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Abstract

In this paper, a modified version of LLL algorithm, which is a an algorithm with output-sensitive
complexity, is presented to convert a given Gröbner basis with respect to a specific order of a poly-
nomial ideal I in arbitrary dimensions to a Gröbner basis of I with respect to another term order.
Also a comparison with the FGLM conversion and Buchberger method is considered.
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1. Introduction

One of the main tools for solving nonlinear systems is the computation of Gröbner bases. Buch-
berger algorithm [3] computes a Gröbner basis for a polynomial ideal I with respect to an admissible
term ordering <. There are different algorithms like F4 and F5 which were presented by Faugere in
[5] and [6], to improve Buchberger algorithm. Runtime and memory requirements for computing a
Gröbner basis is heavily dependendent on the term ordering <. The lexicographic term orders are
enable to eliminate some variables and hence they can be used for solving polynomial systems and
unfortunately, computing the consumes Gröbner basis wrt lexicographic order consumes a lot of time
and memory than other orders. Changing of ordering can be given rise to overcome this problem.
Among the all term orders, the total degree term order is one of the best orders, that the computing
Gröbner basis respect to it, can be done by consuming reasonable time and memory and this is a
intensive incentive for computing a total degree Gröbner basis and converting it to a lexicographic
Gröbner basis. When the ideal is zero-dimensional, The algorithms presented in [7, 8] are efficients
for converting the ordering of Gröbner basis. The aim of this paper is to introduce an algorithm to
convert the ordering of a Gröbner basis when the dimension of ideal is positive.
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The idea of using LLL algorithm was first proposed by Basiri and Faugere [1], for change ordering
of Gröbner basis in polynomial ring with two variables. In this paper, we tend to introduce an
extension of this idea, considering a new modified LLL algorithm for conversion a Gröbner basis of
an ideal with respect to <old into a Gröbner basis with respect to <new, in polynomial rings with n
variables, where n ≥ 2.

The rest of the paper is organized as follows. Section 2 is devoted to present some requirement
perliminaries. In Section 3, modified LLL algorithm along with its correctness and termination are
described. Experimental results and a comparision with the FGLM and Buchberger methods are
shown in Section 4.

2. Perliminaries and Definitions

In this section some requirement concepts and properties of Gröbner basis and lattice basis will
be introduced. We refer to [4, 2] for basic facts and notations.

Let K[x] be a polynomial ring in variables x1, · · · , xn over an arbitrary field K and I be an
ideal. The ideal generated by a set of polynomials {g1, · · · , gm} ⊂ K[x] is denoted by 〈g1, · · · , gm〉.
Considering an admissible ordering <, we denote by lt(f) the leading term of a polynomial f . An
element f ∈ K[x] is reduced by a Gröbner basis G if no element g ∈ G has a leading term that
divides some terms of f . A Gröbner basis G is reduced if each g ∈ G is reduced by G− {g}.

Theorem 2.1. Let n, d1, · · · , dn ∈ IN and w be not more than d1d2 · · · dn−1, then there exist unique
numbers 0 6 wi 6 di − 1, such that

w = w1d2d3 · · · dn + w2d3 · · · dn + · · ·+ wn−2dn−1dn + wn−1dn + wn.

Proof . The proof is by induction on n. For n = 1, let w1 = w. Suppose d1, · · · , dn ∈ IN and
0 6 w 6 d1d2 · · · dn − 1. By division algorithm, w = w1d2 · · · dn + r, where 0 6 r 6 d2 · · · dn − 1
and w1 6 d1 − 1, because w1 > d1 is contrary to w 6 d1d2 · · · dn − 1. By induction assumption,
r = w2d3 · · · dn + · · ·+ wn−1dn + wn, where 0 6 wi 6 di − 1. Thus

w = w1d2 · · · dn + w2d3 · · · dn + · · ·+ wn−1dn + wn.

Suppose that 0 6 w̃i 6 di − 1, for 1 6 i 6 n, satisfy in properties of the theorem. So

n−1∑
i=2

w̃idi+1 · · · dn−1 + w̃n 6 d2d3 · · · dn − 1.

By uniqueness of r and w1 the proof is complete. �
Let (G = {g1, · · · , gm}, <) be a reduced Gröbner basis for I and

αi = max{degxi(gj)| 1 6 j 6 m},

and also c = (α1 + 1) · · · (αn−1 + 1).
By Theorem 2.1, for 0 6 d 6 c, there exist unique numbers 0 6 sd,j, 1 6 j 6 n− 1, such that

d = 1 + sd,n−1 + sd,n−2(αn−1 + 1) + · · ·+ sd,1(α2 + 1) · · · (αn−1 + 1).

