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Abstract

Let f(z) be an analytic function on the unit disk {z ∈ C, |z| ≤ 1}, for each q > 0, the ‖f‖q is defined
as follows

‖f‖q :=

{
1

2π

∫ 2π

0

∣∣f(eiθ)
∣∣q dθ}1/q

, 0 < q <∞,

‖f‖∞ := max
|z|=1
|f(z)| .

Govil and Rahman [Functions of exponential type not vanishing in a half-plane and related polyno-
mials, Trans. Amer. Math. Soc. 137 (1969) 501–517] proved that if p(z) is a polynomial of degree
n, which does not vanish in |z| < k, where k ≥ 1, then for each q > 0,

‖p′‖q ≤
n

‖k + z‖q
‖p‖q.

In this paper, we shall present an interesting generalization and refinement of this result which include
some previous results.
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1. Introduction

Let Pn be the set of polynomials of degree at most n with complex coefficients. For p ∈ Pn, define

‖p‖q :=

{
1

2π

∫ 2π

0

∣∣p(eiθ)∣∣q dθ}1/q

, 0 < q <∞,

‖p‖∞ := max
|z|=1
|p(z)| .
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If p ∈ Pn, then a famous result due to Bernstein [4], states that

‖p′‖∞ ≤ n ‖p‖∞ . (1.1)

The inequality (1.1) can be obtained by letting q →∞ in

‖p′‖q ≤ n ‖p‖q , 0 < q <∞. (1.2)

The inequality (1.2) for q ≥ 1 and 0 < q < 1 is due to Zygmund [16] and Arestov [1] respectively.
For the class of polynomials having no zeros in |z| < 1, Erdös conjectured and later proved by

Lax [10] that

‖p′‖∞ ≤
n

2
‖p‖∞ . (1.3)

The inequality (1.3) can be obtained by letting q →∞ in

‖p′‖q ≤
n

‖1 + z‖q
‖p‖q , for q > 0. (1.4)

The inequality (1.4) demonstrated by De-Brujin [5] for the case q ≥ 1. Rahman and Schmeisser [14]
have shown that the inequality (1.4) remains true for 0 < q < 1 as well.

As an extension of (1.3), Malik [11] proved that if p(z) does not vanish in |z| < k, where k ≥ 1,
then

‖p′‖∞ ≤
n

1 + k
‖p‖∞ , (1.5)

whereas under the same assumption, Govil and Rahman [9] proved that

‖p′‖q ≤
n

‖k + z‖q
‖p‖q , for q > 0. (1.6)

The inequality (1.5) is also generalized by Govil and Rahman [9] for the sth derivative of p(z). They
specifically proved that if p(z) does not vanish in |z| < k, where k ≥ 1, then for 1 ≤ s < n,∥∥p(s)

∥∥
∞ ≤

n(n− 1) · · · (n− s+ 1)

1 + ks
‖p‖∞ . (1.7)

As a refinement of (1.7), Govil [8] proved that if p(z) does not vanish in |z| < k, where k ≥ 1,
then for 1 ≤ s < n, one gets∥∥p(s)

∥∥
∞ ≤

n(n− 1) · · · (n− s+ 1)

1 + ks

{
‖p‖∞ − min

|z|=k
|p(z)|

}
. (1.8)

The following result, proposes a refinement and generalization to inequalities (1.6) and (1.8).

Theorem 1.1. If p ∈ Pn and p(z) does not vanish in |z| < k, where k ≥ 1, then for every complex
number β with |β| ≤ 1, q > 0 and 1 ≤ s < n, we have∥∥∥∥p(s)(z) + β

n(n− 1) · · · (n− s+ 1)

1 + Λk,s

m

∥∥∥∥
q

≤ n(n− 1) · · · (n− s+ 1)

‖Λk,s + z‖q
‖p‖q , (1.9)

where Λk,s =
(n
s)(|a0|−m)ks+1+|as|k2s

(n
s)(|a0|−m)+|as|ks+1

, and m = min
|z|=k
|p(z)|.
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Remark 1.2. By applying the inequality (2.6) from Lemma 2.7, we get Λk,s ≥ ks, resulting (1.9) to
be a refinement and generalization of (1.6).

Let q →∞ and choose argument of β suitably such that |β| = 1, then the inequality (1.9) reduces
to the following result which recently obtained by Mir [12].

Corollary 1.3. If p ∈ Pn and p(z) does not vanish in |z| < k, where k ≥ 1, then for 1 ≤ s < n,

∥∥p(s)
∥∥
∞ ≤

n(n− 1) · · · (n− s+ 1)

1 + Λk,s

{‖p‖∞ −m} , (1.10)

where Λk,s =
(n
s)(|a0|−m)ks+1+|as|k2s

(n
s)(|a0|−m)+|as|ks+1

, and m = min
|z|=k
|p(z)|.

