Existence and uniqueness of the solution for a general system of operator equations in b-metric spaces endowed with a graph

Cristian Chifu*, Gabriela Petrușel
Department of Business, Faculty of Business, Babess-Bolyai University Cluj-Napoca, Romania
(Communicated by M. Eshaghi)

Abstract

The purpose of this paper is to present some coupled fixed point results on a metric space endowed with two b-metrics. We shall apply a fixed point theorem for an appropriate operator on the Cartesian product of the given spaces endowed with directed graphs. Data dependence, well-posedness and Ulam-Hyers stability are also studied. The results obtained here will be applied to prove the existence and uniqueness of the solution for a system of integral equations.

Keywords: fixed point; coupled fixed point; b-metric space; connected graph; integral equations. 2010 MSC: Primary 47H10; Secondary 54H25, 45 G 15.

1. Introduction and Preliminaries

In the study of operator equation systems, a very useful concept is that of coupled fixed point. Introduced by Opoitsev (see [15], [16]), the topic knew a fast expansion starting with the papers of Guo and Lakshmikantam [12] and Gnana and Lakshmikantam [10]. For related results regarding coupled fixed point theory see [14, 4, 17, 5, 18].

Regarding the theory of fixed points in metric spaces endowed with a graph, this research area was initiated by Jachymski [13] and Gwóźdź-Lukawska, Jachymski [11]. Other results for single-valued and multivalued operators in such metric spaces were given by Beg et al. [1], Chifu and Petruşel [6], [7], Dehkordi and Ghods [9].

[^0]The purpose of this paper is to generalize some of these results, in special those from [7], using the context of two b-metrics spaces endowed with a directed graph.

In what follow we shall recall some essential definitions and results which will be useful throughout this paper.

Definition 1.1. ([8]) Let X be a nonempty set and let $s \geq 1$ be a given real number. A functional $d: X \times X \rightarrow[0, \infty)$ is said to be a b-metric with constant s, if all axioms of the metric space take place with the following modification of the triangle axiom:

$$
d(x, z) \leq s[d(x, y)+d(y, z)], \text { for all } x, y, z \in X
$$

In this case the pair (X, d) is called a b-metric space with constant s.
Remark 1.2. Since a b-metric space is a metric space when $\mathrm{s}=1$, the class of b-metric spaces is larger than the class of metric spaces. For more details and examples on b-metric spaces, see e.g. [4].

Example 1.3. Let $X=\mathbb{R}_{+}$and $d: X \times X \rightarrow \mathbb{R}_{+}$such that $d(x, y)=|x-y|^{p}, p>1$. It's easy to see that d is a b-metric with $s=2^{p}$, but is not a metric.

Let (X, d) and (Y, ρ) be two b-metric spaces, with the same constant $s \geq 1$, and let $Z=X \times Y$. Let us consider the functional $\tilde{d}: Z \times Z \rightarrow[0, \infty)$, defined by

$$
\begin{equation*}
\widetilde{d}((x, y),(u, v))=d(x, u)+\rho(y, v), \text { for all }(x, y),(u, v) \in Z . \tag{1.1}
\end{equation*}
$$

Lemma 1.4. If (X, d) and (Y, ρ) are two complete b-metric spaces, with the same constant $s \geq 1$, then \widetilde{d} is a b-metric on $Z=X \times Y$, with the same constant $s \geq 1$, and (Z, \widetilde{d}) is a complete b-metric space.

Definition 1.5. A mapping $\varphi:[0, \infty) \rightarrow[0, \infty)$ is called a comparison function if it is increasing and $\varphi^{n}(t) \rightarrow 0$, as $n \rightarrow \infty$, for any $t \in[0, \infty)$.

Lemma 1.6. ([2]) If $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a comparison function, then:
(1) each iterate φ^{k} of $\varphi, k \geq 1$, is also a comparison function;
(2) φ is continuous at 0 ;
(3) $\varphi(t)<t$, for any $t>0$.

In 1997, V. Berinde [2] introduced the concept of (c)-comparison function as follows:
Definition 1.7. ([2]) A function $\varphi:[0, \infty) \rightarrow[0, \infty)$ is said to be a (c)-comparison function if
(1) φ is increasing;
(2) there exists $k_{0} \in \mathbb{N}, a \in(0,1)$ and a convergent series of nonnegative terms $\sum_{k=1}^{\infty} v_{k}$ such that $\varphi^{k+1}(t) \leq a \varphi^{k}(t)+v_{k}$, for $k \geq k_{0}$ and any $t \in[0, \infty)$.

In order to give some fixed point results to the class of b-metric spaces, the notion of a (c) comparison function was extended to (b)-comparison function by V. Berinde [3].

Definition 1.8. ([3]) Let $s \geq 1$ be a real number. A mapping $\varphi:[0, \infty) \rightarrow[0, \infty)$ is called a (b)-comparison function if the following conditions are fulfilled
(1) φ is monotone increasing;
(2) there exist $k_{0} \in \mathbb{N}, a \in(0,1)$ and a convergent series of nonnegative terms $\sum_{k=1}^{\infty} v_{k}$ such that $s^{k+1} \varphi^{k+1}(t) \leq a s^{k} \varphi^{k}(t)+v_{k}$, for $k \geq k_{0}$ and any $t \in[0, \infty)$.

It is obvious that the concept of (b)-comparison function reduces to that of (c)-comparison function when $s=1$.

The following lemma is very important in the proof of our results.
Lemma 1.9. ([4]) If $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a (b)-comparison function, then we have the following conclusions:
(1) the series $\sum_{k=0}^{\infty} s^{k} \varphi^{k}(t)$ converges for any $t \in[0, \infty)$;
(2) the function $S_{b}:[0, \infty) \rightarrow[0, \infty)$ defined by $S_{b}(t)=\sum_{k=0}^{\infty} s^{k} \varphi^{k}(t), t \in[0, \infty)$, is increasing and continuous at 0 .

Due to the above lemma, any (b)-comparison function is a comparison function.
Let (X, d) be a b-metric space and Δ be the diagonal of $X \times X$. Let G be a directed graph, such that the set $V(G)$ of its vertices coincides with X and $\Delta \subseteq E(G)$, where $E(G)$ is the set of the edges of the graph. Assume also that G has no parallel edges and, thus, G can be identified with the pair $(V(G), E(G))$.

Definition 1.10. We say that G has the transitivity property if and only if, for all $x, y, z \in X$,

$$
(x, z) \in E(G),(z, y) \in E(G) \Rightarrow(x, y) \in E(G)
$$

Let us denote by G^{-1} the graph obtained from G by reversing the direction of edges. Thus,

$$
E\left(G^{-1}\right)=\{(x, y) \in X \times X:(y, x) \in E(G)\}
$$

Remark 1.11. If G has the transitivity property, then G^{-1} has the same property.

Throughout the paper we shall say that G with the above mentioned properties satisfies standard conditions.

Definition 1.12. ([5]) Let (X, d) be a b-metric space, with constant $s \geq 1$, and G be a directed graph. We say that the triple (X, d, G) has the property $\left(A_{1}\right)$, if for any sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset$ X with $x_{n} \rightarrow x$, as $n \rightarrow \infty$, and $\left(x_{n}, x_{n+1}\right) \in E(G)$, for $n \in \mathbb{N}$, we have that $\left(x_{n}, x\right) \in E(G)$.

Definition 1.13. ([5) Let (X, d) be a b-metric space, with constant $s \geq 1$, and G be a directed graph. We say that the triple (X, d, G) has the property $\left(A_{2}\right)$ if for any sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset$ X with $x_{n} \rightarrow x$, as $n \rightarrow \infty$, and $\left(x_{n}, x_{n+1}\right) \in E\left(G^{-1}\right)$, for $n \in \mathbb{N}$, we have that $\left(x_{n}, x\right) \in E\left(G^{-1}\right)$.