Let sd = (sd,1, · · · , sd,n−1) and sG = {s1, · · · , sc} ⊂ IN0
n−1. For f ∈ K[x] we define α(f) = the

xβ11 · · ·x
βn−1

n−1 , where lt(f) = xβ11 · · ·xβnn .
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Definition 2.2. Let (G = {g1, · · · , gm}, <) be a reduced Gröbner basis for I and lt(gi) = xαi,11 · · ·xαi,n
n ,

for 1 6 i 6 m. We can consider a change in the indices such that, α(gi) < α(gi+1). For integer
numbers di ≥ degxi(lt(gj)), i = 1, · · · , n− 1, define

BG = {xt11 · · · x
tn−1

n−1 gi | tj 6 dj − αi,j, 1 6 i 6 m, 1 6 j 6 n− 1},

A = {xt11 · · ·x
tn−1

n−1 gi /∈ G | ∃ 1 6 j 6 m, i < j, s.t. α(xk11 · · ·x
kn−1

n−1 gj) = α(xt11 · · ·x
tn−1

n−1 gi)}

Bs(G) = BG − A.

We denote by Ms(G) the K[xn]-submodule of K[x] generated by Bs(G) which is called s-th K[xn]-
module associated to ideal I with respect to <. In this case, Bs(G) is called s-th basis of K[xn]-module
associated to ideal I, with respect to <.

Let b̃1, · · · , b̃l be vectors in K[xn]c which are linearly independent over K[xn], where l and c are
positive integers and l 6 c. The lattice L ⊂ K[xn]c of rank l spanned by b̃1, · · · , b̃l is defined as

L =
l∑

i=1

K[xn]b̃i = {
l∑

i=1

λib̃i| λi ∈ K[xn], 1 6 i 6 l}.

Consider the natural mapping from K[xn]c to K[x], which corresponds the vector ṽ = (v1, · · · , vc)
to the polynomial v =

∑c
j=1 vjx1

sj,1 · · · xn−1
sj,n−1 . Under this mapping, the lattice L ⊂ K[xn]c corre-

sponding to the K[xn]−submodule M(L) of K[x] is denoted by

M(L) = {v =
c∑
j=1

vjx1
sj,1 · · · xn−1

sj,n−1| ṽ = (v1, · · · , vc) ∈ L}.

Let b1, · · · , bl be a basis for the K[xn]−submodule M(L) of K[x] and let b̃1, · · · , b̃l be the correspond-
ing basis for the lattice L. We denote by B = (bi,jx1

sj,1 · · ·xn−1
sj,n−1) the l× c matrix where bi,j is the

coefficient of x1
sj,1 · · ·xn−1

sj,n−1 in the polynomial bi =
∑c

j=1 bi,jx1
sj,1 · · ·xn−1

sj,n−1 . Then we define
determinant d(M(L)) of M(L) to be the maximum of the determinant of l × l sub-matrices of B
with respect to <, and the determinant d(L) of L to be the determinant d(M(L)) of M(L). Finally,
the orthogonality defect OD(b̃1, · · · , b̃l) of the basis b̃1, · · · , b̃l for the lattice L with respect to <, is
defined as

lt(b1) · · · lt(bl)− lt(d(L)).

Definition 2.3. The basis b̃1, · · · , b̃l is called reduced if OD(b̃1, · · · , b̃l) = 0.

For 1 6 i 6 l, ith successive minimum (non-unique) of M(L) with respect to < is a minimum
element mi of M(L), such that mi does not belong to the K[xn] submodule of M(L), generated by
m1, · · · ,mi−1.

Proposition 2.4. Let b̃1, · · · , b̃l be a reduced basis for a lattice L ⊂ K[xn]c of rank l 6 c, which is
ordered in such a way that bi 6 bj for 1 6 i < j 6 l. Then for 1 6 i 6 l, bi is an ith successive
minimum of M(L) with respect to <.

Proof . See [9] �
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Proposition 2.5. Let b̃1, · · · , b̃l be a basis for lattice L ⊂ K[xn]c of rank l 6 c. If the coordinates of
the vectors b̃1, · · · , b̃l can be permuted so that they satisfy

� bi 6 bj, for 1 6 i < j 6 l,
� bi,j < bi,i > bi,k, for 1 6 i < j 6 l, i < k ≤ c,

then the basis b̃1, · · · , b̃l is reduced.

Proof . See [11]. �

Theorem 2.6. Let (G = {g1, · · · , gm}, <) be a reduced Gröbner basis for I, d1, · · · , dn−1 be positive
integer numbers such that di ≥ degxi(lt(gj)) for 1 6 i 6 n− 1, 1 6 j 6 m, and

Is(G) = {f ∈ I | α(f) = xk11 · · ·x
kn−1

n−1 , k1 6 d1, · · · , kn−1 6 dn−1},

then Is(G) = Ms(G).

