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Abstract

This paper introduces the interval unilateral quadratic matrix equation, AX2 + BX + C = 0 and
attempts to find various analytical results on its AE-solution sets in which A,B and C are known real
interval matrices, while X is an unknown matrix. These results are derived from a generalization of
some results of Shary. We also give sufficient conditions for non-emptiness of some quasi-solution sets,
provided that A is regular. As the most common case, the united solution set has been studied and
two direct methods for computing an outer estimation and an inner estimation of the united solution
set of an interval unilateral quadratic matrix equation are proposed. The suggested techniques are
based on nonlinear programming as well as sensitivity analysis.
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nonlinear programming; sensitivity analysis.
2010 MSC: Primary 65G40; Secondary 65F30.

1. Introduction

Given A,B and C ∈ Rn×n, consider the unilateral quadratic matrix equation (UQME)

F (X) := AX2 +BX + C = 0, (1.1)
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where X ∈ Rn×n is unknown. Even though this equation is not the only possible definition for a
quadratic matrix equation, it deserves a particular consideration since more common matrix equations
can be reduced to this equation [3]. Moreover, the special features of equation (1.1), as the simplest
nonlinear matrix equation, enable one to prove more specific results on the solutions [3]. Other forms
of a quadratic matrix equation can be considered, for example, X2A+XB+C = 0 and the algebraic
Riccati equation XAX +BX +XC +D = 0. For the first one, a similar approach is possible. The
theory and numerical methods of the second are also well developed in [4, 19, 26].

This UQME often occurs in many areas of scientific computing and engineering applications such
as the quasi-birth-death process [3], the quadratic eigenvalue problem [31]

Q(λ,A,B,C)x := (λ2A+ λB + C)x = 0,

structural systems [32] and vibration problems [20].
Recall that any solution X of AX2 +BX +C = 0 is called a right solvent or briefly a solvent to

distinguish from a left solvent, which is a solution of the related quadratic matrix equation X2A +
XB+C = 0. The existence and characterization of solvents can be related to the quadratic eigenvalue
problem [13, 14, 26]. In fact, if we assume that A in (1.1) is invertible, then Q(λ,A,B,C) =
λ2A+ λB + C has 2n finite eigenvalues that can be ordered by their absolute values as

|λ1| ≥ |λ2| ≥ · · · ≥ |λ2n|. (1.2)

In order to study uniqueness and solvability aspects, we need to introduce Definition 1.1 and Theo-
rem 1.2.

Definition 1.1. (See e.g. [18, Definition 2.2.1]) Let S1 and S2 be two solvents of UQME (1.1)
and the eigenvalues of Q(λ,A,B,C) are ordered as in (1.2). If S1 has the spectrum σ(S1) =
{λ1, λ2, . . . , λn} and S2 has the spectrum σ(S2) = {λn+1, λn+2, . . . , λ2n}, both satisfy the condition
|λn| > |λn+1|, then S1 and S2 are called dominant solvent and minimal solvent, respectively.

Theorem 1.2. (See e.g. [18, Theorem 2.2.2]) Assume that the eigenvalues of Q(λ,A,B,C), ordered
according to (1.2) satisfy |λn| > |λn+1| and that corresponding to {λi}ni=1 and {λi}2ni=n+1 there are
two sets of linearly independent eigenvectors {v1, v2, . . . , vn}, {vn+1, vn+2, . . . , v2n}. Then there exists
a dominant solvent and a minimal solvent of (1.1). If, further, the eigenvectors of Q(λ,A,B,C) are
distinct then the dominant and minimal solvents are unique.

Remark 1.3. It follows from the theory of λ-matrices that a dominant solvent and a minimal solvent
of UQME (1.1), if they exist, are unique provided that A is nonsingular [18].

Remark 1.4. For real coefficients A,B and C, the dominant solvent of the UQME AX2+BX+C =
0 can not ever be complex, since the complex eigenvalues come in conjugate pairs with the same
modulus, so if one takes the dominant eigenvalues you necessarily pick both entries of a conjugate
pair.

For solving the quadratic matrix equation (1.1), Davis [5, 6] considered Newton’s method in
detail. Higham and Kim [13] incorporated exact line searches into Newton’s method to improve the
global convergence of Newton’s method. Newton’s method has improved with S̀amanskii technique
to acquire faster convergence in the work of Long, Hu and Zhang [21]. Two good references about
numerical methods and algorithms for solving quadratic matrix equations are [18] and [26] and the
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references given. The problem of reducing an algebraic Riccati equation XCX−AX−XD+B = 0 to
a UQME of kind of equation (1.1) is also analyzed [4]. The problem of computing verified solutions to
the quadratic matrix equations has been addressed before in the literature, see for instance [10, 12, 22].
But there are only a few works like as [11, 29] concerning the interval forms of these quadratic matrix
equations. Besides, except when we are computing, nearly all measurements contain uncertainty as
well as experiments and models of real life or physical phenomena. Interval analysis is one of the
methods of representing uncertainty and/or ambiguity in mathematics. In interval analysis, uncertain
parameters are described by a lower and upper bound then, sharp or nearly sharp bounds on the
solution(s) are computed. You can find pointers to items concerning interval computations on the
interval computations website http://www.cs.utep.edu/interval-comp.

Since the elements of A,B and C in equation (1.1) almost always contain doubt, they would
represent in interval form to guarantee bounds on the set of possible result values. Interval analysis
deals incidentally with evaluating the errors in answer resulting from the errors in the initial data.
Thus, the following interval unilateral quadratic matrix equation (IUQME) should be solved

F(X) := AX2 + BX + C = 0, (1.3)

where A,B and C are known real interval matrices and A ∈ A, B ∈ B and C ∈ C. Some special
cases such as the interval quadratic equations and the interval univariate polynomials have also been
investigated, see for example [9, 11]. In what follows, we assume that A in IUQME (1.3) is regular
which means that each matrix A belongs to A is nonsingular. Up to our knowledge, this paper is
the first attempt to address IUQME in general form.

Notice one essential point: due to the fact that the associativity of multiplication is not true with
respect to the existing interval arithmetic, AX2 := A(XX) is not necessarily equal to (AX)X.

The rest of this paper is organized as follows. In the next section, we review some facts and
notations from interval arithmetic. Section 3 contains our main results concerning various AE-
solution sets including the generalization of the AE-solution sets to IUQMEs and the characterization
of a few main solution sets to IUQMEs. Explicit explanation of the united solution set and two
methods for discovering outer and inner interval estimations of the united solution set are studied in
Section 4. In Section 5, we demonstrate our results by means of some numerical examples. Section 6
is devoted to our conclusions and suggestions for further works.

