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Abstract

In this paper, we introduce the idea of relative order and type of entire functions represented by
Banach valued Dirichlet series of two complex variables to generalize some earlier results.
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1. Introduction

For entire function f , let F (r) = max{|f(z)| : |z| = r}. If f is non-constant then F (r) is strictly
increasing and continuous function of r and its inverse

F−1 : (|f(0)|,∞)→ (0,∞)

exists and
lim
R→∞

F−1(R) =∞.

Let f and g be two entire functions. Bernal [3] introduced the definition of relative order of f with
respect to g, denoted by ρg(f), as follows:

ρg(f) = inf{µ > 0 : F (r) < G(rµ) for all r > r0(µ) > 0}
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After this several papers on relative order of entire functions have appeared in the literature where
growing interest of workers on this topic has been noticed {see for example [1], [2], [4], [5], [6], [7],
[8]}.
Let f(s) be an entire function of the complex variable s = σ + it defined by everywhere absolutely
convergent Dirichlet series

∞∑
n=1

ane
sλn , (1.1)

where 0 < λn < λn+1 (n ≥ 1), λn →∞ as n→∞ and a,ns are complex constants.
Let

F (σ) = l.u.b−∞<t<∞|f(σ + it)|.

Then the Ritt order [10] of f(s), denoted by ρ(f) is given by

ρ(f) = inf{µ > 0 : logF (σ) < exp(σµ) for all σ > R(µ)}.

In other words,

ρ(f) = lim sup
σ→∞

log logF (σ)

σ
.

During the past decades, several authors made close investigations on the properties of entire
Dirichlet series related to Ritt order. In 2010, Lahiri and Banerjee [9] introduced the idea of relative
Ritt order as follows:
Let f(s) be an entire function defined by everywhere absolutely convergent Dirichlet series (1.1) and
g(s) be an entire function. Then the relative Ritt order of f(s) with respect to entire g(s) denoted
by ρg(f) is defined as

ρg(f) = inf{µ > 0 : logF (σ) < G(σµ)for all large σ},

where G(r) = max{|g(s)| : |s| = r}.
Recently Srivastava [11] defined the growth parameter such as relative order, relative type, relative

lower type of entire functions represented by vector valued Dirichlet series of the form (1.1) as follows:
Let f(s) and g(s) be two entire functions defined by everywhere absolutely convergent vector valued
Dirichlet series of the form (1.1), where an’s belong to a Banach space (E, ‖.‖) and λn’ s are non-
negative real numbers such that

0 ≤ λ1 < λ2 < . . . < λn →∞

as n→∞ and satisfy the conditions

lim sup
n→∞

log n

λn
= D <∞

and

lim sup
n→∞

log ‖an‖
λn

= −∞.

Also F (σ), G(σ) denote their respective maximum moduli. The relative order of f(s) with respect
to g(s) denoted by ρg(f) is defined as

ρg(f) = inf{µ > 0 : F (σ) < G(σµ) for all σ > σ0(µ)}
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i.e.,

ρg(f) = lim sup
σ→∞

G−1F (σ)

σ
.

The relative type and relative lower type of f(s) with respect to g(s) denoted respectively by
Tg(f) and τg(f) when ρg(f) = 1 (i.e., ρ(f) = ρ(g) = ρ) and defined as

Tg(f) = inf{µ > 0 : F (σ) < G[
1

ρ
log(µeρσ)] for all σ > σ0(µ)}

= lim sup
σ→∞

exp[ρG−1F (σ)]

exp(ρσ)

and

τg(f) = lim inf
σ→∞

exp[ρG−1F (σ)]

exp(ρσ)

If Tg(f) = τg(f) then f is said to be of regular type with respect to g.
Srivastava and Sharma [12] introduced the idea of order and type of an entire function represented

by vector valued Dirichlet series of two complex variables. Consider

f(s1, s2) =
∞∑

m,n=1

amne
(s1λm+s2µn), (sj = σj + itj, j = 1, 2) (1.2)

where amn’s belong to the Banach space (E, ||.||) ; 0 ≤ λ1 < λ2 < . . . < λm → ∞ as m → ∞;
0 ≤ µ1 < µ2 < . . . < µn →∞ as n→∞ and

lim sup
m+n→∞

log(m+ n)

λm + µn
= D < +∞.