Proof . Because Bs(G) ⊂ Is(G) then Ms(G) ⊂ Is(G). If Ms(G) 6= Is(G), let h be the minimum
polynomials (with respect to <) in Is which does not belong to Ms(G). Let lt(h) = xβ11 · · ·xβnn
and i0 = max{i | lt(gi)|lt(h)}, then αi0,j 6 βj, for 1 6 j 6 n. We have βj 6 dj for 1 6 j 6 n,

because h ∈ Is(G), thus βj − αi0,j 6 dj − αi0,j. Let b = x
β1−αi0,1

1 · · ·xβn−1−αi0,n−1

n−1 gi0 . Choosing i0 and

b ∈ Bs(G), we put h̃ = h − HC(h)
HC(b)

x
βn−αi0,n
n b. We claim that h̃ does not belong to Ms(G), because

otherwise h = h̃ + HC(h)
HC(b)

xβn−αi0,nn b is a member of Ms(G) which is a contradiction with the choice

of h. On the other hand, lt(HC(h)
HC(b)

x
βn−αi0,n
n b) = xβ11 · · · xβnn = lt(h) and so lt(h̃) < lt(h). Therefore,

h̃ < h that is a contradiction with the choice of h. Hence Ms(G) = Is(G). �

3. Modified LLL Algorithm

In this section we present a new version of LLL algorithm [10], which computes a Gröbner basis
for term order <new from the Gobner basis corresponding to term order <old) in K[x] and in the
end, termination and correctness of the given algorithm will be proved. This algorithm contains two
major steps: initialization step and main steps. In initialization step, a basis Bs(Gold) is produced
where the K[xn]-module generated by it, includes a Gröbner basis with respect to <new. In main
steps, first a matrix by the elements of Bs(Gold) is created and then using linear algebra techniques,
this matrix is converted to a new matrix, where its orthogonality default is equal to zero. It will be
justified that the rows of last matrix forms a Gröbner basis with respect to <new.

LLL Algorithm.
Initialization step
Consider (Gold = {g1, · · · , gm}, <old) as a reduced Gröbner basis for I, <new, and
di, i = 1 · · · , n− 1, as positive integers sufficiently large.
Set {b1, · · · , bl} := Bs(Gold), and k := 0.
Main steps
1. Choose i0 ∈ {k + 1, · · · , l} s.t. bi0 = min<new{bi | k + 1 6 i 6 l} and swap(b̃k+1, b̃i0).
2. Choose j ∈ {1, · · · , c} s.t. HTnew(bk+1) = HTnew(bk+1,j).

3. If j 6 k set t̃ := b̃k+1 − HCnew(bk+1)

HCnew(aj)
x
deg(b̃k+1,j)−deg(ãj,j)
n ãj, otherwise, t̃ := b̃k+1.

4. If HTnew(t) = HTnew(bk+1) then ãk+1 := t̃. Permute (k + 1, · · · , n) such that
HTnew(ak+1,k+1) = HTnew(ak+1).
k := k + 1 and if k = l stop. Otherwise go to step 1.
5. If HTnew(t) <new HTnew(bk+1) then p := max{0 6 s 6 k | as <new t} and for
i = k + 1, · · · , p+ 2 set b̃i := ãi−1, b̃p+1 := t̃ and k := p. Go to step 1.
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Theorem 3.1. LLL algorithm computes a Gröbner basis Gnew in K[x], such that Id(Gold) = Id(Gnew).

Proof . Let d1, · · · , dn−1 be a positive integer such that

di > max{degxi(lt(g)), degxi(lt(h)) for g ∈ Gold and h ∈ G}

for 1 6 i 6 n− 1, where G is a Gröbner basis for I with respect to <new, then G ⊂ Is(Gold) and by
Theorem 2.6, Ms(Gold) ⊆ Is(Gold). Therefore, Bs(Gold) is a Gröbner basis for I with respect to <old,
where K[xn]-module generated by it, includes a Gröbner basis with respect to <new.

Termination: There are finite numbers of passages through step 4 because k is increased by 1.
Also there are finite numbers of passages through step 5, because

lt(a1) · · · lt(ak)lt(bk+1) · · · lt(bn)

becomes smaller than previous step and stays unchanged in the step 4. Hence, the number of passages
in the main steps are finite and algorithm terminates when k = l.

Correctness: Clearly, Bs(Gold) and {a1, · · · , al} generate the same K[xn] submodule M of K[x].
By Theorem 2.6, M = Is(Gold). On the other hand, by Proposition 2.5, {eã1, · · · , ãl} is a reduced
basis for the lattice L with basis {b1, · · · , bl}, because the following invariants are valid before steps
1 and 4

� ai 6 aj , for 1 6 i < j 6 k,
� ak 6 bj, for k < j 6 l,
� ai,j < ai,i > ai,r, for 1 6 j < i 6 k and i < r 6 c.