2. Notations and preliminary concepts

We use K to denote either of the fields of real, R or complex numbers, C. With the notations
Kn,Kn×n, IKn and IKn×n, we denote, respectively, the space of n-dimensional vectors, the space of
n× n matrices, the set of all n-dimensional interval vectors (boxes) and the set of all n× n interval
matrices, all over K. In the present paper, all interval quantities will be typeset in boldface whereas
lower case will imply scalar quantities or vectors and upper case will denote matrices. Under-scores
and over-scores will show lower bounds and upper bounds of interval quantities, correspondingly.

For x ∈ IR, we write x = [x, x] where x := min x and x := max x. The absolute value of x is
shown as |x| := max{|x| | x ∈ x} = max{|x|, |x|}, the radius of x is defined by rad x := 1/2(x−x) and
the midpoint of x is given by mid x := 1/2(x+ x). The hull of two intervals x and y in IR, �(x,y),
is the tightest interval z which encloses both x and y. The intersection of two intervals x and y in IR
is empty if they are disjoint, otherwise x ∩ y := {z ∈ R|z ∈ x, z ∈ y} = [max{x, y},min{x, y}]. For
IR, real interval arithmetic is usually done via the set theory, namely, for any arithmetic operation
op ∈ {+,−, ∗, /}, one has x op y := {x op y|x ∈ x, y ∈ y}.

http://www.cs.utep.edu/interval-comp
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In this paper, we also use circular complex intervals which have better algebraic properties than
rectangular complex interval arithmetic [2]. Hence, a square interval matrix A ∈ IRn×n will write as
A := [mid A− rad A,mid A + rad A] in which mid A and rad A are in Rn×n with rad A ≥ 0. Then,
the extended definitions of addition, subtraction and multiplication of interval matrices A and B
with compatible sizes are as follows

A op B := �{A op B|A ∈ A, B ∈ B}.

In particular,
AX2 = A(XX) := �{AX2|A ∈ A},

while
(AX)X := �{GX|G ∈ AX} = �{GX|G ∈ �{AX|A ∈ A}}.

Meanwhile, for interval vectors and matrices, mid, rad, |.|,� and intersection will be applied
component-wise.

Let A = (Aij) and B = (Bij) be two real interval matrices with the same size. Then, we write
A ⊆ B whenever Aij ⊆ Bij for all i, j where ⊆ is a partial ordering defined as Aij ⊆ Bij if and
only if Bij ≤ Aij and Aij ≤ Bij. Matrix inequalities as A ≤ B (≥) or A < B (>) are understood
component-wise. Let X = (Xij) belonging to Rn×n be such that Xij ∈ Aij for all i, j, then we
write X ∈ A. For any bounded set of real m × n matrices such as Σ, the interval hull of Σ,
�Σ := [inf(Σ), sup(Σ)], is the tightest interval matrix enclosing Σ.

Elementary properties of mid, rad and � are provided by two next lemmas.

Lemma 2.1. (See e.g. [23]) Let A and B be two n × n real interval matrices and X be a matrix
with real elements and compatible size. Then,

1. A ⊆ B⇔ |mid B−mid A| ≤ rad B− rad A,

2. mid(A±B) = mid A±mid B,

3. rad(A±B) = rad A + rad B,

4. mid(AX) = (mid A)X,

5. rad(AX) = (rad A)|X|.

Lemma 2.2. [23, Proposition 3.1.8] Let A be a real interval matrix and Φ and Ω be two bounded
sets of real point matrices, all of the same size. Then,

1. Φ ⊆ Ω⇒ �Φ ⊆ �Ω,

2. Φ ⊆ A⇒ �Φ ⊆ A.

3. Description of the Generalized AE-solution Sets for IUQME

Shary introduced the concept of generalized solution sets and AE(AllExist)-solution sets to an interval
linear system of equations [30]. In [30] quantifiers are used to describe and recognize various kinds
of interval uncertainty in the course of modeling. By a similar convention, we consider the different
possible styles of describing the uncertainty type distributions with respect to the interval parameters
of IUQME (1.3). According to [30], we say that the interval I is of A-uncertainty whenever a certain
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property holds for all members from the given interval I while E-uncertainty implies that only some
members of the interval I have that property, not necessarily all. For some recent works see, for
example, [16] and [17] and the references given.

Here, we extend the concept of AE-solution sets to the IUQME (1.3).

Definition 3.1. We define the AE-solution set of type α, β, γ or αβγ-solution set to the IUQME (1.3)
as

Σαβγ(A,B,C) := {X ∈ Rn×n|((∀Aπ′
1
∈ Aπ′

1
) . . . (∀Aπ′

p
∈ Aπ′

p
)

(∀Bθ′1
∈ Bθ′1

) . . . (∀Bθ′r ∈ Bθ′r)(∀Cψ′
1
∈ Cψ′

1
) . . . (∀Cψ′

t
∈ Cψ′

t
)

(∃Aπ′′
1
∈ Aπ′′

1
) . . . (∃Aπ′′

q
∈ Aπ′′

q
)(∃Bθ′′1

∈ Bθ′′1
) . . . (∃Bθ′′s ∈ Bθ′′s )

(∃Cψ′′
1
∈ Cψ′′

1
) . . . (∃Cψ′′

u
∈ Cψ′′

u
)(AX2 +BX + C = 0))},

where α = (αij), β = (βij) and γ = (γij) are n× n quantifier matrices defined as

αij :=

{
∀ if (i, j) ∈ Π′,
∃ if (i, j) ∈ Π′′,

βij :=

{
∀ if (i, j) ∈ Θ′,
∃ if (i, j) ∈ Θ′′,

and

γi,j :=

{
∀ if (i, j) ∈ Ψ′,
∃ if (i, j) ∈ Ψ′′,

and with this attention that whenever Π′ = ∅ we shall write α = ∃ at the same time as Π′′ = ∅
will be interpreted as α = ∀. We also assume that the set of the index pairs (i, j) corresponding to
Aijs of A is separated into two disjoint parts Π′ = {π′1, π′2, . . . , π′p} and Π′′ = {π′′1 , π′′2 , . . . , π′′q} with
p + q = n2. These sets possess this limitation that (i, j) belongs to Π′ if and only if the parameter
Aij of A is of A-uncertainty while being in Π′′ means Aij is of E-uncertainty and vice versa. In a
comparable manner, we introduce two disjoint sets Θ′ = {θ′1, θ′2, . . . , θ′r} and Θ′′ = {θ′′1 , θ′′2 , . . . , θ′′s}
in which r + s = n2 matching to β and Ψ′ = {ψ′1, ψ′2, . . . , ψ′t} and Ψ′′ = {ψ′′1 , ψ′′2 , . . . , ψ′′u} in which
t+ u = n2 tallied to γ.