2. Existence and uniqueness results

Let (X, d) be a b-metric space with constant $s \geq 1$, endowed with a directed graph G_{1} satisfying the standard conditions, and let (Y, ρ) be a b-metric space, with the same constant $s \geq 1$, endowed with a directed graph G_{2}, also satisfying the standard conditions.

We shall consider a graph G on $X \times Y$ such that

$$
((x, y),(u, v)) \in E(G) \Leftrightarrow(x, u) \in E\left(G_{1}\right),(y, v) \in E\left(G_{2}^{-1}\right) .
$$

Let $F_{1}: X \times Y \rightarrow X$ and $F_{2}: X \times Y \rightarrow Y$ be two operators.
Throughout the paper the following notations will be used: $Z:=X \times Y$ and $F:=\left(F_{1}, F_{2}\right): Z \rightarrow$ $Z, F(x, y)=\left(F_{1}(x, y), F_{2}(x, y)\right)$, for all $(x, y) \in Z$.

Definition 2.1. We say that the operator F has the property (P) if:
(i) $x, u \in X$ such that $(x, u) \in E\left(G_{1}\right)$, then

$$
\left(F_{1}(x, y), F_{1}(u, y)\right) \in E\left(G_{1}\right),\left(F_{2}(x, y), F_{2}(u, y)\right) \in E\left(G_{2}^{-1}\right), \forall y \in Y
$$

(ii) $y, v \in Y$ such that $(y, v) \in E\left(G_{2}^{-1}\right)$, then

$$
\left(F_{1}(x, y), F_{1}(x, v)\right) \in E\left(G_{1}\right),\left(F_{2}(x, y), F_{2}(x, v)\right) \in E\left(G_{2}^{-1}\right), \forall x \in X
$$

Proposition 2.2. If the operator F has the property (P), then if $x, u \in X$ and $y, v \in Y$ are such that $((x, y),(u, v)) \in E(G)$, then

$$
\left(\left(F_{1}(x, y), F_{2}(x, y)\right),\left(F_{1}(u, v), F_{2}(u, v)\right)\right) \in E(G),
$$

or

$$
(F(x, y), F(u, v)) \in E(G) .
$$

Proof. If $((x, y),(u, v)) \in E(G)$, then $(x, u) \in E\left(G_{1}\right),(y, v) \in E\left(G_{2}^{-1}\right)$.
If $(x, u) \in E\left(G_{1}\right)$, from property (P) we have

$$
\begin{gather*}
\left(F_{1}(x, y), F_{1}(u, y)\right) \in E\left(G_{1}\right), \tag{2.1}\\
\left(F_{2}(x, y), F_{2}(u, y)\right) \in E\left(G_{2}^{-1}\right), \forall y \in Y . \tag{2.2}
\end{gather*}
$$

If $(y, v) \in E\left(G_{2}^{-1}\right)$, from property (P) we have that

$$
\begin{gather*}
\left(F_{1}(x, y), F_{1}(x, v)\right) \in E\left(G_{1}\right), \tag{2.3}\\
\left(F_{2}(x, y), F_{2}(x, v)\right) \in E\left(G_{2}^{-1}\right), \forall x \in X . \tag{2.4}
\end{gather*}
$$

Considering $x=u$ in (2.3), then $\left(F_{1}(u, y), F_{1}(u, v)\right) \in E\left(G_{1}\right)$. Now from (2.1) and the transitivity of G_{1} we have

$$
\begin{equation*}
\left(F_{1}(x, y), F_{1}(u, v)\right) \in E\left(G_{1}\right) . \tag{2.5}
\end{equation*}
$$

In we consider $y=v$ in (2.2), then $\left(F_{2}(x, v), F_{2}(u, v)\right) \in E\left(G_{2}^{-1}\right)$. From (2.4) and the transitivity of G_{2}^{-1} we have

$$
\begin{equation*}
\left(F_{2}(x, y), F_{2}(u, v)\right) \in E\left(G_{2}^{-1}\right) . \tag{2.6}
\end{equation*}
$$

From (2.5) and (2.6) we obtain

$$
\left(\left(F_{1}(x, y), F_{2}(x, y)\right),\left(F_{1}(u, v), F_{2}(u, v)\right)\right) \in E(G) .
$$

Proposition 2.3. If the operator F has property (P), then if $x, u \in X$ and $y, v \in Y$ are such that $((x, y),(u, v)) \in E(G)$, then

$$
\left(F^{n}(x, y), F^{n}(u, v)\right) \in E(G) .
$$

Proof . From Proposition 2.2 we have that if $x, u \in X$ and $y, v \in Y$ are such that $((x, y),(u, v)) \in$ $E(G)$, then (2.5) and (2.6) take place. Using these relations and the fact that $F=\left(F_{1}, F_{2}\right)$ has property (P), we obtain:
For $(x, u) \in E\left(G_{1}\right)$,

$$
\begin{gather*}
\left(F_{1}\left(F_{1}(x, y), y_{1}\right), F_{1}\left(F_{1}(u, v), y_{1}\right)\right) \in E\left(G_{1}\right) \tag{2.7}\\
\left(F_{2}\left(F_{1}(x, y), y_{1}\right), F_{2}\left(F_{1}(u, v), y_{1}\right)\right) \in E\left(G_{2}^{-1}\right), \forall y_{1} \in Y . \tag{2.8}
\end{gather*}
$$

For $(y, v) \in E\left(G_{2}^{-1}\right)$,

$$
\begin{gather*}
\left(F_{1}\left(x_{1}, F_{2}(x, y)\right), F_{1}\left(x_{1}, F_{2}(u, v)\right)\right) \in E\left(G_{1}\right) \tag{2.9}\\
\left(F_{2}\left(x_{1}, F_{2}(x, y)\right), F_{2}\left(x_{1}, F_{2}(u, v)\right)\right) \in E\left(G_{2}^{-1}\right), \forall x_{1} \in X . \tag{2.10}
\end{gather*}
$$

If in (2.9) we consider $x_{1}=F_{1}(u, v)$ and in 2.7 we consider $y_{1}=F_{2}(x, y)$, then we shall have

$$
\begin{align*}
& \left(F_{1}\left(F_{1}(u, v), F_{2}(x, y)\right), F_{1}\left(F_{1}(u, v), F_{2}(u, v)\right)\right) \in E\left(G_{1}\right) \tag{2.11}\\
& \left(F_{1}\left(F_{1}(x, y), F_{2}(x, y)\right), F_{1}\left(F_{1}(u, v), F_{2}(x, y)\right)\right) \in E\left(G_{1}\right) . \tag{2.12}
\end{align*}
$$

From (2.11) and (2.12), using the transitivity of G_{1} we obtain

$$
\begin{equation*}
\left(F_{1}\left(F_{1}(x, y), F_{2}(x, y)\right), F_{1}\left(F_{1}(u, v), F_{2}(u, v)\right)\right) \in E\left(G_{1}\right) . \tag{2.13}
\end{equation*}
$$

In the same way we shall obtain

$$
\begin{equation*}
\left(F_{2}\left(F_{1}(x, y), F_{2}(x, y)\right), F_{2}\left(F_{1}(u, v), F_{2}(u, v)\right)\right) \in E\left(G_{2}^{-1}\right) . \tag{2.14}
\end{equation*}
$$

