}.

Then for any function f ∈ Ck
ρ (R+

0 ),

lim
n→∞

‖Lnf − f‖ρ = 0.

Lemma 4.3. Let (pn) and (qn) be the sequences such that 0 < qn < pn ≤ 1 and ρ(x) = 1 + x2 a
weight function. If f ∈ Cρ(R+

0 ), then

‖Cn,pn,qn(ρ;x)‖ρ ≤ 1 +M

provided limn→∞ pn = 1, limn→∞ qn = 1.

Proof . Using Lemma 2.1 (i) and (iii), one has

Cn,pn,qn(ρ;x) = 1 +
pn−1n bn
[n]pn,qn

x+
qn[n− 1]pn,qn

[n]pn,qn
x2‖Cn,pn,qn(ρ;x)‖ρ

= sup
x≥0

{
1

1 + x2

(
1 +

pn−1n bn
[n]pn,qn

x+
qn[n− 1]pn,qn

[n]pn,qn
x2
)}

≤ 1 +
pn−1n bn
[n]pn,qn

+
qn[n− 1]pn,qn

[n]pn,qn
.
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Since limn→∞
bn

[n]pn,qn
= 0, there exists a positive M such that

‖Cn,pn,qn(ρ;x)‖ρ ≤ 1 +M.

This completes the proof. �

By using Lemma 4.3, we can easily see that the operators Cn,pn,qn act from Cρ(R+
0 ) to Bρ(R+

0 ).

Theorem 4.4. Let (pn), (qn) be the sequences such that 0 < qn < pn ≤ 1 and pn → 1, qn → 1 as
n→∞. Let ρ(x) = 1 + x2, then for each f ∈ Ck

ρ (R+
0 )

lim
n→∞

‖Cn,pn,qn(f ;x)− f(x)‖ρ = 0.

Proof . It is enough to prove that the conditions of the weighted Korovkin type theorem given by
Theorem 4.2 are satisfied. From Lemma 2.1 (i)-(ii), it is immediate that

lim
n→∞

‖Cn,pn,qn(e0;x)− e0(x)‖ρ = 0, (4.1)

lim
n→∞

‖Cn,pn,qn(e1;x)− e1(x)‖ρ = 0. (4.2)

By means of Lemma 2.1 (iii), we get

‖Cn,pn,qn(e2;x)− e2(x)‖

= sup
x∈R+

0

∣∣∣∣ pn−1n bn
[n]pn,qn

x

1 + x2
+

(
qn[n− 1]pn,qn

[n]pn,qn
− 1

)
x2

1 + x2

∣∣∣∣ ≤ pn−1n bn
[n]pn,qn

− pn−1n

[n]pn,qn
.

Using the conditions limn→∞
bn

[n]pn,qn
= 0, it follows that

lim
n→∞

‖Cn,pn,qn(e2;x)− e2(x)‖ρ = 0. (4.3)

From (4.1), (4.2) and (4.3), for i ∈ {0, 1, 2}, we have

lim
n→∞

‖Cn,pn,qn(ti;x)− xi‖ρ = 0.

Applying Theorem 4.2, we obtain the desired result. �

Definition 4.5. ([2, 10]) For f ∈ Ck
ρ [0,∞), δ > 0, we define the weighted modulus of continuity

Ω(f ; δ) as follows:

Ω(f, δ) = sup
t∈[0,∞),|h|≤δ

|f(t+ h)− f(t)|
ρ(t)ρ(h)

.

Ω(f, δ) has the following properties:

(i) monotonically increasing function of δ.

(ii) limδ→0 Ω(f, δ) = 0.

(iii) For any λ > 0, Ω(f, λδ) ≤ 2(1 + λ)(1 + δ2)Ω(f, δ).
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By property (iii), we have

|f(t)− f(x)| ≤ 2
(
1 +
|t− x|
δ

)
(1 + δ2)ρ(x)(1 + (t− x)2)Ω(f, δ). (4.4)

Theorem 4.6. If f ∈ Ck
ρ , then the inequality

sup
x≥0

|Cn,pn,qn(f ;x)− f(x)|
ρ3(x)

≤ KΩ

(
f,

√
pn−1n bn
[n]pn,qn

)

holds, where K is a constant independent of bn, and (pn), (qn) be the sequences such that 0 < qn <
pn ≤ 1 and pn, qn → 1 as n→∞.