Thus, there are two possibilities for the quantifier corresponding to the universal quantifier “∀”and
the existential quantifier “∃”. But the order of them is such that all the occurrences of the universal
quantifier precede all the occurrences of the existential quantifier which clarifies the name AE-form.

To describe some particular cases, we determine disjoint decompositions of the interval matrices
A,B and C. For this purpose, we define two interval matrices in a general form: “universal”,
I∀ = (I∀ij) and “existential”, I∃ = (I∃ij) of the size n as

I∀ij :=

{
Iij, if δij = ∀,
0, o.w.,

and I∃ij :=

{
Iij, if δij = ∃,
0, o.w.,

(3.1)

in which δ = (δij) is the quantifier matrix associated to I = (Iij). Thus, A = A∀+ A∃,B = B∀+ B∃

and C = C∀ + C∃. In addition, for all i, j, 1 ≤ i, j ≤ n, we have A∀ijA
∃
ij = 0,B∀ijB

∃
ij = 0 and

C∀ijC
∃
ij = 0 which prove that A∀ and A∃,B∀ and B∃ as well as C∀and C∃ form disjoint decompositions

for A,B and C, separately. Now, we consider some special cases of Definition 3.1 as follows:
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• The most interesting case among various possible choices occurs when we pick out the existential
quantifier for all the components of quantifier matrices α, β and γ, i.e., where Π′ = Θ′ = Ψ′ = ∅:
The united solution set to the IUQME (1.3),

Σ∃∃∃(A,B,C) := {X ∈ Rn×n| (3.2)

((∃A ∈ A)(∃B ∈ B)(∃C ∈ C)(AX2 +BX + C = 0))},

formed by all possible solutions of all point UQMEs, AX2 + BX + C = 0 with A ∈ A, B ∈ B
and C ∈ C. We may refer to each element of this solution set as the weak solution or briefly a
solution.
• The tolerable solution set to the IUQME (1.3),

Σ∀∀∃(A,B,C) := {X ∈ Rn×n|
((∀A ∈ A)(∀B ∈ B)(∃C ∈ C)(AX2 +BX + C = 0))}.

Hence, the tolerable solution set is the set in which if X ∈ Rn×n belongs to this set, then for
each A ∈ A and each B ∈ B, there exists at least one C ∈ C with AX2 + BX + C = 0 or
AX2 +BX ∈ −C.
• The controllable solution set to the IUQME (1.3),

Σ∃∃∀(A,B,C) := {X ∈ Rn×n|
((∀C ∈ C)(∃A ∈ A)(∃B ∈ B)(AX2 +BX + C = 0))},

formed by all matrices as X ∈ Rn×n such that for any C ∈ C, one could determine some A ∈ A
and some B ∈ B satisfying AX2 +BX + C = 0.

Remark 3.2. Note that always Σαβγ(A,B,C) ⊆ Σ∃∃∃(A,B,C), that is, the united solution set of
IUQME (1.3) is the widest solution set of all possible AE-solution sets of IUQME (1.3). An evident
outcome is that if we have already found out that Σ∃∃∃(A,B,C) is empty, we can conclude that the
tolerable solution set and the controllable solution set to the IUQME (1.3) are also empty.

We now show with an example that there can be some cases in which the solutions to an IUQME
can not be enclosed by a finite interval matrix.

Remark 3.3. It is going to be difficult to find a case in which we can bound all solvents of
UQME (1.1), unless we impose additional restrictions on this matrix equation. This means that
the solution sets of IUQME (1.3) can not be necessarily included in a finite interval matrix even in
a trivial example. For instance, consider A1X

2 + B1X + C1 = 0 for which A1,B1,C1 ∈ IR2×2 and
I ∈ A1, 0 ∈ B1,−I ∈ C1 where I denotes the identity matrix of the compatible size. Then, for any
arbitrary a, b ∈ R satisfying b 6= 0, the matrix

1

1 + a2

[
a b
1
b
−a

]
, (3.3)

is a solvent of X2 = I. So, the two off-diagonal entries are unbounded because one can take b
large or small at will. It is obvious that the UQME X2 = I is one of the UQMEs belonging to
Σ∃∃∃(A1,B1,C1). Hence, there are solutions with arbitrarily large or/and small entries. On the
other hand, according to Definition 1.1, for any a, b with b 6= 0, (3.3) is neither dominant nor
minimal solvent, since Q(λ, I, 0,−I) has two eigenvalues 1 and −1, having the same multiplicity 2,
and so it is impossible to find two sets of these eigenvalues such as {λ1, λ2} and {λ3, λ4} satisfying
min{|λ1|, |λ2|} > max{|λ3|, |λ4|}.
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From this point on, whenever we are talking about the solvents of (1.1), particularly in the
definition of the solution sets, we mean only the unique dominant solvent which is the one of interest
in most applications. For instance, we consider the union of all dominant solvents of all possible
UQMEs AX2 +BX + C = 0 with A ∈ A, B ∈ B, C ∈ C instead of (3.2).

Theorem 3.4.

Σαβγ(A,B,C) = ∩A′∈A∀ ∩B′∈B∀ ∩C′∈C∀ ∪A′′∈A∃ ∪B′′∈B∃∪C′′∈C∃

{X ∈ Rn×n|((A′ + A′′)X2 + (B′ +B′′)X + (C ′ + C ′′) = 0)}.

In particular,

Σ∃∃∃(A,B,C) = ∪A∈A ∪B∈B ∪C∈C{X ∈ Rn×n|AX2 +BX + C = 0},

Σ∀∀∃(A,B,C) = ∩A∈A ∩B∈B ∪C∈C{X ∈ Rn×n|AX2 +BX + C = 0},

Σ∃∃∀(A,B,C) = ∩C∈C ∪A∈A ∪B∈B{X ∈ Rn×n|AX2 +BX + C = 0}.