(2.13) and (2.14) are equivalent with

$$
\begin{gather*}
\left(F_{1}(F(x, y)), F_{1}(F(u, v))\right) \in E\left(G_{1}\right) \tag{2.15}\\
\left(F_{2}(F(x, y)), F_{2}(F(u, v))\right) \in E\left(G_{2}^{-1}\right) . \tag{2.16}
\end{gather*}
$$

From (2.15) and 2.16), using Proposition 2.2, we have

$$
\left(F^{2}(x, y), F^{2}(u, v)\right) \in E(G)
$$

By induction we reach the conclusion.
Let us consider the set denoted by Z^{F} and defined as:

$$
Z^{F}=\left\{(x, y) \in Z:\left(x, F_{1}(x, y)\right) \in E\left(G_{1}\right) \text { and }\left(y, F_{2}(x, y)\right) \in E\left(G_{2}^{-1}\right)\right\}
$$

Consider the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X and $\left(y_{n}\right)_{n \in \mathbb{N}}$ in Y defined by

$$
\begin{equation*}
x_{n+1}=F_{1}\left(x_{n}, y_{n}\right), \quad y_{n+1}=F_{2}\left(x_{n}, y_{n}\right), \text { for all } n \in \mathbb{N} . \tag{2.17}
\end{equation*}
$$

Proposition 2.4. Suppose that the operator F has property (P) and $\left(x_{0}, y_{0}\right) \in Z^{F}$. Then for any sequence $\left(z_{n}\right)_{n \in \mathbb{N}}, z_{n}=\left(x_{n}, y_{n}\right)$ in Z, with $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ defined as above, we have $\left(z_{n}, z_{n+1}\right) \in$ $E(G)$, for all $n \in \mathbb{N}$.

Proof. From the fact that $\left(x_{0}, y_{0}\right) \in Z^{F}$ it follows that $\left(x_{0}, F_{1}\left(x_{0}, y_{0}\right)\right) \in E\left(G_{1}\right)$ and $\left(y_{0}, F_{2}\left(x_{0}, y_{0}\right)\right) \in$ $E\left(G_{2}^{-1}\right)$ which is equivalent with $\left(x_{0}, x_{1}\right) \in E\left(G_{1}\right)$ and $\left(y_{0}, y_{1}\right) \in E\left(G_{2}^{-1}\right)$.

Now, from Proposition 2.2 we have

$$
\begin{aligned}
& \left(F_{1}\left(x_{0}, y_{0}\right), F_{1}\left(x_{1}, y_{1}\right)\right) \in E\left(G_{1}\right), \\
& \left(F_{2}\left(x_{0}, y_{0}\right), F_{2}\left(x_{1}, y_{1}\right)\right) \in E\left(G_{2}^{-1}\right),
\end{aligned}
$$

which is equivalent with $\left(x_{1}, x_{2}\right) \in E\left(G_{1}\right)$ and $\left(y_{1}, y_{2}\right) \in E\left(G_{2}^{-1}\right)$.
By induction we shall obtain that $\left(x_{n}, x_{n+1}\right) \in E\left(G_{1}\right)$ and $\left(y_{n}, y_{n+1}\right) \in E\left(G_{2}^{-1}\right)$ which is equivalent with $\left(\left(x_{n}, y_{n}\right),\left(x_{n+1}, y_{n+1}\right)\right) \in E(G)$, i.e. $\left(z_{n}, z_{n+1}\right) \in E(G)$.

Remark 2.5. It can be proved that $x_{n}=F_{1}^{n}\left(x_{0}, y_{0}\right)$ and $y_{n}=F_{2}^{n}\left(x_{0}, y_{0}\right)$ and thus, $z_{n}=F^{n}\left(z_{0}\right)$, for all $n \in \mathbb{N}$, where $z_{0}=\left(x_{0}, y_{0}\right)$.

Definition 2.6. The operator $F=\left(F_{1}, F_{2}\right): Z \rightarrow Z$ is called (φ, G)-contraction of type (b) if:
i. F has property (P);
ii. there exists $\varphi:[0, \infty) \rightarrow[0, \infty)$ a (b)-comparison function such that

$$
\begin{aligned}
& d\left(F_{1}(x, y), F_{1}(u, v)\right)+\rho\left(F_{2}(x, y), F_{2}(u, v)\right) \leq \varphi(d(x, u)+\rho(y, v)) \\
& \text { for all }(x, u) \in E\left(G_{1}\right),(y, v) \in E\left(G_{2}^{-1}\right)
\end{aligned}
$$

In what follows we shall consider the $b-$ metric \tilde{d} defined by (1.1)
Lemma 2.7. Let (X, d) be a b-metric space, with constant $s \geq 1$, endowed with a directed graph G_{1} satisfying the standard conditions and (Y, ρ) be a b-metric space, with the same constant $s \geq 1$, endowed with a directed graph G_{2} also satisfying the standard conditions. Let $F: Z \rightarrow Z$ be a (φ, G)-contraction of type (b). Consider the sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ as above. Then, if $\left(x_{0}, y_{0}\right) \in Z^{F}$, there exists $r\left(x_{0}, y_{0}\right) \geq 0$ such that

$$
\widetilde{d}\left(z_{n}, z_{n+1}\right) \leq \varphi^{n}\left(r\left(x_{0}, y_{0}\right)\right), \text { for all } n \in \mathbb{N} .
$$

Proof. Let $\left(x_{0}, y_{0}\right) \in Z^{F}$. From Proposition 2.3 we have that $\left(z_{n}, z_{n+1}\right) \in E(G)$ which is $\left(x_{n}, x_{n+1}\right) \in$ $E\left(G_{1}\right)$ and $\left(y_{n}, y_{n+1}\right) \in E\left(G_{2}^{-1}\right)$ for all $n \in \mathbb{N}$.

Since F is a (φ, G)-contraction of type (b), we shall obtain

$$
\begin{aligned}
\widetilde{d}\left(z_{n}, z_{n+1}\right) & =d\left(F_{1}\left(x_{n-1}, y_{n-1}\right), F_{1}\left(x_{n}, y_{n}\right)\right)+\rho\left(F_{2}\left(x_{n-1}, y_{n-1}\right), F_{2}\left(x_{n}, y_{n}\right)\right) \\
& \leq \varphi\left(d\left(F_{1}\left(x_{n-2}, y_{n-2}\right), F_{1}\left(x_{n-1}, y_{n-1}\right)\right)+\rho\left(F_{2}\left(x_{n-2}, y_{n-2}\right), F_{2}\left(x_{n-1}, y_{n-1}\right)\right)\right) \\
& \leq \ldots \leq \varphi^{n}\left(d\left(x_{0}, x_{1}\right)+\rho\left(y_{0}, y_{1}\right)\right)=\varphi^{n}\left(d\left(x_{0}, F_{1}\left(x_{0}, y_{0}\right)\right)+\rho\left(y_{0}, F_{2}\left(x_{0}, y_{0}\right)\right)\right)
\end{aligned}
$$

If we consider $r\left(x_{0}, y_{0}\right):=d\left(x_{0}, F_{1}\left(x_{0}, y_{0}\right)\right)+\rho\left(y_{0}, F_{2}\left(x_{0}, y_{0}\right)\right)$, then

$$
\widetilde{d}\left(z_{n}, z_{n+1}\right) \leq \varphi^{n}\left(r\left(x_{0}, y_{0}\right)\right), \text { for all } n \in \mathbb{N} .
$$

Lemma 2.8. Let (X, d) be a complete b-metric space, with constant $s \geq 1$, endowed with a directed graph G_{1} satisfying the standard conditions and (Y, ρ) be a complete b-metric space, with the same constant $s \geq 1$, endowed with a directed graph G_{2} also satisfying the standard conditions. Let $F: Z \rightarrow Z$ be a (φ, G)-contraction of type (b). Consider the sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ as above. Then, if $\left(x_{0}, y_{0}\right) \in Z^{F}$, there exists $z^{*}=\left(x^{*}, y^{*}\right) \in Z$, such that $\left(z_{n}\right)_{n \in \mathbb{N}}$ converges to z^{*}, as $n \rightarrow \infty$.