Proof . From (4.4), we have

|f(t)− f(x)| ≤ 2
(
1 +
|t− x|
δ

)
(1 + δ2)ρ(x)(1 + (t− x)2)Ω(f, δ).

Letting t = [k]pn,qn
pk−nn [n]pn,qn

bn, we obtain∣∣∣∣∣f
(

[k]pn,qn
pk−nn [n]pn,qn

bn

)
− f(x)

∣∣∣∣∣
≤ 2

(
1 +

∣∣ [k]pn,qn
pk−nn [n]pn,qn

bn − x
∣∣

δn

)
(1 + δ2n)ρ(x)

(
1 +

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)2
)

Ω(f, δn).

Hence,

|Cn,pn,qn(f, x)− f(x)|

≤
n∑
k=0

[
2

(
1 +

∣∣ [k]pn,qn
pk−nn [n]pn,qn

bn − x
∣∣

δn

)
(1 + δ2n)ρ(x)

(
1 +

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)2
)

Ω(f, δn)

]
Pn,k(x)

≤ 4ρ(x)Ω(f, δn)
n∑
k=0

(
1 +

∣∣ [k]pn,qn
pk−nn [n]pn,qn

bn − x
∣∣

δn

)(
1 +

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)2
)
Pn,k(x)

≤ 4ρ(x)Ω(f, δn)

[
1 +

1

δn

n∑
k=0

∣∣∣∣ [k]pn,qn
pk−nn [n]pn,qn

bn − x
∣∣∣∣Pn,k(x) +

n∑
k=0

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)2

Pn,k(x)

+
1

δn

n∑
k=0

∣∣∣∣ [k]pn,qn
pk−nn [n]pn,qn

bn − x
∣∣∣∣( [k]pn,qn
pk−nn [n]pn,qn

bn − x
)2

Pn,k(x)

]
,

where

Pn,k(x) =
1

p
n(n−1)/2
n

[
n
k

]
pn,qn

pk(k−1)/2n

(
x

bn

)k (
1− x

bn

)n−k
pn,qn

.
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Applying Cauchy-Schwartz inequality, we obtain

|Cn,pn,qn(f, x)− f(x)|

≤ 4ρ(x)Ω(f, δn)

[
1 +

1

δn

√√√√ n∑
k=0

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)2

Pn,k(x)

+
n∑
k=0

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)2

Pn,k(x)

+
1

δn

√√√√ n∑
k=0

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)4

Pn,k(x)
n∑
k=0

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)2

Pn,k(x)

]
.

(4.5)

By simple calculation, we get

n∑
k=0

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)2

Pn,k(x) =
pn−1n bn
[n]pn,qn

x− pn−1n

[n]pn,qn
x2 ≤ pn−1n bn

[n]pn,qn
x, (4.6)

n∑
k=0

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)4

Pn,k(x)

=

{
q6n[n− 1]pn,qn [n− 2]pn,qn [n− 3]pn,qn

[n]3pn,qn
− 4q3n[n− 1]pn,qn [n− 2]pn,qn

[n]2pn,qn
+

6qn[n− 1]pn,qn
[n]pn,qn

− 3

}
x4

+

{
pn−3n q3n(3p2n + 2pnqn + q2n)[n− 1]pn,qn [n− 2]pn,qnbn

[n]3pn,qn

− 4pn−1n qn(2pn + qn)[n− 1]pn,qnbn
[n]2pn,qn

+
6pn−1n bn
[n]pn,qn

}
x3

+

{
p2n−4n qn(3p2n + 3pnqn + q3n)[n− 1]pn,qnb

2
n

[n]3pn,qn
− 4p2n−2n b2n

[n]2pn,qn

}
x2 +

p3n−3n b3n
[n]3pn,qn

x.