Proof . According to Definition 3.1, we can rewrite the αβγ-solution set to the IUQME (1.3) as

Σαβγ(A,B,C) = {X ∈ Rn×n|((∀A′ ∈ A∀)(∀B′ ∈ B∀)(∀C ′ ∈ C∀)

(∃A′′ ∈ A∃)(∃B′′ ∈ B∃)(∃C ′′ ∈ C∃)

((A′ + A′′)X2 + (B′ +B′′)X + (C ′ + C ′′) = 0))}

=
⋂

A′∈A∀

⋂
B′∈B∀

⋂
C′∈C∀

{X ∈ Rn×n|((∃A′′ ∈ A∃)(∃B′′ ∈ B∃)(∃C ′′ ∈ C∃)|

((A′ + A′′)X2 + (B′ +B′′)X + (C ′ + C ′′) = 0))}

=
⋂

A′∈A∀

⋂
B′∈B∀

⋂
C′∈C∀

⋃
A′′∈A∃

⋃
B′′∈B∃

⋃
C′′∈C∃

{X ∈ Rn×n|((A′ + A′′)X2 + (B′ +B′′)X + (C ′ + C ′′) = 0)},

in which the second and third equalities are due to the definitions of intersection and union of sets,
respectively. The characterizations of the united, tolerable and controllable solution sets are evident
results of the general case above. �

Theorem 3.5. X ∈ Rn×n belongs to Σαβγ(A,B,C) if and only if

{A′X2 +B′X + C ′|A′ ∈ A∀, B′ ∈ B∀, C ′ ∈ C∀} ⊆ (3.4)

{−(A′′X2 +B′′X + C ′′)|A′′ ∈ A∃, B′′ ∈ B∃, C ′′ ∈ C∃}.

Proof . Again, by exploiting the matrices A∀,A∃,B∀,B∃,C∀ and C∃, one can recompose the
definition of Σαβγ(A,B,C) in the following equivalent form

Σαβγ(A,B,C) = {X ∈ Rn×n| (3.5)

((∀A′ ∈ A∀)(∀B′ ∈ B∀)(∀C ′ ∈ C∀)

(∃A′′ ∈ A∃)(∃B′′ ∈ B∃)(∃C ′′ ∈ C∃)

((A′ + A′′)X2 + (B′ +B′′)X + (C ′ + C ′′) = 0))}.
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Thus, for all A′ ∈ A∀, B′ ∈ B∀, C ′ ∈ C∀, one can find some A′′ ∈ A∃, B′′ ∈ B∃, C ′′ ∈ C∃ such that

A′X2 +B′X + C ′ = −(A′′X2 +B′′X + C ′′). (3.6)

Now, let X ∈ Σαβγ(A,B,C) and D ∈ {A′X2 +B′X +C ′|A′ ∈ A∀, B′ ∈ B∀, C ′ ∈ C∀}, so there exist
some matrices like as A′1 ∈ A∀, B′1 ∈ B∀ and C ′1 ∈ C∀ for which D = A′1X

2 +B′1X+C ′1. (3.6) implies
that for adequate matrices A′′1 ∈ A∃, B′′1 ∈ B∃ and C ′′1 ∈ C∃, we see that D = −(A′′1X

2 +B′′1X +C ′′1 ).
Thus, (3.4) is achieved. Now, assume that (3.4) holds. According to (3.5), it is sufficient to show
that for all A′ ∈ A∀, B′ ∈ B∀ and C ′ ∈ C∀, there exist A′′ ∈ A∃, B′′ ∈ B∃ and C ′′ ∈ C∃ such that

(A′ + A′′)X2 + (B′ +B′′)X + (C ′ + C ′′) = 0.

Applying (3.4), there are A′′ ∈ A∃, B′′ ∈ B∃ and C ′′ ∈ C∃ for which (3.6) is true or (A′ + A′′)X2 +
(B′ +B′′)X + (C ′ + C ′′) = 0. �

So, the fundamental theorem for characterizations of the AE-solution sets of an interval linear
system (x ∈ Σαβ(A,b) if and only if A∀x−b∀ ⊆ b∃−A∃x) [30, Theorem 3.4] can not be completely
generalized here.

Remark 3.6. As a special case of the definition of the interval arithmetic operations, only the weak
equality

DY = �{DY | D ∈ D} (3.7)

is valid for any D ∈ IRn×k and any Y ∈ Rk×m unless when Y is a real vector, i.e., m = 1 [23,
Proposition 3.1.4]. Since the expression AX2 + BX + C is a single-use expression with respect to
all interval variables, if we put D = [A,B,C] and Y = [X2, X, I]T where T denotes the transpose,
then D ∈ IRn×3n, Y ∈ IR3n×n and also we have

AX2 + BX + C = DY := �{DY |D ∈ D} (3.8)

= �{AX2 +BX + C|A ∈ A, B ∈ B, C ∈ C}.

Now, we characterize the solution sets Σ∃∃γ (quasi-controllable) and Σ∀∀γ (quasi-tolerable) which
are indeed two generalizations of the controllable and tolerable solution sets, respectively.

Theorem 3.7. Suppose X ∈ Rn×n belongs to the AE-solution set Σ∃∃γ(A,B,C). Then

−C∀ ⊆ AX2 + BX + C∃. (3.9)

Proof . Let X ∈ Σ∃∃γ(A,B,C). Then, (3.4) leads to

{C ′|C ′ ∈ C∀} ⊆ {−(A′′X2 +B′′X + C ′′)|A′′ ∈ A, B′′ ∈ B, C ′′ ∈ C∃}.

Lemma 2.2 part 1 and (3.8) give us

C∀ = �{C ′|C ′ ∈ C∀} ⊆
�{−(A′′X2 +B′′X + C ′′)|A′′ ∈ A, B′′ ∈ B, C ′′ ∈ C∃}.

A similar argument for the proof of (3.8) implies

C∀ ⊆ −(AX2 + BX + C∃).

On the other hand, for two arbitrary intervals, we have [2] x ⊆ y⇒ −x ⊆ −y. Therefore, we deduce
that −C∀ ⊆ AX2 + BX + C∃. �

Here is an elementary consequent of Theorem 3.7.
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Corollary 3.8. If X ∈ Σ∃∃∀(A,B,C) then −C ⊆ AX2 + BX.

Theorem 3.9. If
AX2 + BX + C∀ ⊆ −C∃, (3.10)

then X ∈ Σ∀∀γ.

Proof . Suppose (3.10) holds. It is obvious that

{AX2 +BX + C ′|A ∈ A, B ∈ B, C ′ ∈ C∀} ⊆
�{AX2 +BX + C ′|A ∈ A, B ∈ B, C ′ ∈ C∀}.

Similar to (3.8), we write

�{AX2 +BX + C ′|A ∈ A, B ∈ B, C ′ ∈ C∀} =

AX2 + BX + C∀ ⊆ −C∃ = {−C ′′|C ′′ ∈ C∃}.

We have thus proved

{AX2 +BX + C ′|A ∈ A, B ∈ B, C ′ ∈ C∀} ⊆ {−C ′′|C ′′ ∈ C∃}.

Now, Theorem 3.5 for α = β = ∀ allows us to conclude X ∈ Σ∀∀γ. �

Corollary 3.10. If AX2 + BX ⊆ −C then X ∈ Σ∀∀∃(A,B,C).

Next consequences are new characterizations of the AE-solution sets Σ∃∃γ and Σ∀∀γ in terms of
midpoint and radius matrices.