Proof. Let $\left(x_{0}, y_{0}\right) \in Z^{F}$. From Lemma 2.7 we know that

$$
\widetilde{d}\left(z_{n}, z_{n+1}\right) \leq \varphi^{n}\left(r\left(x_{0}, y_{0}\right)\right), \text { for all } n \in \mathbb{N} .
$$

Now we shall prove that $\left(z_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. We have

$$
\begin{aligned}
\widetilde{d}\left(z_{n}, z_{n+p}\right) \leq & s \widetilde{d}\left(z_{n}, z_{n+1}\right)+s^{2} \widetilde{d}\left(z_{n+1}, z_{n+2}\right)+\cdots+s^{p-1} \widetilde{d}\left(z_{n+p-2}, z_{n+p-1}\right) \\
& +s^{p-1} \widetilde{d}\left(z_{n+p-1}, z_{n+p}\right) \leq s \varphi^{n}\left(r\left(x_{0}, y_{0}\right)\right)+s^{2} \varphi^{n+1}\left(r\left(x_{0}, y_{0}\right)\right) \\
& +\cdots+s^{p-1} \varphi^{n+p-2}\left(r\left(x_{0}, y_{0}\right)\right)+s^{p} \varphi^{n+p-1}\left(r\left(x_{0}, y_{0}\right)\right) \\
\leq & \frac{1}{s^{n-1}} \sum_{k=n}^{n+p-1} s^{k} \varphi^{k}\left(r\left(x_{0}, y_{0}\right)\right) .
\end{aligned}
$$

Let $S_{n}=\sum_{k=0}^{n} s^{k} \varphi^{k}\left(r\left(x_{0}, y_{0}\right)\right)$. Hence we have

$$
\widetilde{d}\left(z_{n}, z_{n+p}\right) \leq \frac{1}{s^{n-1}}\left(S_{n+p-1}-S_{n-1}\right) \leq \frac{1}{s^{n-1}} \sum_{k=0}^{\infty} s^{k} \varphi^{k}\left(r\left(x_{0}, y_{0}\right)\right) .
$$

From Lemma 1.9 we have that the series is convergent. In this way, we shall obtain

$$
\widetilde{d}\left(z_{n}, z_{n+p}\right) \leq \frac{1}{s^{n-1}} \sum_{k=0}^{\infty} s^{k} \varphi^{k}\left(r\left(x_{0}, y_{0}\right)\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

In conclusion the sequence $\left(z_{n}\right)$ is a Cauchy sequence. Since (Z, \widetilde{d}) is a complete b-metric, there exists $z^{*} \in Z$, such that $z_{n} \rightarrow z^{*}$, as $n \rightarrow \infty$.

Remark 2.9. $z_{n} \rightarrow z^{*}$ means that there exist $x^{*} \in X$ and $y^{*} \in Y$ such that $x_{n} \rightarrow x^{*}$ and $y_{n} \rightarrow y^{*}$, as $n \rightarrow \infty$.

Let us now consider the following operator equation system

$$
\left\{\begin{array}{l}
x=F_{1}(x, y) \tag{2.18}\\
y=F_{2}(x, y)
\end{array} .\right.
$$

Theorem 2.10. Let (X, d) be a complete b-metric space, with constant $s \geq 1$, endowed with a directed graph G_{1} satisfying the standard conditions and (Y, ρ) be a complete b-metric space, with the same constant $s \geq 1$, endowed with a directed graph G_{2} also satisfying the standard conditions. Let $F: Z \rightarrow Z$ be a (φ, G)-contraction of type (b). Suppose that the triple $\left(X, d, G_{1}\right)$ has property $\left(A_{1}\right)$ and the triple $\left(Y, \rho, G_{2}\right)$ has property $\left(A_{2}\right)$. If there exists $\left(x_{0}, y_{0}\right) \in Z^{F}$, then the system (2.18) has at least one solution.

Proof . From Lemma 2.8, there exists $z^{*} \in Z$, such that $z_{n} \rightarrow z^{*}$, as $n \rightarrow \infty$. We shall prove that $F\left(z^{*}\right)=z^{*}$. From Remark 2.9, we have that $x^{*} \in X$ and $y^{*} \in Y$ such that $z^{*}=\left(x^{*}, y^{*}\right) \in Z$,

$$
\begin{aligned}
\widetilde{d}\left(z^{*}, F\left(z^{*}\right)\right)= & d\left(x^{*}, F_{1}\left(x^{*}, y^{*}\right)\right)+\rho\left(y^{*}, F_{2}\left(x^{*}, y^{*}\right)\right) \leq s\left[d\left(x^{*}, x_{n+1}\right)+\rho\left(y^{*}, y_{n+1}\right)\right] \\
& +s\left[d\left(F_{1}\left(x_{n}, y_{n}\right), F_{1}\left(x^{*}, y^{*}\right)\right)+\rho\left(F_{2}\left(x_{n}, y_{n}\right), F_{2}\left(x^{*}, y^{*}\right)\right)\right] \\
\leq & s\left[d\left(x^{*}, x_{n+1}\right)+\rho\left(y^{*}, y_{n+1}\right)\right]+s \varphi\left(d\left(x_{n}, x^{*}\right)+\rho\left(y_{n}, y^{*}\right)\right) \rightarrow 0, \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hence $F\left(z^{*}\right)=z^{*}$, i.e.,

$$
\left\{\begin{array}{l}
x^{*}=F_{1}\left(x^{*}, y^{*}\right) \\
y^{*}=F_{2}\left(x^{*}, y^{*}\right)
\end{array}\right.
$$

Let us suppose now that for every $(x, y),(u, v) \in Z$, there exists $(t, w) \in Z$ such that

$$
\begin{equation*}
(x, t) \in E\left(G_{1}\right),(y, w) \in E\left(G_{2}^{-1}\right), \quad(u, t) \in E\left(G_{1}\right),(v, w) \in E\left(G_{2}^{-1}\right) \tag{2.19}
\end{equation*}
$$

Theorem 2.11. Adding the condition (2.19) to the hypotheses of Theorem 2.10, we obtain the uniqueness of the solution of the system (2.18).