Using the relation [n]p,q = qk[n− k]p,q +
k−1∑
j=0

pn−j−1qj, the above equality can be written as

n∑
k=0

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)4

Pn,k(x)

=
pn−1n

[n]pn,qn

{(
− 1− 4qn

pn
− q2n
p2n

)
+

pn−1n

[n]pn,qn

(
2− 2qn

pn
+
q2n
p2n
− q3n
p3n

)
+
p2n−3n qn
[n]2pn,qn

(
1 +

qn
pn

+
q2n
p2n

)}
x4

+
pn−1n bn
[n]pn,qn

{(
3 +

2qn
pn

+
q2n
p2n

)
([n]pn,qn − pn−1n )([n]pn,qn − pn−1n − pn−2n qn)

[n]2pn,qn

− 4(2pn + qn)([n]pn,qn − pn−1n )

[n]pn,qn

}
x3

+
pn−1n b2n
[n]pn,qn

{
pn−3n (3p2n + 3pnqn + q3n)([n]pn,qn − pn−1n )

[n]2pn,qn
− 4pn−1n

[n]pn,qn

}
x2 +

p3n−3n b3n
[n]3pn,qn

x
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and so

n∑
k=0

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)4

Pn,k(x)

≤ pn−1n

[n]pn,qn

{
3pn−1n

[n]pn,qn
+

3p2n−3n qn
[n]2pn,qn

}
x4 +

pn−1n bn
[n]pn,qn

{
6

(
1 +

p2n−2n

[n]2pn,qn
+
p2n−3n qn
[n]2pn,qn

)
+

12pn−1n

[n]pn,qn

}
x3

+
pn−1n b2n
[n]pn,qn

{
pn−3n (3p2n + 3pnqn + q3n)

[n]pn,qn

}
x2 +

p3n−3n b3n
[n]3pn,qn

x

≤ 6pn−1n

[n]pn,qn
x4 +

30pn−1n bn
[n]pn,qn

x3 +
7p2n−4n b2n
[n]2pn,qn

x2 +
p3n−3n b3n
[n]3pn,qn

x

≤ pn−1n bn
[n]pn,qn

{
6x4 + 30x3 +

7pn−3n bn
[n]pn,qn

x2 +
p2n−2n b2n
[n]2pn,qn

x

}
.

Thus, if we consider bn
[n]pn,qn

≤ 1 for sufficiently large n, since lim
n→∞

bn
[n]pn,qn

= 0, we get

n∑
k=0

(
[k]pn,qn

pk−nn [n]pn,qn
bn − x

)4

Pn,k(x) ≤ pn−1n bn
[n]pn,qn

(6x4 + 30x3 + x2 + x)

≤ 30pn−1n bn
[n]pn,qn

(x4 + x3 + x2 + x).

Substituting the inequalities (4.6)-(4.7) in (4.5), we have

|Cn,pn,qn(f, x)− f(x)|

≤ 4ρ(x)Ω(f, δn)

[
1 +

1

δn

√
pn−1n bn
[n]pn,qn

x+
pn−1n bn
[n]pn,qn

x+
√

30
1

δn

pn−1n bn
[n]pn,qn

√
x5 + x4 + x3 + x2

]
.

Choosing δn = pn−1
n bn

[n]pn,qn
, for sufficiently large n, we have

sup
x≥0

|Cn,pn,qn(f ;x)− f(x)|
ρ3(x)

≤ KΩ

(
f,

√
pn−1n bn
[n]pn,qn

)
holds, where K is a constant independent of bn. �

5. Weighted statistical approximation properties

In this section, we give Korovkin type weighted statistical approximation properties of the our oper-
ator. At this moment, we give some basic notations and some known results related to the statistical
convergence which will be used in this section.

The density of a subset K of N is given

δ(K) = lim
n

1

n

n∑
k=1

χK(k),

whenever the limit exists, where χK is the characteristic function of K. A sequence x = (xk) is called
statistically convergent to the number ` ∈ R, if for any ε > 0, δ {k ∈ N : |xk − `| ≥ ε} = 0, for each
ε > 0 and is denoted by st− limx = `, (see [6, 27]).
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Theorem 5.1. Let q := (qn), p := (pn), 0 < qn < pn ≤ 1 be sequences such that satisfying following
condition:

st− lim
n

bn
[n]pn,qn

= 0. (5.1)

Then we have the following:
st− lim

n
‖ Cn,pn,qn(f ; .)− f ‖ρ= 0

for each f ∈ Ck
ρ [0,∞).