Theorem 3.11. If X ∈ Σ∃∃γ then

|(mid A)X2 + (mid B)X + mid C| ≤ (3.11)

(rad A)X2 + (rad B)|X|+ rad C∃ − rad C∀.

Proof . Since X ∈ Σ∃∃γ, Theorem 3.7 together with Lemma 2.1 part 1 follows

|(mid(AX2 + BX + C∃)−mid(−C∀)| ≤
rad(AX2 + BX + C∃)− rad(−C∀).

By repeatedly using lemma 2.1, we have

|(mid A)X2 + (mid B)X + mid C∃ + mid C∀| ≤
(rad A)X2 + (rad B)|X|+ rad C∃ − rad C∀.

In view of
mid C∃ + mid C∀ = mid(C∃ + C∀) = mid C,

the proof is completed. �

Corollary 3.12. Let X ∈ Σ∃∃∀(A,B,C). Then,

|(mid A)X2 + (mid B)X + mid C| ≤ (rad A)X2 + (rad B)|X| − rad C.
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Theorem 3.13. If

|(mid A)X2 + (mid B)X + mid C| ≤ rad C∃ − rad C∀ − (rad A)X2 − (rad B)|X|, (3.12)

then X ∈ Σ∀∀γ.

Proof . Since C = C∃ + C∀, (3.12) is equivalent to

|mid (AX2 + BX + C∀)−mid(−C∃)| ≤ (3.13)

rad(−C∃)− rad (AX2 + BX + C∀).

Next, Lemma 2.1 part 1 yields AX2 + BX + C∀ ⊆ −C∃. Now, Theorem 3.9 implies that X ∈ Σ∀∀γ.
�

Corollary 3.14. Suppose

|(mid A)X2 + (mid B)X + mid C| ≤ rad C− (rad A)X2 − (rad B)|X|.

Then, X ∈ Σ∀∀∃(A,B,C).

Following the same idea for describing solvability of a system of interval linear equations Ax =
b [15], we define the solvability concept for AX2 + BX + C = 0.

Definition 3.15. The interval unilateral quadratic matrix equation (1.3) is called solvable if there
exists A ∈ A, B ∈ B and C ∈ C such that UQME AX2 +BX + C = 0 has a (dominant) solvent.

Obviously, solvability of IUQME is equivalent to the existence of a weak solution or non-emptiness
of the united solution set.

Theorem 3.16. Consider IUQME (1.3). Assume that for any C ∈ C, there are some A ∈ A and
some B ∈ B such that Q(λ,A,B,C) has distinct eigenvalues satisfying the conditions of Theorem 1.2.
Then, Σ∃∃γ(A,B,C) is nonempty.

Proof . Suppose C1 ∈ C. So, there exist A1 ∈ A and B1 ∈ B such that Q(λ,A1, B1, C1) has distinct
eigenvalues satisfying the conditions of Theorem 1.2 which are sufficient conditions for the existence
and uniqueness of dominant (and minimal) solvents. This completes the proof. �

It is obvious that if for any members A,B and C of A, B and C, respectively, Q(λ,A,B,C)
has distinct eigenvalues which satisfy the conditions of Theorem 1.2, then Σ∀∀γ(A,B,C) will also be
nonempty.

4. Detailed characterization of the united solution set of IUQME

The united solution set has many applications in the field of scientific computing such as compu-
tational optimization, numerical simulation and verification in system engineering [1]. Remark 3.2
displays another reason to be interested in the united solution set. Accordingly, we focus on the
united solution set of IUQME in this part. The characterization of the solution sets is, however,
hard to derive since it is indeed equivalent to the characterization of standard interval systems with
dependencies which is hard to deal with; see e.g. [28].
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Theorem 4.1.
Σ∃∃∃(A,B,C) ⊆ {X ∈ Rn×n|(AX2 + BX) ∩ (−C) 6= ∅},

and
Σ∃∃∃(A,B,C) ⊆ {X ∈ Rn×n|0 ∈ AX2 + BX + C}.

Moreover,

Σ∃∃∃(A,B,C) ⊆ {X ∈ Rn×n| (4.1)

|(mid A)X2 + (mid B)X + mid C|
≤ (rad A)X2 + (rad B)|X|+ rad C}.

Proof . Let X ∈ Σ∃∃∃(A,B,C). So, AX2 + BX = −C for some A ∈ A, B ∈ B and C ∈ C; hence
−C ∈ (AX2 + BX) ∩ (−C). Since, (AX2 + BX) ∩ (−C) 6= ∅ if and only if 0 ∈ AX2 + BX + C,
the first and second parts of the theorem follow. For the third part, put D := AX2 + BX. Then,

(AX2 + BX) ∩ (−C) 6= ∅ ⇔ D ∩ (−C) 6= ∅
⇔ |mid D−mid(−C)| ≤ rad D + rad(−C).

Since D = AX2 + BX and by means of Lemma 2.1 we conclude that

|(mid A)X2 + (mid B)X + mid C| ≤ (rad A)X2 + (rad B)|X|+ rad C.

One can also put C∀ = 0 in Theorem 3.11 to prove the last part. �

None of the AE-solution sets, Σαβγ(A,B,C), is generally an interval matrix. Thus, it is natural to
look for some interval matrices which are either contained in the solution set (inner interval estimate
problem) or contain the solution set (outer interval estimate problem) where the inclusions are as
sharp as possible. Besides, only some estimate of the rigorous solution set suffices for factual goals
in real life conditions. From now on, we confine ourselves to find some interval estimations only for
nonempty and bounded AE-solution sets of type ∃∃∃.

4.1. Outer estimation of Σ∃∃∃ via a nonlinear programming approach

By definition, �Σ∃∃∃(A,B,C) is the tightest interval matrix enclosing Σ∃∃∃(A,B,C). Therefore, it
could be supposed as the sharpest outer estimation for Σ∃∃∃(A,B,C). Since we have assumed that
the solution set Σ∃∃∃(A,B,C) is nonempty and bounded, we can define its exact interval hull as

�Σ∃∃∃(A,B,C) := [X,X],

where for i, j = 1 : n,
X = (X ij), X ij = inf{Xij|X = (Xij) ∈ Σ∃∃∃(A,B,C)},

X = (X ij), X ij = sup{Xij|X = (Xij) ∈ Σ∃∃∃(A,B,C)}.