Proof . Let us suppose that there exist $\left(x^{*}, y^{*}\right),\left(u^{*}, v^{*}\right) \in Z$ two solutions of the system (2.18). From (2.19) we have that there exists $(z, w) \in Z$ such that

$$
\begin{aligned}
& \left(x^{*}, z\right) \in E\left(G_{1}\right),\left(y^{*}, w\right) \in E\left(G_{2}^{-1}\right) \\
& \left(u^{*}, z\right) \in E\left(G_{1}\right),\left(v^{*}, w\right) \in E\left(G_{2}^{-1}\right)
\end{aligned}
$$

Using Lemma 2.7 we shall have

$$
\begin{aligned}
d\left(x^{*}, u^{*}\right)+\rho\left(y^{*}, v^{*}\right)= & d\left(F_{1}^{n}\left(x^{*}, y^{*}\right), F_{1}^{n}\left(u^{*}, v^{*}\right)\right)+\rho\left(F_{2}^{n}\left(x^{*}, y^{*}\right), F_{2}^{n}\left(u^{*}, v^{*}\right)\right) \\
\leq & s\left[d\left(F_{1}^{n}\left(x^{*}, y^{*}\right), F_{1}^{n}(z, w)\right)+\rho\left(F_{2}^{n}\left(x^{*}, y^{*}\right), F_{2}^{n}(z, w)\right)\right]+ \\
& +s\left[d\left(F_{1}^{n}(z, w), F_{1}^{n}\left(u^{*}, v^{*}\right)\right)+\rho\left(F_{2}^{n}(z, w), F_{2}^{n}\left(u^{*}, v^{*}\right)\right)\right] \\
\leq & \left.s\left[\varphi^{n}\left(d\left(x^{*}, z\right)+\rho\left(y^{*}, w\right)\right)+\varphi^{n} d\left(u^{*}, z\right)+\rho\left(v^{*}, w\right)\right)\right] \rightarrow 0, \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hence $d\left(x^{*}, u^{*}\right)+\rho\left(y^{*}, v^{*}\right)=0$ and thus we obtain that $x^{*}=u^{*}$ and $y^{*}=v^{*}$.
Theorem 2.12. Let (X, d) be a complete b-metric space, with constant $s \geq 1$, endowed with a directed graph G_{1} satisfying the standard conditions and (Y, ρ) be a complete b-metric space, with the same constant $s \geq 1$, endowed with a directed graph G_{2} also satisfying the standard conditions. Let us consider $F=\left(F_{1}, F_{2}\right): Z \rightarrow Z, H=\left(H_{1}, H_{2}\right): Z \rightarrow Z$ two operators. Suppose that
(i) F satisfies the conditions from Theorem 2.11,
(ii) there exists at least $\left(u^{*}, v^{*}\right) \in Z$ such that

$$
H\left(u^{*}, v^{*}\right)=\left(u^{*}, v^{*}\right) \text { and }\left(x^{*}, u^{*}\right) \in E\left(G_{1}\right),\left(y^{*}, v^{*}\right) \in E\left(G_{2}^{-1}\right)
$$

where $\left(x^{*}, y^{*}\right)$ is a unique solution of the system (2.18).
(iii) there exist $\eta_{1}, \eta_{2}>0$, such that

$$
\begin{aligned}
& d\left(F_{1}(x, y), H_{1}(x, y)\right) \leq \eta_{1}, \\
& \rho\left(F_{2}(x, y), H_{2}(x, y)\right) \leq \eta_{2} .
\end{aligned}
$$

(iv) $t-s \varphi(t) \geq 0$, for all $t \geq 0$ and $\lim _{t \rightarrow \infty}(t-s \varphi(t))=\infty$.

In these conditions we have the following estimation:

$$
d\left(x^{*}, u^{*}\right)+\rho\left(y^{*}, v^{*}\right) \leq \sup \left\{t \geq 0 \mid t-s \varphi(t) \leq s\left(\eta_{1}+\eta_{2}\right)\right\} .
$$

Proof. From (i) there exists a unique pair $\left(x^{*}, y^{*}\right) \in Z$ such that $F\left(x^{*}, y^{*}\right)=\left(x^{*}, y^{*}\right)$. Let $\left(u^{*}, v^{*}\right) \in$ Z such that $H\left(u^{*}, v^{*}\right)=\left(u^{*}, v^{*}\right)$.

$$
\begin{aligned}
d\left(x^{*}, u^{*}\right)+\rho\left(y^{*}, v^{*}\right)= & d\left(F_{1}\left(x^{*}, y^{*}\right), H_{1}\left(u^{*}, v^{*}\right)\right)+\rho\left(F_{2}\left(x^{*}, y^{*}\right), H_{2}\left(u^{*}, v^{*}\right)\right) \\
\leq & s\left[d\left(F_{1}\left(x^{*}, y^{*}\right), F_{1}\left(u^{*}, v^{*}\right)\right)+d\left(F_{1}\left(u^{*}, v^{*}\right), H_{1}\left(u^{*}, v^{*}\right)\right)\right] \\
& +s\left[\rho\left(F_{2}\left(x^{*}, y^{*}\right), F_{2}\left(u^{*}, v^{*}\right)\right)+\rho\left(F_{2}\left(u^{*}, v^{*}\right), H_{2}\left(u^{*}, v^{*}\right)\right)\right] \\
\leq & s \varphi\left(d\left(x^{*}, u^{*}\right)+\rho\left(y^{*}, v^{*}\right)\right)+s\left(\eta_{1}+\eta_{2}\right) .
\end{aligned}
$$

Hence

$$
d\left(x^{*}, u^{*}\right)+\rho\left(y^{*}, v^{*}\right)-s \varphi\left(d\left(x^{*}, u^{*}\right)+\rho\left(y^{*}, v^{*}\right)\right) \leq s\left(\eta_{1}+\eta_{2}\right) .
$$

Finally, we obtain that

$$
d\left(x^{*}, u^{*}\right)+\rho\left(y^{*}, v^{*}\right) \leq \sup \left\{t \geq 0 \mid t-s \varphi(t) \leq s\left(\eta_{1}+\eta_{2}\right)\right\} .
$$

3. Well-posedness and Ulam-Hyers stability

Let us consider the operator equation system (2.18)

$$
\left\{\begin{array}{l}
x=F_{1}(x, y) \\
y=F_{2}(x, y)
\end{array}\right.
$$

Definition 3.1. By definition, the operator equation system (2.18) is said to be well-posed if:
(i) there exists a unique pair $\left(x^{*}, y^{*}\right) \in Z$ such that

$$
\left\{\begin{array}{l}
x^{*}=F_{1}\left(x^{*}, y^{*}\right) \\
y^{*}=F_{2}\left(x^{*}, y^{*}\right)
\end{array}\right.
$$

(ii) for any sequence $\left(x_{n}, y_{n}\right)_{n \in \mathbb{N}} \in Z$ for which

$$
d\left(x_{n}, F_{1}\left(x_{n}, y_{n}\right)\right) \rightarrow 0, \quad \rho\left(y_{n}, F_{2}\left(x_{n}, y_{n}\right)\right) \rightarrow 0
$$

as $n \rightarrow \infty$, we have that $x_{n} \rightarrow x^{*}$ and $y_{n} \rightarrow y^{*}$, as $n \rightarrow \infty$.
Theorem 3.2. Suppose that all the hypotheses of Theorem 2.11 holds. If the (b) -comparison function $\varphi:[0, \infty) \rightarrow[0, \infty)$ is such that $\varphi(t)<\frac{t}{s}, \forall t>0$ and for any sequence $\left(x_{n}, y_{n}\right)_{n \in \mathbb{N}} \in Z$ for which

$$
d\left(x_{n}, F_{1}\left(x_{n}, y_{n}\right)\right) \rightarrow 0, \quad \rho\left(y_{n}, F_{2}\left(x_{n}, y_{n}\right)\right) \rightarrow 0
$$

as $n \rightarrow \infty$, we have that $\left(x_{n}, x^{*}\right) \in E\left(G_{1}\right)$ and $\left(y_{n}, y^{*}\right) \in E\left(G_{2}^{-1}\right)$, then the operator equation system (2.18) is well-posed.

Proof. From Theorem 2.11 we obtain that there exists a unique pair $\left(x^{*}, y^{*}\right) \in Z$ such that

$$
\left\{\begin{array}{l}
x^{*}=F_{1}\left(x^{*}, y^{*}\right) \\
y^{*}=F_{2}\left(x^{*}, y^{*}\right)
\end{array} .\right.
$$

Let $\left(x_{n}, y_{n}\right)_{n \in \mathbb{N}}$ be a sequence in Z such that $d\left(x_{n}, F_{1}\left(x_{n}, y_{n}\right)\right) \rightarrow 0$ and $\rho\left(y_{n}, F_{2}\left(x_{n}, y_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$. In this way we have that $\left(x_{n}, x^{*}\right) \in E\left(G_{1}\right)$ and $\left(y_{n}, y^{*}\right) \in E\left(G_{2}^{-1}\right)$.