Such a series is called a vector valued Dirichlet series in two complex variables.
If only a finite number of amn’s are non zero in (1.2), then we call it as a Banach valued Dirichlet

polynomial of two complex variables. Let f(s1, s2) defined above represent an entre function and

F (σ1, σ2) = sup{‖f(σ1 + it1, σ2 + it2)‖;−∞ < tj <∞; j = 1, 2}

be its maximum modulus. Then the order ρ(f) of f(s1, s2) is defined as

ρ(f) = lim sup
σ1,σ2→∞

log logF (σ1, σ2)

log(eσ1 + eσ2)
.

If (0 < ρ(f) <∞), then the type T (f)(0 ≤ T (f) ≤ ∞) of f(s1, s2) is defined as

T (f) = lim sup
σ1,σ2→∞

logF (σ1, σ2)

(eρ(f)σ1 + eρ(f)σ2)
.

At this stage it therefore seems reasonable to define suitably the relative order of entire functions
defined by Banach valued Dirichlet series with respect to an entire function defined by Banach valued
Dirichlet series of two complex variables and to enquire its basic properties in the new context.
Proving some preliminary theorems on the relative order, we obtain sum and product theorems and
we show that the relative order (finite) of an entire function represented by Dirichlet series (1.2) is
the same as its partial derivative, under certain restrictions.

The following definitions are now introduced.
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Definition 1.1. Let f(s1, s2) and g(s1, s2) be two entire functions defined by the Banach valued
Dirichlet series (1.2). Then the relative order of f(s1, s2) with respect to g(s1, s2) denoted by ρg(f)
is defined by

ρg(f) = inf{µ > 0 : F (σ1, σ2) < exp[G(σ1, σ2)]
µ}

where
F (σ1, σ2) = sup{‖f(σ1 + it1, σ2 + it2)‖;−∞ < tj <∞; j = 1, 2}.

If we put λn = µn = n − 1 for n = 1, 2, 3, . . . and a12 = a21 = 1, and all other amn’s are zero then
g(s1, s2) = es1 + es2 and consequently

ρg(f) = ρ(f).

Definition 1.2. Let f(s1, s2) and g(s1, s2) be two entire functions defined by the Banach valued
Dirichlet series (1.2) such that ρ(f) = ρ(g). Then the relative type and relative lower type of f(s1, s2)
with respect to g(s1, s2) are denoted respectively by Tg(f) and τg(f) and defined as

Tg(f) = lim sup
σ1,σ2→∞

logF (σ1, σ2)

G(ρσ1, ρσ2)

and

τg(f) = lim inf
σ1,σ2→∞

logF (σ1, σ2)

G(ρσ1, ρσ2)

where ρ = ρ(f) = ρ(g). Clearly Tg(f) = T (f) if g(s1, s2) = es1 + es2 .

Definition 1.3. Let f1(s1, s2) and f2(s1, s2) be two entire functions defined by the Banach valued
Dirichlet series (1.2). Then f1(s1, s2) and f2(s1, s2) are said to be asymptotically equivalent if there
exists l, (0 < l <∞) such that

F1(σ1, σ2)

F2(σ1, σ2)
→ l

as σ1, σ2 →∞ and in this case we write f1 ∼ f2.

If f1 ∼ f2 then clearly f2 ∼ f1.
Throughout the paper we assume that f(s1, s2), f1(s1, s2), g(s1, s2), g1(s1, s2), etc. are non-constant
entire functions defined by Banach valued Dirichlet series (1.2) and F (σ1, σ2), F1(σ1, σ2), G(σ1, σ2),
G1(σ1, σ2) denote their respective maximum moduli.

The following lemma will be needed in the sequel.

Lemma 1.4. Let g(s1, s2) be a non-constant entire function defined by Banach valued Dirichlet
series (1.2) and γ > 1, 0 < µ < λ. Then

lim
σ1,σ2→∞

[G(σ1, σ2)]
γ

G(σ1, σ2)
=∞

and

lim
σ1,σ2→∞

[G(σ1, σ2)]
λ

[G(σ1, σ2)]µ
=∞.

Proof of the lemma is omitted.
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2. Preliminary Theorems

Theorem 2.1. (a) ρg(f) = lim supσ1,σ2→∞
log logF (σ1,σ2)
logG(σ1,σ2)

.

(b) If f(s1, s2) be a Dirichlet polynomial and g(s1, s2) is not a Dirichlet polynomial, then ρg(f) = 0.