Hence by Proposition 2.4, ai is ith successive minimum of M and lt(ai) < lt(ai+1), (otherwise
lt(ai) = lt(ai+1), and then a

′
= ai+1 − ai ∈ M and lt(a

′
) < lt(ai+1) imply that a

′
is dependent upon

the rows a1, · · · , ai, so ai+1 = a
′
+ ai is also dependent with a1, · · · , ai, which is a contradiction with

the choice of ai+1). Now, let g be a polynomial in Is(Gold) = M , then there are λ1, · · · , λl ∈ K[xn]
such that

g =
l∑

j=1

λjaj.

But for 1 6 i < j 6 l, lt(λiai) 6= lt(λjaj), because otherwise there are ti, tj such that lt(λiai) =

xtin lt(ai) and lt(λjaj) = x
tj
n lt(aj), but lt(ai) < lt(aj) implies ti > tj (if ti < tj then xtin lt(ai) < x

tj
n lt(aj),

and if ti = tj then lt(ai) = lt(aj)) and hence a
′
= x

ti−tj
n ai−aj ∈M and lt(a

′
) < lt(aj) which implies a

′

is dependent upon a1, · · · , aj−1, so aj = x
ti−tj
n ai−a

′
depends on a1, · · · , aj−1 which is a contradiction

with the choice of aj. Finally, there is a unique 1 6 j 6 l such that lt(g) = lt(λjaj), so lt(aj)|lt(g).
On the other hand, G is a Gröbner basis and for any polynomial f ∈ I, there exists g ∈ G ⊂ M
such that lt(g)|lt(f) and thereupon lt(aj)|lt(f) which reveals that {a1, · · · , al} is a Gröbner basis for
I with respect to <new. �

4. Experimental Results

To demonstrate the efficiency of the presented algorithm in previous section, a Gröbner basis with
respect to DRL order in case of general and n variables, which is Gröbner basis generated by random
polynomials, is considered. Results of implementing this modified algorithm and compare it with
FGLM algorithm and Gröbner basis algorithm available in Maple can be observed in Tables 1 and
2, respectively. Note, here we didn’t compute Bs(Gold), because there is not any gap between α(gi)
and α(gi+1), for gi, gi+1 ∈ Gold. Output is Gröbner basis with respect to Lex order. The following
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notations is used in Tables: n is the number of variables, D = max{α1, · · · , αn} is degree of Gröbner

basis , dim is dimension of K-vector space K[x]
I

, Nm is the number of multiplications for algorithm,
t1 is LLL algorithm execution time and t2 is Gröbner basis algorithm (available in Maple) execution
time.

n D dim n.dim3 Nm n D dim n.dim3 Nm

2 3 5 250 25 3 4 20 24000 18323
2 4 10 2000 329 3 5 30 81000 120428
2 5 15 6750 1105 4 2 4 256 162
2 6 20 16000 2826 4 3 8 2048 1338
3 3 5 375 108 5 2 3 135 52
3 3 10 3000 1590 5 3 10 5000 8563

Table 1: The results of comparison between LLL and FGLM algorithms(DRL to Lex)

n dim t1 t2 n dim t1 t2
2 40 1.780 5.760 4 30 78.741 > 1424.514
2 49 3.757 13.565 5 20 34.598 265.180
2 51 4.844 20.697 5 30 256.732 >3354.062
2 60 8.208 41.367 6 15 28.613 >1895.691
3 50 137.709 >2172.900 7 12 34.394 957.812
4 20 5.976 70.333 7 20 464.417 4043.733

Table 2: The results of comparison of LLL algorithm with Gröbner basis algorithm (available in Maple)(DRL
to Lex)

5. Conclusion

The modified version of LLL algorithm converts a Gröbner basis of an ideal with respect to
an arbitrary ordering into a Gröbner basis with respect to another desired ordering. Although in
some cases, complexity of FGLM algorithm is less than LLL algorithm complexity, but an important
feature of LLL algorithm lies in the fact that it can compute Gröbner basis for ideals of positive
dimension while FGLM algorithm can compute it only for ideals of zero dimension.
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Sparse Multiplication Matrices. In Proceedings of the 36th international symposium on Symbolic and algebraic
computation, ISSAC ’11, pages 115–122, New York, NY, USA, 2011. ACM.

[9] A.-K. Lenstra. Factoring multivariate polynomials over finite fields. Journal of Computer and System Sciences,
30(2), 1985.

[10] A.-K. Lenstra, H.-W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann.,
261:515–534, 1982.

[11] S. Paulus. Lattice basis reduction in function fields. In J. P. Buhler, editor, Algorithmic Number Theory —
ANTS-III, volume 1423 of Lecture Notes in Computer Science, pages 567–575, Berlin, 1998. Springer-Verlag.


	 Introduction
	Perliminaries and Definitions
	Modified LLL Algorithm
	Experimental Results
	Conclusion