It follows that

$$
\begin{aligned}
d\left(x_{n}, x^{*}\right)+\rho\left(y_{n}, y^{*}\right) \leq & s\left[d\left(x_{n}, F_{1}\left(x_{n}, y_{n}\right)\right)+d\left(F_{1}\left(x_{n}, y_{n}\right), x^{*}\right)\right]+ \\
& +s\left[\rho\left(y_{n}, F_{2}\left(x_{n}, y_{n}\right)\right)+\rho\left(F_{2}\left(x_{n}, y_{n}\right), y^{*}\right)\right] \\
= & s\left[d\left(F_{1}\left(x_{n}, y_{n}\right), F_{1}\left(x^{*}, y^{*}\right)\right)+\rho\left(F_{2}\left(x_{n}, y_{n}\right), F_{2}\left(x^{*}, y^{*}\right)\right)\right] \\
& +s\left[d\left(x_{n}, F_{1}\left(x_{n}, y_{n}\right)\right)+\rho\left(y_{n}, F_{2}\left(x_{n}, y_{n}\right)\right)\right] \\
\leq & s \varphi\left(d\left(x_{n}, x^{*}\right)+\rho\left(y_{n}, y^{*}\right)\right)+s\left[d\left(x_{n}, F_{1}\left(x_{n}, y_{n}\right)\right)+\rho\left(y_{n}, F_{2}\left(x_{n}, y_{n}\right)\right)\right] .
\end{aligned}
$$

Hence we have the following inequality

$$
\begin{align*}
d\left(x_{n}, x^{*}\right)+\rho\left(y_{n}, y^{*}\right) \leq & s \varphi\left(d\left(x_{n}, x^{*}\right)+\rho\left(y_{n}, y^{*}\right)\right) \\
& +s\left(d\left(x_{n}, F_{1}\left(x_{n}, y_{n}\right)\right)+\rho\left(y_{n}, F_{2}\left(x_{n}, y_{n}\right)\right)\right) . \tag{3.1}
\end{align*}
$$

Suppose that there exists $\delta>0$ such that $d\left(x_{n}, x^{*}\right)+\rho\left(y_{n}, y^{*}\right) \rightarrow \delta$, as $n \rightarrow \infty$. If in (3.1), $n \rightarrow \infty$, we shall have

$$
\delta \leq s \varphi(\delta)<\delta
$$

which is a contradiction. Thus, $\delta=0$ and hence $d\left(x_{n}, x^{*}\right)+\rho\left(y_{n}, y^{*}\right) \rightarrow 0$, as $n \rightarrow \infty$. From here we obtain the conclusion.

Definition 3.3. By definition, the operator equation system (2.18) is said to be generalized UlamHyers stable if and only if there exists $\psi: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$, increasing, continuous in 0 with $\psi(0,0)=0$, such that for each $\varepsilon_{1}, \varepsilon_{2}>0$ and for each solution $(\bar{x}, \bar{y}) \in Z$ of the inequality system

$$
\left\{\begin{array}{l}
d\left(x, F_{1}(x, y)\right) \leq \varepsilon_{1} \\
\rho\left(y, F_{2}(x, y)\right) \leq \varepsilon_{2}
\end{array}\right.
$$

there exists a solution $\left(x^{*}, y^{*}\right) \in Z$ of the operator equation system (2.18) such that

$$
\begin{equation*}
d\left(\bar{x}, x^{*}\right)+\rho\left(\bar{y}, y^{*}\right) \leq \psi\left(\varepsilon_{1}, \varepsilon_{2}\right) . \tag{3.2}
\end{equation*}
$$

Theorem 3.4. Suppose that all the hypotheses of Theorem 2.11 holds and the (b) - comparison function φ is such that $\varphi(t)<\frac{t}{s}, \forall t>0$. If there exists a function $\beta:[0, \infty) \rightarrow[0, \infty), \beta(r):=r-s \varphi(r)$ strictly increasing and onto, then the operator equation system (2.18) is Ulam-Hyers stable.

Proof . From Theorem 3.2 we obtain that there exists a unique pair $\left(x^{*}, y^{*}\right) \in Z$ such that

$$
\left\{\begin{array}{l}
x^{*}=F_{1}\left(x^{*}, y^{*}\right) \\
y^{*}=F_{2}\left(x^{*}, y^{*}\right)
\end{array} .\right.
$$

Let $\varepsilon_{1}, \varepsilon_{2}>0$ and let $(\bar{x}, \bar{y}) \in Z$ such that

$$
\left\{\begin{array}{l}
d\left(\bar{x}, F_{1}(\bar{x}, \bar{y})\right) \leq \varepsilon_{1} \\
\rho\left(\bar{y}, F_{2}(\bar{x}, \bar{y})\right) \leq \varepsilon_{2}
\end{array},\right.
$$

where $\left(\bar{x}, x^{*}\right) \in E\left(G_{1}\right),\left(\bar{y}, y^{*}\right) \in E\left(G_{2}^{-1}\right)$. We have

$$
\begin{aligned}
d\left(\bar{x}, x^{*}\right)+\rho\left(\bar{y}, y^{*}\right)= & d\left(\bar{x}, F_{1}\left(x^{*}, y^{*}\right)\right)+\rho\left(\bar{y}, F_{2}\left(x^{*}, y^{*}\right)\right) \\
& \leq s\left[d\left(\bar{x}, F_{1}(\bar{x}, \bar{y})\right)+\rho\left(\bar{y}, F_{2}(\bar{x}, \bar{y})\right)\right] \\
& +s\left[d\left(F_{1}(\bar{x}, \bar{y}), F_{1}\left(x^{*}, y^{*}\right)\right)+\rho\left(F_{2}(\bar{x}, \bar{y}), F_{2}\left(x^{*}, y^{*}\right)\right)\right] \\
& \leq s\left(\varepsilon_{1}+\varepsilon_{2}\right)+s \varphi\left(d\left(\bar{x}, x^{*}\right)+\rho\left(\bar{y}, y^{*}\right)\right) .
\end{aligned}
$$

Hence, we have

$$
d\left(\bar{x}, x^{*}\right)+\rho\left(\bar{y}, y^{*}\right)-s \varphi\left(d\left(\bar{x}, x^{*}\right)+\rho\left(\bar{y}, y^{*}\right)\right) \leq s\left(\varepsilon_{1}+\varepsilon_{2}\right),
$$

which is

$$
\beta\left(d\left(\bar{x}, x^{*}\right)+\rho\left(\bar{y}, y^{*}\right)\right) \leq s\left(\varepsilon_{1}+\varepsilon_{2}\right) .
$$

Hence

$$
d\left(\bar{x}, x^{*}\right)+\rho\left(\bar{y}, y^{*}\right) \leq \beta^{-1}\left(s\left(\varepsilon_{1}+\varepsilon_{2}\right)\right) .
$$

Follows that the operator equation system (2.18) is Ulam-Hyers stable, where

$$
\psi\left(\varepsilon_{1}, \varepsilon_{2}\right)=\beta^{-1}\left(s\left(\varepsilon_{1}+\varepsilon_{2}\right)\right) .
$$

4. An application

In what follows we shall give an application for Theorem 2.10. Let us consider the following problem:

$$
\left\{\begin{array}{c}
x^{\prime \prime}(t)=f(t, x(t), y(t)) \tag{4.1}\\
y^{\prime \prime}(t)=g(t, x(t), y(t)) \\
x(0)=x^{\prime}(1)=y(0)=y^{\prime}(1)
\end{array}, t \in[0,1] .\right.
$$

Notice now that the problem (4.1) is equivalent with the following integral system

$$
\left\{\begin{array}{l}
x(t)=\int_{0}^{1} K(t, s) f(s, x(s), y(s)) d s \tag{4.2}\\
y(t)=\int_{0}^{1} K(t, s) g(s, x(s), y(s)) d s
\end{array}, t \in[0,1]\right.
$$

where

$$
K(t, s)=\left\{\begin{array}{l}
t, t \leq s \\
s, t>s
\end{array}\right.
$$

The purpose of this section is to give existence results for the solution of the system (4.2), using Theorem 2.10.