Remark 1.4. By applying the inequality (2.6) from Lemma 2.7, we get Λk,s ≥ ks, resulting (1.10)
to be a refinement of (1.8).

Remark 1.5. For s = 1, the inequality (1.10) reduces to a result which has been recently proved
by Gardner, Govil and Weems [7].

Example 1.6. Consider the polynomial p(z) = (z+ k)n, where k ≥ 1, then m = min
|z|=k
|p(z)| = 0 and

Λk,s = ks. Now by Corollary 1.3, the inequality (1.10) reduce to the following inequality which is
sharp

(1 + k)n−s ≤ (1 + k)n

1 + ks
.

If we take k = 1 then, Λk,s = 1 in Theorem 1.1, giving rise to the following generalization of (1.3).

Corollary 1.7. If p ∈ Pn and p(z) does not vanish in |z| < 1, then for 1 ≤ s < n,

∥∥p(s)
∥∥
∞ ≤

n(n− 1) · · · (n− s+ 1)

2

{
‖p‖∞ −min

|z|=1
|p(z)|

}
. (1.11)

The inequality is sharp and equality holds for the polynomials p(z) = zn + 1.

Remark 1.8. The inequality (1.11) has been studied by Zireh [15, Corollary 1.6].

2. Lemmas

For the proof of main theorem, we need the following lemmas. The first lemma is due to Aziz et al.
[3].

Lemma 2.1. If p ∈ Pn and q(z) = znp(1
z
), then for each α, 0 ≤ α < 2π, and q > 0,∫ 2π

0

∫ 2π

0

∣∣q′(eiθ) + eiαp′(eiθ)
∣∣q dθdα ≤ 2πnq

∫ 2π

0

∣∣p(eiθ)∣∣q dθ.
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Lemma 2.2. If p ∈ Pn and q(z) = znp(1
z
), then for each α, 0 ≤ α < 2π, and 0 ≤ s < n, q > 0, we

have ∫ 2π

0

∫ 2π

0

∣∣q(s)(eiθ) + eiαp(s)(eiθ)
∣∣q dθdα ≤

2π(n− s+ 1)q(n− s+ 2)q · · · (n− 1)qnq
∫ 2π

0

∣∣p(eiθ)∣∣q dθ. (2.1)

Proof . Let h(z) = q(z)+eiαp(z), then the sth derivative is h(s)(z) = q(s)(z)+eiαp(s)(z) for 1 ≤ s < n.
Using the inequality (1.2) repeatedly, it follows that for each q > 0,∫ 2π

0

∣∣q(s)(eiθ) + eiαp(s)(eiθ)
∣∣q dθ

≤ (n− s+ 1)q
∫ 2π

0

∣∣q(s−1)(eiθ) + eiαp(s−1)(eiθ)
∣∣q dθ

...

≤ (n− s+ 1)q(n− s+ 2)q · · · (n− 1)q
∫ 2π

0

∣∣q′(eiθ) + eiαp′(eiθ)
∣∣q dθ.

Now, integrating the above inequality with respect to α and applying Lemma 2.1, it yields∫ 2π

0

∫ 2π

0

∣∣q(s)(eiθ) + eiαp(s)(eiθ)
∣∣q dθdα

≤ (n− s+ 1)q(n− s+ 2)q · · · (n− 1)q
∫ 2π

0

∫ 2π

0

∣∣q′(eiθ) + eiαp′(eiθ)
∣∣q dθdα

≤ 2π(n− s+ 1)q(n− s+ 2)q · · · (n− 1)qnq
∫ 2π

0

∣∣p(eiθ)∣∣q dθ.
�

The following lemma is due to Aziz et al. [3].

Lemma 2.3. If p ∈ Pn, q(z) = znp(1
z
), and p(z) does not vanish in |z| < k, where k ≥ 1, then for

1 ≤ s < n and |z| = 1,
δk,s
∣∣p(s)(z)

∣∣ ≤ ∣∣q(s)(z)
∣∣ , (2.2)

and

1(
n
s

) ∣∣∣∣asa0

∣∣∣∣ ks ≤ 1, (2.3)

where

δk,s =

(
n
s

)
|a0|ks+1 + |as|k2s(
n
s

)
|a0|+ |as|ks+1

.

Lemma 2.4. The function

S(x) =

(
n
s

)
xks+1 + |as|k2s(
n
s

)
x+ |as|ks+1

for k ≥ 1 is a non-decreasing function of x.
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Proof . The proof follows by considering the first derivative test for S(x). �

Lemma 2.5. If p ∈ Pn and p(z) does not vanish in |z| < k, where k > 0, then m < |p(z)| for |z| < k,
and in particular m < |a0|, where m = min

|z|=k
|p(z)|.

The above lemma is due to Gardner, Govil and Musukula [6].