(c) If F1(σ1, σ2) ≤ F2(σ1, σ2) for all large σ1, σ2 then ρg(f1) ≤ ρg(f2).

(d) If G1(σ1, σ2) ≤ G2(σ1, σ2) for all large σ1, σ2 then ρg1(f) ≥ ρg2(f).

Proof .
(a) This follows from the definition.

(b) Let f be of the form f(s1, s2) =
m∑
k=1

{
n∑
l=1

akle
s1λk+s2µl}. Then

F (σ1, σ2) = sup
−∞<t1,t2<∞

‖
m∑
k=1

{
n∑
l=1

akle
(σ1+it1)λk+(σ2+it2)µl}‖

≤
m∑
k=1

{
n∑
l=1

‖akl‖eσ1λk+σ2µl}

≤ mn max
k=1,2,3,...,m;l=1,2,3,...,n

‖akl‖eσ1λm+σ2µn = Meσ1λm+σ2µn ,

(2.1)

since we may clearly assume that σ1, σ2 are positive, where

M = mn max
k=1,2,3,...,m;l=1,2,3,...,n

||akl||

is a constant.
On the other hand, since g(s1, s2) is not a Dirichlet polynomial, for all large σ1, σ2, p and for

every δ > 0 and k a constant large at pleasure,

[G(σ1, σ2)]
δ > kδσδp1 σ

δp
2 > logM + (σ1λm + σ2µn) ≥ logF (σ1, σ2)

using (2.1). So, for all large σ1, σ2 and arbitrary δ > 0

log logF (σ1, σ2)

logG(σ1, σ2)
< δ

and this gives that ρg(f) = 0.
(c) Since F1(σ1, σ2) ≤ F2(σ1, σ2) for all large σ1, σ2, so

lim sup
σ1,σ2→∞

log logF1(σ1, σ2)

logG(σ1, σ2)
≤ lim sup

σ1,σ2→∞

log logF2(σ1, σ2)

logG(σ1, σ2)

i.e.,
ρg(f1) ≤ ρg(f2).

(d) Proof is similar as that of (c). �

Remark 2.2. Let f1(s1, s2) = g(s1, s2) = es1+s2 and f2(s1, s2) = e2(s1+s2). Then clearly

F1(σ1, σ2) < F2(σ1, σ2).

But ρg(f1) = ρg(f2) = 0. Let f(s1, s2) = g1(s1, s2) = es1+s2 and g2(s1, s2) = e2(s1+s2). Then clearly
G1(σ1, σ2) < G2(σ1, σ2). But ρg1(f) = ρg2(f) = 0.
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Theorem 2.3. (a) If ρ(f1) = ρ(f2) = ρ(g) and F1(σ1, σ2) ≤ F2(σ1, σ2) for all large values of σ1, σ2
then Tg(f1) ≤ Tg(f2).

(b) If ρ(f) = ρ(g1) = ρ(g2) and G1(σ1, σ2) ≤ G2(σ1, σ2) for all large values of σ1, σ2 then Tg1(f) ≥
Tg2(f).

Proof . This follows from definition. �

Theorem 2.4. If ρ(f1) = ρ(f2) = ρ(g) then

τg(f1)

Tg(f2)
≤ lim inf

σ1,σ2→∞

logF1(σ1, σ2)

logF2(σ1, σ2)
≤ τg(f1)

τg(f2)
≤ lim sup

σ1,σ2→∞

logF1(σ1, σ2)

logF2(σ1, σ2)
≤ Tg(f1)

τg(f2)
.

Proof . Suppose ρ(f1) = ρ(f2) = ρ(g) = ρ. Then by definition for any ε > 0 and for all large values
of σ1, σ2

logF1(σ1, σ2) > (τg(f1)− ε)G(ρσ1, ρσ2) (2.2)

and

logF2(σ1, σ2) < (Tg(f2) + ε)G(ρσ1, ρσ2). (2.3)

Therefore from Equation (2.2) and (2.3) we get for all large σ1, σ2

logF1(σ1, σ2)

logF2(σ1, σ2)
>
τg(f1)− ε
Tg(f2) + ε

or,

lim inf
σ1,σ2→∞

logF1(σ1, σ2)

logF2(σ1, σ2)
≥ τg(f1)

Tg(f2)
. (2.4)