Let us consider $X:=C\left([0,1], \mathbb{R}^{n}\right)$ endowed with the following b-metric with $s=2^{p}, p>1$,

$$
d(x, y)=\max _{t \in[0,1]}|x(t)-y(t)|^{p} .
$$

Let $Y:=C\left([0,1], \mathbb{R}^{m}\right)$ endowed with the following b-metric with $s=2^{q}, q>1$,

$$
\rho(x, y)=\max _{t \in[0,1]}|x(t)-y(t)|^{q} .
$$

Suppose that $p<q$. Consider also the graphs G_{1} and G_{2} defined by the partial order relation, i.e.,

$$
\begin{aligned}
& G_{1}: x, u \in X, x \leq u \Leftrightarrow x(t) \leq u(t), \text { for any } t \in[0,1] \\
& G_{2}: y, v \in Y, y \leq v \Leftrightarrow y(t) \leq v(t), \text { for any } t \in[0,1] .
\end{aligned}
$$

Hence (X, d) is a complete b-metric space endowed with a directed graph G_{1} and (Y, ρ) is a complete $b-$ metric space endowed with a directed graph G_{2}.

If we consider $E\left(G_{1}\right)=\{(x, u) \in X \times X: x \leq u\}$ and $E\left(G_{2}\right)=\{(y, v) \in Y \times Y: y \leq v\}$, then the diagonal Δ_{1} of $X \times X$ is included in $E\left(G_{1}\right)$ and the diagonal Δ_{2} of $Y \times Y$ is included in $E\left(G_{2}\right)$. On the other hand $E\left(G_{1}^{-1}\right)=\{(x, u) \in X \times X: u \leq x\}$ and $E\left(G_{2}^{-1}\right)=\{(y, v) \in Y \times Y: v \leq y\}$.

Moreover (X, d, G_{1}) has the property $\left(A_{1}\right)$ and $\left(Y, \rho, G_{2}\right)$ has the property $\left(A_{2}\right)$. In this case $Z^{F}=\left\{(x, y) \in Z: x \leq F_{1}(x, y)\right.$ and $\left.F_{2}(x, y) \leq y\right\}$ where $Z=X \times Y$.

Theorem 4.1. Consider the system 4.1. Suppose:
(i) $f:[0,1] \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $g:[0,1] \times \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ are continuous;
(ii) for all $x, u \in \mathbb{R}^{n}$ with $x \leq u$ we have $f(t, x, y) \leq f(t, u, y)$ and $g(t, x, y) \geq g(t, u, y)$, for all $y \in \mathbb{R}^{m}$ and $t \in[0,1]$;
(iii) for all $y, v \in \mathbb{R}^{m}$ with $v \leq y$ we have $f(t, x, y) \leq f(t, x, v)$ and $g(t, x, y) \geq g(t, x, v)$, for all $x \in \mathbb{R}^{n}$ and $t \in[0,1] ;$
(iv) there exists $\widetilde{\varphi}, \widetilde{\psi}:[0, \infty) \rightarrow[0, \infty)$, (b)-comparison functions and $\alpha, \beta, \gamma, \delta \in(0, \infty)$, with $\max \{\alpha, \beta\}<1$, and $\max \{\gamma, \delta\}<1$ such that

$$
\begin{aligned}
& (f(t, x, y)-f(t, u, v))^{p} \leq \widetilde{\varphi}\left(\alpha|x-u|^{p}+\beta|y-v|^{p}\right) \\
& \quad \text { for each } t \in[0,1], x, u \in \mathbb{R}^{n}, y, v \in \mathbb{R}^{m}, x \leq u, v \leq y . \\
& |g(t, x, y)-g(t, u, v)|^{q} \leq \widetilde{\psi}\left(\gamma|x-u|^{q}+\delta|y-v|^{q}\right) \\
& \quad \text { for each } t \in[0,1], x, u \in \mathbb{R}^{n}, y, v \in \mathbb{R}^{m}, x \leq u, v \leq y .
\end{aligned}
$$

(v) there exists $\left(x_{0}, y_{0}\right) \in X \times Y$ such that

$$
\begin{aligned}
x_{0}(t) & \leq \int_{0}^{1} K(t, s) f\left(s, x_{0}(s), y_{0}(s)\right) d s \\
y_{0}(t) & \geq \int_{0}^{1} K(t, s) g\left(s, x_{0}(s), y_{0}(s)\right) d s
\end{aligned}, t \in[0,1] .
$$

Then, there exists a unique solution of the integral system 4.2).
Proof. Let $F_{1}: Z \rightarrow X$, and $F_{2}: Z \rightarrow Y$, defined as

$$
\begin{aligned}
& F_{1}(x, y)(t)=\int_{0}^{1} K(t, s) f(s, x(s), y(s)) d s, t \in[0,1] \\
& F_{2}(x, y)(t)=\int_{0}^{1} K(t, s) g(s, x(s), y(s)) d s, t \in[0,1]
\end{aligned}
$$

In this way, the system 4.2 can be written as

$$
\left\{\begin{array}{l}
x=F_{1}(x, y) \tag{4.3}\\
y=F_{2}(x, y)
\end{array} .\right.
$$

It can be seen, from (4.3), that a solution of this system is a coupled fixed point of the mapping F. We shall verify if the conditions of Theorem 2.10 are fulfilled.

Let $x, u \in X$ such that $x \leq u$.

$$
\begin{align*}
F_{1}(x, y)(t) & =\int_{0}^{1} K(t, s) f(s, x(s), y(s)) d s \leq \int_{0}^{1} K(t, s) f(s, u(s), y(s)) d s \\
& =F_{1}(u, y)(t), \text { for each } y \in \mathbb{R}^{m}, t \in[0,1] . \tag{4.4}\\
F_{2}(x, y)(t) & =\int_{0}^{1} K(t, s) g(s, x(s), y(s)) d s \geq \int_{0}^{1} K(t, s) g(s, u(s), y(s)) d s \\
& =F_{2}(u, y)(t), \text { for each } y \in \mathbb{R}^{m}, t \in[0,1] .
\end{align*}
$$

Let now $y, v \in Y$ such that $v \leq y$,

$$
\begin{align*}
F_{1}(x, y)(t) & =\int_{0}^{1} K(t, s) f(s, x(s), y(s)) d s \leq \int_{0}^{1} K(t, s) f(s, x(s), v(s)) d s \\
& =F_{1}(x, v)(t), \text { for each } x \in \mathbb{R}^{n}, t \in[0,1] . \\
F_{2}(x, y)(t) & =\int_{0}^{1} K(t, s) g(s, x(s), y(s)) d s \geq \int_{0}^{1} K(t, s) g(s, x(s), v(s)) d s \tag{4.5}\\
& =F_{2}(x, v)(t), \text { for each } x \in \mathbb{R}^{n}, t \in[0,1] .
\end{align*}
$$