Lemma 2.6. If p ∈ Pn and p(z) does not vanish in |z| < k, where k ≥ 1, then for |z| = 1,∣∣q(s)(z)
∣∣ ≥ n(n− 1) · · · (n− s+ 1) min

|z|=k
|p(z)|, (2.4)

where q(z) = znp(1
z
).

The above lemma is due to Govil [8].

Lemma 2.7. If p ∈ Pn and p(z) does not vanish in |z| < k, where k ≥ 1, then for 1 ≤ s < n and
|z| = 1,

Λk,s

∣∣p(s)(z)
∣∣ ≤ ∣∣q(s)(z)

∣∣− {n(n− 1) · · · (n− s+ 1)m} , (2.5)

where

Λk,s =

(
n
s

)
(|a0| −m) ks+1 + |as|k2s(
n
s

)
(|a0| −m) + |as|ks+1

and

1(
n
s

) |as|
|a0| −m

ks ≤ 1, (2.6)

where q(z) = znp(1
z
) and m = min

|z|=k
|p(z)|.

Proof . Let λ be a complex number with |λ| < 1, then |λm| < |p(z)| for |z| = k. From Rouche’s
Theorem, the polynomial p(z) − λm = (a0 − λm) +

∑n
i=1 aiz

i has no zeros in |z| < k. Hence from
Lemma 2.3, we get

Ak,s
∣∣p(s)(z)

∣∣ ≤ ∣∣q(s)(z)− λmn(n− 1) · · · (n− s+ 1)zn−s
∣∣ on |z| = 1, (2.7)

where

Ak,s =

(
n
s

)
(|a0 − λm|) ks+1 + |as|k2s(
n
s

)
(|a0 − λm|) + |as|ks+1

.

Since for every λ, |λ| ≤ 1 we have

|a0 − λm| ≥ |a0| − |λ|m ≥ |a0| −m. (2.8)

From (2.8) and making use of Lemmas 2.4 and 2.5 it yields

Ak,s ≥ Λk,s. (2.9)
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Combining (2.7) and (2.9), for every λ where |λ| ≤ 1, we obtain

Λk,s

∣∣p(s)(z)
∣∣ ≤ ∣∣q(s)(z)− λmn(n− 1) · · · (n− s+ 1)zn−s

∣∣ on |z| = 1, (2.10)

where

Λk,s =

(
n
s

)
(|a0| −m)ks+1 + |as|k2s(
n
s

)
(|a0| −m) + |as|ks+1

. (2.11)

Also by Lemma 2.6, we have that |q(s)(z)| ≥ mn(n− 1) · · · (n− s+ 1). Hence we can choose argu-
ment λ suitably so that ∣∣q(s)(z)− λmn(n− 1) · · · (n− s+ 1)zn−s

∣∣ =∣∣q(s)(z)
∣∣− |λ|mn(n− 1) · · · (n− s+ 1)

∣∣zn−s∣∣ . (2.12)

Combining (2.12) with (2.10) and let |λ| → 1, we get the inequality (2.5). Now by applying the
inequality (2.3) for the polynomial p(z)− λm = (a0 − λm) +

∑n
i=1 aiz

i we have

1(
n
s

) |as|
|a0 − λm|

ks ≤ 1. (2.13)

Since λ is arbitrary, we can choose argument λ suitably so that |a0 − λm| = |a0| − |λ|m. letting
|λ| → 1, gives the result. �

The following lemma is due to Aziz and Rather [2].

Lemma 2.8. Let A, B, C are non-negative real numbers such that B +C ≤ A, then for every real
α, ∣∣(B + C) + eiα(A− C)

∣∣ ≤ ∣∣B + eiαA
∣∣ . (2.14)

3. The proof of the main theorem

Proof . By the assumptions, p(z) does not vanish in |z| < k where k ≥ 1, therefore by Lemma 2.7,
for |z| = 1 and 1 ≤ s < n we have

Λk,s

∣∣p(s)(z)
∣∣ ≤ ∣∣q(s)(z)

∣∣− {n(n− 1) · · · (n− s+ 1)m} .

This inequality can be rewritten as

Λk,s

{∣∣p(s)(z)
∣∣ +

n(n− 1) · · · (n− s+ 1)

1 + Λk,s

m

}
≤
∣∣q(s)(z)

∣∣−{n(n− 1) · · · (n− s+ 1)

1 + Λk,s

m

}
.