Proof . It is sufficient to prove that

st− lim
n
‖ Cn,pn,qn (ev; .)− ev ‖ρ= 0

where ev(t) = tv, v = 0, 1, 2.
From Lemma 2.1 (i)-(ii), it is easy to obtain

st− lim
n
‖ Cn,pn,qn (e0;x)− e0 ‖ρ= 0,

and
st− lim

n
‖ Cn,pn,qn (e1;x)− e1 ‖ρ= 0.

By Lemma 2.1 (iii), one can see that

‖ Cn,pn,qn (e2;x)− e2 ‖ρ≤
pn−1n

[n]pn,qn
‖ e2 ‖ρ +

pn−1b2n
[n]pn,qn

‖ e1 ‖ρ .

Let us define the following sets for ε > 0

C := {k : ‖Cn,pn,qn (e2;x)− e2‖ρ ≥ ε} ,

C1 :=

{
k :

pk−1k

[k]pk,qk
≥ ε

2

}
,

C2 :=

{
k :

pk−1k b2k
[k]pk,qk

≥ ε
2

}
,

such that C ⊆ C1 ∪ C2.
Hence, we get

δ {k ≤ n :‖ Cn,pn,qn (e2;x)− e2 ‖ρ≥ ε}

≤ δ

{
k ≤ n :

pk−1k

[k]pk,qk
≥ ε

2

}
+ δ

{
k ≤ n :

pk−1k b2k
[k]pk,qk

≥ ε
2

}
.

By (5.1) and (5.2), we have

st− lim
n
‖ Cn,pn,qn (e2;x)− e2 ‖ρ= 0.

�

Now, we give a Voronovskaja type theorem for Cn,pn,qn(f ;x).
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Theorem 5.2. Let f ∈ Ck
ρ [0,∞) such that f ′, f ′′ ∈ Ck

ρ [0,∞). Then, we have

lim
n→∞

[n]pn,qn
bn

(Cn,pn,qn(f ;x)− f(x)) = axf ′′(x).

Proof . We write Taylor’s expansion of f as follows:

f(t) = f(x) + f ′(x)(t− x) +
1

2
f ′′(x)(t− x)2 + ε(t, x)(t− x)2, (5.2)

where ε(t, x)→ 0 as t→ x.
Applying the operators Cn,pn,qn(f ; .) on (5.2), we get

Cn,pn,qn(f, x)− f(x)

= f ′(x)Cn,pn,qn((t− x);x) +
1

2
f ′′(x)Cn,pn,qn((t− x)2;x) + Cn,pn,qn

(
ε(t, x)(t− x)2, x

)
.

Let us take the limit of both sides of the above equality as n→∞, we have

lim
n→∞

[n]qn
bn

Cn,pn,qn((f ;x)− f(x))

= lim
n→∞

[n]qn
bn

{
1

2
f ′′(x)

(
−pn−1n x2

[n]qn
+
xpn−1n bn

[n]qn

)
+ Cn,pn,qn

(
ε(t, x)(t− x)2;x

)}
.

For the last term on the right hand side, using Cauchy-Schwartz inequality, we get

lim
n→∞

[n]qn
bn

Cn,pn,qn
(
ε(t, x)(t− x)2;x

)
≤
√

lim
n→∞

Cn,pn,qn (ε2(t, x);x)

√
lim
n→∞

[n]2pn,qn
b2n

Cn,pn,qn ((t− x)4;x).

Because of limn→∞Cn,pn,qn (ε2(t, x);x) = 0 and using Lemma 2.3 (ii),

lim
n→∞

[n]2pn,qn
b2n

Cn,pn,qn
(
(t− x)4;x

)
is finite, then we obtain

lim
n→∞

[n]pn,qn
bn

Cn,pn,qn
(
ε(t, x)(t− x)2;x

)
= 0.

Hence, one can see that

lim
n→∞

[n]pn,qn
bn

(Cn,pn,qn(f ;x)− f(x))

=
1

2
f ′′(x) lim

n→∞

(
−pn−1n x2

bn
+ xpn−1n

)
= axf ′′(x).

This step completes the proof. �
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