The inequality appeared in the last part of Theorem 4.1 provides us with an approach to discover an
outer estimation Xnlp := [Xnlp, Xnlp] for the interval hull which thus is an outer estimation for Σ∃∃∃
as well. Indeed, (4.1) turns out to (midA)X2 − (radA)X2 + (midB)X − (radB)|X| ≤ −C,

(midA)X2 + (radA)X2 + (midB)X + (radB)|X| ≥ −C,
(4.2)
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in which X = (Xij) is an arbitrary member of Σ∃∃∃(A,B,C). If S = (Sij) denotes the sign matrix
of X, then |X| = S �X where � denotes the so-called Hadamard or component-wise product. Now,
in order to determine the lower and upper bound for each element Xij of X, the following nonlinear
programming problems for all possible cases of S and fixed i, j, 1 ≤ i, j ≤ n should be solved:

min /max Xij

s.t.
AX2 + (midB)X − (radB)(S �X) ≤ −C,

AX2 + (midB)X + (radB)(S �X) ≥ −C.
(4.3)

In 1964, Oettli and Prager [24] also proved a nice characterization of the weak solutions of standard
interval systems of linear equations. The main merit of the Oettli-Prager theorem consists in the
fact that it describes the set of all weak solutions by means of a single nonlinear inequality.

Therefore, we are required to solve 2n2 × 2n
2

nonlinear programming problems which may grow
exponentially as the dimension n increases, causing this algorithm cumbersome and time-consuming
for matrices of high order. Another drawback, however, is that we will not be able to consider
only dominant solvents, so the enclosure is expected to be wider than it actually is. It is worth

Algorithm 1 A nonlinear programming algorithm to compute an enclosure Xnlp for the interval hull
of the united solution set to the IUQME (1.3).

1: Given A,B,C
2: for k = 1, . . . , 2n

2
do

3: Compute Sk as k-th possible matrix for the sign of an n× n matrix
4: for i, j = 1, . . . , n do
5: Solve the nonlinear programming problems appeared in (4.3) to maximize and minimize

X
(k)
ij using Sk instead of S

6: end for
7: end for
8: (Xnlp)ij = max

k
{X(k)

ij }

9: (Xnlp)ij = min
k
{X(k)

ij }
10: Output Xnlp = [Xnlp, Xnlp]

pointing out that in view of Theorem 3.11, a similar scheme can also be exploited to discover an
outer estimation for the solution sets Σ∃∃γ(A,B,C).

4.2. Inner estimation of Σ∃∃∃ via a sensitivity analysis technique

In this section the sensitivity of X in AX2 + BX + C to changes in A,B and C will be our main
concern. Clearly, we may assume that X is a (differentiable) function of A,B and C and it is
always assumed that the elements of X are not dependent, namely X has no specific structure. This
technique comes from [7, Chapters 1.6–2.3] and primarily involves solving some linear systems.

By means of the sensitivity analysis technique, we consider a finite number of adequate unilateral
quadratic matrix equations of form (1.1) instead of interval form (1.3). In fact, we want to find a
way to approach as much as possible the end corners of Xsns := [Xsns, Xsns]. As mentioned in [7],
we expect that even for large values of rad A, rad B and rad C, the error in Xsns depends only on
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the machine precision. To discover these adequate UQMEs, we consider the signs of some calculated
partial derivatives. This point is explained in more detail in the following paragraphs.

From [25], we have the following results about the first order derivative of differentiable matrices.

Lemma 4.2. [25] Let R and S be two differentiable matrices of compatible sizes. Then,

1. ∂(R + S) = ∂R + ∂S,

2. ∂(RS) = (∂R)S +R(∂S),

3. ∂R
∂Rij

= J ij,

in which J ij is the single entry matrix, 1 at (i, j) and zero elsewhere.

In what follows, we assume that the selected matrices A ∈ A, B ∈ B and C ∈ C are always
mutually independent. Then, with the use of Lemma 4.2 for finding partial derivatives from the
common equation AX2 +BX +C = 0 with respect to Aij, Bij and Cij, 1 ≤ i, j ≤ n, we obtain these
ordinary matrix equations

∂A

∂Aij
X2 + A

∂X

∂Aij
X + AX

∂X

∂Aij
+B

∂X

∂Aij
= 0,

A
∂X

∂Bij

X + AX
∂X

∂Bij

+
∂B

∂Bij

X +B
∂X

∂Bij

= 0,

A
∂X

∂Cij
X + AX

∂X

∂Cij
+B

∂X

∂Cij
+

∂C

∂Cij
= 0.

(4.4)

We recall that for a point matrix G ∈ Kp×q, the vector vec(G) ∈ Kpq denotes the column-wise
vectorization whereby the successive columns of G are stacked one below the other, beginning with
the first column and ending with the last. Also, the Kronecker product of two matrices G ∈ Kp×q

and H ∈ Kr×s, denoted by G⊗H, is defined as G⊗H := [GijH] ∈ Kpr×qs. Now, (4.4) can be written
in the vector form as

(
XT ⊗ A+ I ⊗ (AX +B)

)
vec

(
∂X

∂Aij

)
= − vec (J ijX2) ,(

XT ⊗ A+ I ⊗ (AX +B)
)

vec

(
∂X

∂Bij

)
= − vec (J ijX) ,(

XT ⊗ A+ I ⊗ (AX +B)
)

vec

(
∂X

∂Cij

)
= − vec (J ij) ,

(4.5)

in which we have used the fact that for multiplication of three matrices G,H,K of compatible sizes,
the equality vec(GHK) = (KT ⊗G) vec (H) holds, see for instance [12].

Each of the equations in (4.5) illustrates n2 linear matrix equations to be separately solved for

vec
(
∂X
∂Aij

)
, vec

(
∂X
∂Bij

)
and vec

(
∂X
∂Cij

)
while A and B are replaced by mid A and mid B, respectively,

and X is the unique dominant solvent for (mid A)X2 + (mid B)X + mid C = 0. If the UQME
(mid A)X2 + (mid B)X + mid C = 0 does not have a dominant solvent, we may use a dominant
solvent of any UQME AX2 + BX + C = 0 with A ∈ A, B ∈ B, C ∈ C and update the other parts
according to the new choice.

Now, by considering the signs of the matrices ∂X
∂Aij

, ∂X
∂Bij

and ∂X
∂Cij

, required suitable matrices

corresponding toA,B and C inAX2+BX+C = 0 are determined. Indeed, these UQMEs are the ones
which should be solved to discover the extremes of Xsns. For example, if for fixed l, k, 1 ≤ l, k ≤ n,
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∂Xlk

∂Aij
> 0, ∂Xlk

∂Bij
> 0 and ∂Xlk

∂Cij
> 0, then the choices Aij, Bij and Cij for A,B and C, respectively,

will make us approach lk-th element in Xsns while the options Aij, Bij and Cij will lead us to lk-th

element in Xsns. This means that, to approximate (Xsns)lk, 1 ≤ l, k ≤ n, we set Alk,up := (Alk,upij ) as

Alk,upij :=


Aij,

∂Xlk

∂Aij
> 0,

Aij,
∂Xlk

∂Aij
< 0,

(mid A)ij,
∂Xlk

∂Aij
= 0.