(3.1)

Taking A =
∣∣q(s)(z)

∣∣ , B =
∣∣p(s)(z)

∣∣ and C = n(n−1)···(n−s+1)
1+Λk,s

m in Lemma 2.8, and noting that Λk,s ≥ 1,

by (3.1), B + C ≤ A− C ≤ A. Thus, for every real α, we obtain∣∣∣∣p(s)(eiθ)
∣∣ +

n(n− 1) · · · (n− s+ 1)

1 + Λk,s

m+

eiα
∣∣q(s)(eiθ)

∣∣−{n(n− 1) · · · (n− s+ 1)

1 + Λk,s

m

}∣∣∣∣
≤
∣∣∣∣p(s)(eiθ)

∣∣+ eiα
∣∣q(s)(eiθ)

∣∣∣∣ .
(3.2)
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This implies for each q > 0,∫ 2π

0

∣∣f(θ) + eiαg(θ)
∣∣q dθ ≤ ∫ 2π

0

∣∣∣∣p(s)(eiθ)
∣∣+ eiα

∣∣q(s)(eiθ)
∣∣∣∣q dθ, (3.3)

where

f(θ) =
∣∣p(s)(eiθ)

∣∣+
n(n− 1) · · · (n− s+ 1)

1 + Λk,s

m (3.4)

and

g(θ) =
∣∣q(s)(eiθ)

∣∣−{n(n− 1) · · · (n− s+ 1)

1 + Λk,s

}
m.

Integrating from both sides of (3.3) with respect to α from 0 to 2π, gives∫ 2π

0

∫ 2π

0

∣∣f(θ) + eiαg(θ)
∣∣q dθdα ≤ ∫ 2π

0

∫ 2π

0

∣∣∣∣p(s)(eiθ)
∣∣+ eiα

∣∣q(s)(eiθ)
∣∣∣∣q dθdα

=

∫ 2π

0

∫ 2π

0

∣∣eiα ∣∣p(s)(eiθ)
∣∣+
∣∣q(s)(eiθ)

∣∣∣∣q dθdα
=

∫ 2π

0

{∫ 2π

0

∣∣eiα ∣∣p(s)(eiθ)
∣∣+
∣∣q(s)(eiθ)

∣∣∣∣q dα} dθ
=

∫ 2π

0

{∫ 2π

0

∣∣eiαp(s)(eiθ) + q(s)(eiθ)
∣∣q dα} dθ

=

∫ 2π

0

{∫ 2π

0

∣∣eiαp(s)(eiθ) + q(s)(eiθ)
∣∣q dθ} dα.

This result in conjunction with the inequality (2.1) concludes that∫ 2π

0

∫ 2π

0

∣∣f(θ) + eiαg(θ)
∣∣q dθdα ≤

2π(n− s+ 1)q(n− s+ 2)q · · · (n− 1)qnq
∫ 2π

0

∣∣p(eiθ)∣∣q dθ. (3.5)

Now for every real α and t ≥ r ≥ 1, from the fact that |t+ eiα| ≥ |r + eiα| , one obtains∫ 2π

0

∣∣t+ eiα
∣∣q dα ≥ ∫ 2π

0

∣∣r + eiα
∣∣q dα.

If f(θ) 6= 0, taking t = |g(θ)|
|f(θ)| , by (3.1) we have t ≥ Λk,s ≥ 1. It yields∫ 2π

0

∣∣f(θ) + eiαg(θ)
∣∣q dα = |f(θ)|q

∫ 2π

0

∣∣∣∣1 + eiα
g(θ)

f(θ)

∣∣∣∣q dα
= |f(θ)|q

∫ 2π

0

∣∣∣∣ g(θ)

f(θ)
+ eiα

∣∣∣∣q dα
= |f(θ)|q

∫ 2π

0

∣∣∣∣∣∣∣∣ g(θ)

f(θ)

∣∣∣∣+ eiα
∣∣∣∣q dα

≥ |f(θ)|q
∫ 2π

0

∣∣Λk,s + eiα
∣∣q dα.

(3.6)
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For f(θ) = 0, the inequality (3.6) is obvious.
Combining inequalities (3.5) and (3.6) and substituting f(θ) from (3.4) we reach at∫ 2π

0

∣∣Λk,s + eiα
∣∣q dα ∫ 2π

0

{∣∣p(s)(eiθ)
∣∣+

n(n− 1) · · · (n− s+ 1)

1 + Λk,s

m

}q
dθ

≤ 2π(n− s+ 1)q(n− s+ 2)q · · · (n− 1)qnq
∫ 2π

0

∣∣p(eiθ)∣∣q dθ.
This gives for every β ∈ C with |β| ≤ 1, q ≥ 1 and α real, that∫ 2π

0

∣∣Λk,s + eiα
∣∣q dα ∫ 2π

0

∣∣∣∣p(s)(eiθ) + β
n(n− 1) · · · (n− s+ 1)

1 + Λk,s

m

∣∣∣∣q dθ
≤ 2π(n− s+ 1)q(n− s+ 2)q · · · (n− 1)qnq

∫ 2π

0

∣∣p(eiθ)∣∣q dθ.
This completes the proof of Theorem 1.1. �
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