From (4.4) and (4.5), we have that the operator $F=\left(F_{1}, F_{2}\right)$ has the property (P).
On the other hand, by Cauchy-Buniakovski-Schwarz inequality, we have

$$
\begin{aligned}
& \left|F_{1}(x, y)(t)-F_{1}(u, v)(t)\right|^{p} \leq\left[\int_{0}^{1}|K(t, s)|(f(s, x(s), y(s))-f(s, u(s), v(s)) d s]^{p}\right. \\
& \quad \leq \int_{0}^{1} K^{p}(t, s) d s \int_{0}^{1}|f(s, x(s), y(s))-f(s, u(s), v(s))|^{p} d s, \text { for each } t \in[0,1]
\end{aligned}
$$

We have

$$
\int_{0}^{1} K^{p}(t, s) d s=\int_{0}^{t} s^{p} d s+\int_{t}^{1} t^{p} d s=t^{p}\left(1-\frac{p}{p+1} t\right) \leq \frac{1}{p+1}, \text { for each } t \in[0,1]
$$

Hence

$$
\begin{aligned}
& \left|F_{1}(x, y)(t)-F_{1}(u, v)(t)\right|^{p} \leq \frac{1}{p+1} \int_{0}^{1}|f(s, x(s), y(s))-f(s, u(s), v(s))|^{p} d s \\
& \leq \frac{1}{p+1} \int_{0}^{1} \widetilde{\varphi}\left(\alpha|x(s)-u(s)|^{p}+\beta|y(s)-v(s)|^{p}\right) d s \\
& \leq \frac{1}{p+1} \widetilde{\varphi}(\alpha d(x, u)+\beta \rho(y, v)) \leq \leq \frac{1}{p+1} \widetilde{\varphi}(\max \{\alpha, \beta\}(d(x, u)+\rho(y, v)))
\end{aligned}
$$

Hence

$$
\begin{equation*}
d\left(F_{1}(x, y), F_{1}(u, v)\right) \leq \frac{1}{p+1} \widetilde{\varphi}(\max \{\alpha, \beta\}(d(x, u)+\rho(y, v))), x \leq u, v \leq y \tag{4.6}
\end{equation*}
$$

In a similar way, for F_{2} we obtain

$$
\begin{equation*}
\rho\left(F_{2}(x, y), F_{2}(u, v)\right) \leq \frac{1}{q+1} \widetilde{\psi}(\max \{\gamma, \delta\}(d(x, u)+\rho(y, v))), x \leq u, v \leq y \tag{4.7}
\end{equation*}
$$

By (4.6) and 4.7), we have

$$
\begin{aligned}
& d\left(F_{1}(x, y), F_{1}(u, v)\right)+\rho\left(F_{2}(x, y), F_{2}(u, v)\right) \\
& \quad \leq \frac{1}{p+1} \widetilde{\varphi}(\max \{\alpha, \beta\}(d(x, u)+\rho(y, v)))+\frac{1}{q+1} \widetilde{\psi}(\max \{\gamma, \delta\}(d(x, u)+\rho(y, v))) \\
& \quad \leq \frac{1}{p+1}[\widetilde{\varphi}(\max \{\alpha, \beta\}(d(x, u)+\rho(y, v)))+\widetilde{\psi}(\max \{\gamma, \delta\}(d(x, u)+\rho(y, v)))], x \leq u, v \leq y
\end{aligned}
$$

Let us consider the function $\varphi:[0, \infty) \rightarrow[0, \infty), \varphi(t)=\frac{1}{p+1}(\widetilde{\varphi}(k t)+\widetilde{\psi}(l t)), 0 \leq k, l<1$, which is a (b)-comparison function. Then, we have

$$
d\left(F_{1}(x, y), F_{1}(u, v)\right)+\rho\left(F_{2}(x, y), F_{2}(u, v)\right) \leq \varphi(d(x, u)+\rho(y, v)), x \leq u, v \leq y
$$

Thus we have that $F=\left(F_{1}, F_{2}\right): Z \rightarrow Z$ is a (φ, G)-contraction of type (b).
Condition (iv) from Theorem 4.1, shows that there exists $\left(x_{0}, y_{0}\right) \in Z$ such that $x_{0} \leq F_{1}\left(x_{0}, y_{0}\right)$ and $F_{2}\left(x_{0}, y_{0}\right) \leq y_{0}$ which implies that $Z^{F} \neq \varnothing$. On the other hand, $\left(X, d, G_{1}\right)$ and $\left(Y, \rho, G_{2}\right)$ have the properties $\left(A_{1}\right)$ and $\left(A_{2}\right)$, so (ii) from Theorem 2.10 is fulfilled. In this way, we have that $F_{1}: Z \rightarrow X$ and $F_{2}: Z \rightarrow Y$ defined by (4.3), verify the conditions of Theorem 2.10. Thus, there exists $\left(x^{*}, y^{*}\right) \in Z$ solution of the problem (4.2).

References

[1] I. Beg I., A.R. Butt and S. Radojevic, The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl. 60 (2010) 1214-1219.
[2] V. Berinde, Contracţii generalizate şi aplicaţii, Editura Club Press 22 Baia Mare, 1997.
[3] V. Berinde, Sequences of operators and fixed points in quasimetric spaces, Stud. Univ. Babeş-Bolyai Math. 16 (1996) 23-27.
[4] V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, Preprint no. 3 (1993) 3-9.
[5] I.C. Chifu and G. Petrusel, New results on coupled fixed point theory in metric spaces endowed with a directed graph, Fixed point Theory Appl. 2014 (2014): 151.
[6] I.C. Chifu and G. Petrusel, Generalized contractions in metric spaces endowed with a graph, Fixed Point Theory Appl. 2012 (2012): 161.
[7] I.C. Chifu and G. Petrusel, Coupled fixed point results for (φ, G)-contractions of type (b) in b-metric spaces endowed with a graph, J. Nonlinear Sci. Appl. 10 (2017) 671-683.
[8] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena 46 (1998) 263-276.
[9] M.H. Dehkordi and M. Ghods, Common fixed point of multivalued graph contraction in metric spaces Int. J. Nonlinear Anal. Appl. 7 (2016) 225-230.
[10] T. Gnana Bhaskar and T. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393.
[11] G. Gwóźdź-Lukawska and J. Jachymski, IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem, J. Math. Anal. Appl. 356 (2009) 453-463.
[12] D. Guo and V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. 11 (1987) 623-632.
[13] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008) 1359-1373.
[14] V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009) 4341-4349.
[15] V.I. Opoitsev, Heterogenic and combined-concave operators, Syber. Math. J. 16 (1975) 781-792 (in Russian).
[16] V.I. Opoitsev and T.A. Khurodze Nonlinear operators in space with a cone, Tbilis. Gos. Univ., Tbilisi (1984) 271 (in Russian).
[17] A. Petruşel, G. Petruşel and B. Samet, J.-C.Yao, Coupled fixed point theorems for symmetric contarctions in b-metric spaces with applications to operators equation systems, Fixed Point Theory 17 (2016) 457-476.
[18] S. Radenovic, Bhaskar-Lakshmikantham type results for monotone mappings in partially ordered metric spaces, Int. J. Nonlinear Anal. Appl. 5 (2014) 96-103.

[^0]: *Corresponding author
 Email addresses: cristian.chifu@tbs.ubbcluj.ro (Cristian Chifu), gabi.petrusel@tbs.ubbcluj.ro (Gabriela Petruşel)