(4.6)

To define Alk,down := (Alk,down
ij ) and then approximate (Xsns)lk, 1 ≤ l, k ≤ n, we select in the opposite

way, that is

Alk,down
ij :=


Aij,

∂Xlk

∂Aij
> 0,

Aij,
∂Xlk

∂Aij
< 0,

(mid A)ij,
∂Xlk

∂Aij
= 0.

(4.7)

In the particular case where ∂Xlk

∂Gij
= 0, the variable Xlk is said to be insensitive to any perturbation in

Gij where G ∈ {A,B,C}. Besides, the superscripts “up” and “down”emphasis on approaching Xsns

and Xsns, respectively. In the same way, we specify Blk,up
ij , Blk,down

ij and C lk,up
ij , C lk,down

ij . Afterwards,

for the calculated matrices Alk,up, Blk,up, C lk,up, and Alk,down, Blk,down, C lk,down, 2n2 UQMEs

Alk,upX2 +Blk,upX + C lk,up = 0, (4.8)

and
Alk,downX2 +Blk,downX + C lk,down = 0, (4.9)

should be solved to discover the bounds of Xlk ∈ [(Xsns)lk, (Xsns)lk]. More precisely, for estimating
(Xsns)lk one needs to solve (4.8) and then set the maximum among all real lk-th entries of all
solvents of the UQME (4.8) as (Xsns)lk. To estimate the lower bound (Xsns)lk, we apply minimum
rather than maximum. It is worth mentioning that the idea of utilizing global/local monotonicity in
solving standard interval linear systems comes originally from [27]. The exact strategy is shown in
Algorithm 2.

Thus, when estimating the united solution set of IUQME via the sensitivity analysis approach,
3n2 linear matrix equations of the form MY = N and 2n2 + 1 UQMEs of form (1.1) need to be
solved. Some different techniques are described in [18] to get an approximate dominant solvent
of (1.1). [8, 13] and [14] also give some algorithms for computing the solvents of (1.1). Example 5.1
also illustrates this technique in more details.

5. Examples

We illustrate our methods on three problems. Moreover, the algorithms are tested in MATLAB
2013a with INTLAB v6 and run on a laptop with 1GB main memory.

Example 5.1. Consider the example mentioned in [18], X2 +X +

[
−6 −5
0 −6

]
= 0. Now, suppose

that the elements of A,B and C have been measured with a certain uncertainty, so that we obtain
the IUQME AX2 + BX + C = 0 with

A = B =

[
[0.9000, 1.1000] [−0.0100, 0.0100]

[−0.0100, 0.0100] [0.9000, 1.1000]

]
,
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Algorithm 2 A sensitivity analysis algorithm to compute an inner estimation Xsns for the interval
hull of the united solution set to the IUQME (1.3).

1: Given A,B,C
2: Compute a dominant solvent X̃ of (mid A)X2 + (mid B)X + mid C = 0
3: M = X̃T ⊗mid A + I ⊗ ((mid A)X̃ + mid B)
4: for l, k = 1, . . . , n do
5: for i, j = 1, . . . , n do
6: Solve the linear systems MY = N for N = − vec(J ijX̃2),− vec(J ijX̃) and − vec(J ij) to

determine vec
(
∂X
∂Aij

)
, vec

(
∂X
∂Bij

)
and vec

(
∂X
∂Cij

)
, respectively

7: end for
8: Set Alk,up, Alk,down, Blk,up, Blk,down, C lk,up, C lk,down according to (4.6) and (4.7)
9: Find all solvents X lk,up(s) of UQME (4.8)

10: (Xsns)lk = max{X lk,up
lk ∈ R|X lk,up is a solvent for (4.8)}

11: Find all solvents X lk,down(s) of UQME (4.9)
12: (Xsns)lk = min{X lk,down

lk ∈ R|X lk,down is a solvent for (4.9)}
13: end for
14: Output Xsns = [Xsns, Xsns]

and

C =

[
[−6.2000, −5.8000] [−5.2000, −4.8000]

[0, 0] [−6.2000, −5.8000]

]
.

With the sensitive analysis approach, we obtain

Xsns =

[
[−3.3089, 1.9240] [−54.5893, 1.0009]
[−0.0122, 0.3325] [−3.2964, 1.9283]

]
.

To better illustrate the sensitivity analysis technique, let us show how the element (Xsns)22 =[
(Xsns)22, (Xsns)22

]
is calculated. First, note that

[
−3 −1
0 −3

]
is the dominant solvent for the mid-

point system X2 +X +

[
−6 −5
0 −6

]
= 0 [18]. Consequently, for i, j = 2, (4.5) is as follows



([
−3 0

−1 −3

]
⊗ I + I ⊗

[
−2 −1

0 −2

])
vec

(
∂X

∂A22

)
= − vec

([
0 0

0 1

]
X2

)
,

([
−3 0

−1 −3

]
⊗ I + I ⊗

[
−2 −1

0 −2

])
vec

(
∂X

∂B22

)
= − vec

([
0 0

0 1

]
X

)
,

([
−3 0

−1 −3

]
⊗ I + I ⊗

[
−2 −1

0 −2

])
vec

(
∂X

∂C22

)
= − vec

([
0 0

0 1

])
.

(5.1)

The following results are obtained by solving (5.1):

∂X

∂A22
=

[
0 0

−0.3600 1.8000

]
,
∂X

∂B22
=

[
0 0

0.1200 −0.6000

]
,
∂X

∂C22
=

[
0 0

−0.0400 0.2000

]
. (5.2)
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Now, we try to find (Xsns)22 by considering the signs of the above calculated derivatives: ∂X
∂A22

, ∂X
∂B22

,
∂X
∂C22

. From (4.7) and (5.2), we conclude that

A22,down =

[
1 0

0.0100 0.9000

]
, B22,down =

[
1 0

−0.0100 1.1000

]
, C22,down =

[
−6 −5
0 −6.2000

]
.

Thus, we should solve the UQME

A22,downX2 + B22,downX + C22,down =[
1 0

0.0100 0.9000

]
X2 +

[
1 0

−0.0100 1.1000

]
X +

[
−6 −5
0 −6.2000

]
= 0,

which has six solvents, namely,{[
2.0008 0.9844
−0.0042 2.0783

]
,

[
−3.0050 −0.9432
0.0263 −3.2964

]
,[

3.9747 + 2.2472i −44.7473 + 3.3625i
0.1603 + 0.4615i −5.0858− 2.2555i

]
,

[
1.7565− 2.1104i −22.5650 + 22.4999i
0.0863− 0.3360i −2.8676 + 1.9996i

]
,[

1.7565 + 2.1104i −22.5650− 22.4999i
0.0863 + 0.3360i −2.8676− 1.9996i

]
,

[
3.9747− 2.2472i −44.7473− 3.3625i
0.1603− 0.4615i −5.0858 + 2.2555i

]}
.

Thus,
(Xsns)22 = min{2.0783, − 3.2964} = −3.2964.

Likewise, it follows from (4.6) and (5.2) that

A22,up =

[
1 0

−0.0100 1.1000

]
, B22,up =

[
1 0

0.0100 0.9000

]
, C22,up =

[
−6 −5
0 −5.8000

]
.

So, for obtaining (Xsns)22 we should find all solvents of the UQME

A22,upX2 + B22,upX + C22,up =[
1 0

−0.0100 1.1000

]
X2 +

[
1 0

0.0100 0.9000

]
X +

[
−6 −5
0 −5.8000

]
= 0. (5.3)

This is the complete set of solvents for (5.3):{[
1.9992 1.0147
0.0038 1.9283

]
,

[
−2.9953 −1.0536
−0.0221 −2.7503

]
,

[
4.3511 23.2677
−0.7428 −5.1362

]
,

[
1.5367 13.9504
0.1507 −2.1783

]
,

[
−1.1004 −28.3136
−0.2080 −0.0762

]
,

[
7.4408 −151.1871
0.3757 −8.4739

]}
Therefore,

(Xsns)22 = max{1.9283,−2.7503,−5.1362,−2.1783,−0.0762,−8.4739} = 1.9283.

Finally, we conclude that (Xsns)22 =
[
(Xsns)22, (Xsns)22

]
= [−3.2964, 1.9283] which is the same

result that we had previously claimed. The total time required to compute the whole matrix Xsns is
1.5374 seconds. Instead, the result obtained from the nonlinear programming method is

Xnlp =

[
[−3.4181, 2.1742] [−54.8029, 1.2464]
[−0.5391, 0.4153] [−3.8349, 2.1799]

]
.

However, this time, the result is obtained after 9.3424 seconds.
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Example 5.2. Consider the UQME

X2 +BX + C = 0, (5.4)

with B =

[
0 0
1 0

]
and C =

[
−1 0
−1 0

]
which has exactly one dominant solvent [13]. We perturb

A = I, B and C, so that IUQME (1.3) should be solved with mid A = A,mid B = B,mid C = C
and

rad A = rad B = rad C =

[
0.1000 0.1000
0.1000 0.1000

]
.

The sensitivity analysis method computed the inner approximation below in 1.6888 seconds, while
the nonlinear programming approach took 10.4209 seconds to find an enclosure for the united solution
set:

Xsns =

[
[−54.3825, 1.0053] [−0.63, 0]
[−1.4857, −0.3173] [−0.8889, 0]

]
,Xnlp =

[
[−54.5001, 1.3389] [−3.2484, 0.1517]
[−1.5973, 0.9884] [−2.2263, 0.5986]

]
.

Our next aim is to provide an example to verify the accuracy of the presented methods and
especially to observe the quality of obtained results in a simple case, i.e., for one-dimensional real
interval matrices or real closed intervals.

Example 5.3. Consider the interval quadratic equation

[1, 2]x2 + [−2, 1]x+ [−3,−1] = [0, 0]. (5.5)

We can rewrite (5.5) as
[x2 − 2x− 3, 2x2 + x− 1] = [0, 0],

when x ≥ 0 and as
[x2 + x− 3, 2x2 − 2x− 1] = [0, 0],

when x ≤ 0. If there exists a value of x such that

x2 − 2x− 3 ≤ 0 ≤ 2x2 + x− 1, (5.6)

or
x2 + x− 3 ≤ 0 ≤ 2x2 − 2x− 1, (5.7)

then there exist a ∈ [1, 2], b ∈ [−2, 1] and c ∈ [−3,−1] such that ax2 + bx+ c = 0 for this value of x.
Therefore, x ∈ Σ∃∃∃([1, 2], [−2, 1], [−3,−1]). (5.6) and (5.7) imply, respectively, that x ∈ [0.5000, 3]
and x ∈ [−2.3028,−0.3660]. Thus the united solution set of this interval quadratic equation is
[0.5000, 3] ∪ [−2.3028,−0.3660].

In the case of nonlinear programming, (4.3) is as follows

min /max x

s.t.
x2 − 1

2
x− 3

2
|x| ≤ 3,

2x2 − 1

2
x+

3

2
|x| ≥ 1.
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Taking into account the sign of x, the above equations are exactly the same as (5.6) and (5.7). Then,
the result of nonlinear programming method coincides with the exact united solution set. The total
execution time is also 0.7015 seconds.

Now, if we suppose that x ≥ 0 and compute 4
3

as the positive solution (dominant solvent) of
the midpoint system mid([1, 2])x2 + mid([−2, 1])x+ mid([−3,−1]) = 0, then the sensitivity analysis
approach gives [0.5000, 3]. The same method produces the interval [−2.3028,−0.3660] when we
choose the negative solution (minimal solvent) of the midpoint system, −1, in Line 2 of Algorithm 2.
Note that this time we have assumed that x in (5.5) is less than or equal to 0. An inner estimation for
Σ∃∃∃([1, 2], [−2, 1], [−3,−1]) is thus [0.5000, 3] ∪ [−2.3028,−0.3660] which coincides with the result
obtained from the exact computation above. The total execution time is 0.1728 seconds which is
again much less than the time needed for nonlinear programming technique.

The results of Example 5.3 lead us to the conjecture that in the case of one-dimensional interval
matrices, the results of both nonlinear programming and sensitivity analysis method coincide exactly.
However, we have neither a mathematical proof nor a counterexample to disprove it.

6. Conclusions and Future Works

In this work, we have generalized Shary’s results about AE-solution sets for IUQMEs. Then, we have
proved some characterization theorems. We have also attained a sufficient condition under which
some particular cases of these solution sets are nonempty. The most significant result of our work
is focused on generating an outer estimation and an inner estimation for the united solution set to
IUQME. To this end, we have proposed two methods: the nonlinear programming technique and the
sensitivity analysis approach.

There are still several problems that can be tackled: one open problem is to develop outer and
inner estimations for different AE-solution sets to interval matrix polynomials of any degree, not
only quadratic ones. It would be desirable to investigate the conditions under which the AE-solution
sets are bounded. Moreover, no attempt has been made in the present paper to develop verification
methods which is another interesting problem.
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