Again by definition for any ε > 0 there exist sequences {σ1n}, σ1n → ∞ and {σ2n}, σ2n → ∞ as
n→∞ such that

logF1(σ1n, σ2n) < (τg(f1) + ε)G(ρσ1n, ρσ2n). (2.5)

Again for all large values of σ1, σ2

logF2(σ1, σ2) > (τg(f2)− ε)G(ρσ1, ρσ2). (2.6)

Hence from (2.5) and (2.6) we get

logF1(σ1n, σ2n)

logF2(σ1n, σ2n)
<
τg(f1) + ε

τg(f2)− ε

or

lim inf
σ1,σ2→∞

logF1(σ1, σ2)

logF2(σ1, σ2)
≤ τg(f1)

τg(f2)
. (2.7)

Also there exist sequences {σ1m}, σ1m →∞ and {σ2m}, σ2m →∞ as m→∞ such that

logF2(σ1m, σ2m) < (τg(f2) + ε)G(ρσ1m, ρσ2m). (2.8)
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Therefore from (2.2) and (2.8) we get,

logF1(σ1m, σ2m)

logF2(σ1m, σ2m)
>
τg(f1)− ε
τg(f2) + ε

or

lim sup
σ1,σ2→∞

logF1(σ1, σ2)

logF2(σ1, σ2)
≥ τg(f1)

τg(f2)
. (2.9)

Again for any ε > 0 and for all large values of σ1, σ2,

logF1(σ1, σ2) < (Tg(f1) + ε)G(ρσ1, ρσ2) (2.10)

and

logF2(σ1, σ2) > (τg(f2)− ε)G(ρσ1, ρσ2). (2.11)

Therefore from (2.10) and (2.11) we get for all large σ1, σ2

logF1(σ1, σ2)

logF2(σ1, σ2)
<
Tg(f1) + ε

τg(f2)− ε

or

lim sup
σ1,σ2→∞

logF1(σ1, σ2)

logF2(σ1, σ2)
≤ Tg(f1)

τg(f2)
. (2.12)

The theorem now follows from (2.4), (2.7), (2.9) and (2.12). �

3. Sum and Product Theorems

Theorem 3.1. Let f1(s1, s2), f2(s1, s2) and g(s1, s2) be three entire functions defined by the Banach
valued Dirichlet series (1.2). Then

ρg(f1 ± f2) ≤ max{ρg(f1), ρg(f2)},

sign of equality holds if ρg(f1) 6= ρg(f2).

Proof . We may suppose that ρg(f1) and ρg(f2) both are finite because in the contrary case the
inequality follows immediately. We prove the theorem for addition only, because the proof for
subtraction is analogous.

Let f = f1 + f2, ρ = ρg(f), ρi = ρg(fi), i = 1, 2 and ρ1 ≤ ρ2. For arbitrary ε > 0 and for all large
σ1, σ2 we have from Theorem 2.1 (a),

F1(σ1, σ2) < exp[G(σ1, σ2)]
ρ1+ε ≤ exp[G(σ1, σ2)]

ρ2+ε

and
F2(σ1, σ2) < exp[G(σ1, σ2)]

ρ2+ε.

So, for all large σ1, σ2

F (σ1, σ2) ≤ F1(σ1, σ2) + F2(σ1, σ2) < 2 exp[G(σ1, σ2)]
ρ2+ε < exp[G(σ1, σ2)]

ρ2+2ε.
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Therefore,
log logF (σ1, σ2)

logG(σ1, σ2)
≤ (ρ2 + 2ε),

for all large σ1, σ2. Since ε > 0 is arbitrary, we obtain

ρ ≤ ρ2. (3.1)

This proves the first part of the theorem.
For the second part, let ρ1 < ρ2 and suppose that ρ1 < µ1 < µ < λ < ρ2. Then for all large σ1, σ2

F1(σ1, σ2) < exp[G(σ1, σ2)]
µ (3.2)

and there exist non decreasing sequences

{σ1n}, σ1n →∞

and
{σ2n}, σ2n →∞ as n→∞

such that

F2(σ1n, σ2n) > exp[G(σ1n, σ2n)]λ. (3.3)

Using Lemma 1.4 we see that

[G(σ1, σ2)]
λ > 2[G(σ1, σ2)]

µ for all large σ1, σ2. (3.4)

So, from (3.2), (3.3) and (3.4),

F2(σ1n, σ2n) > 2F1(σ1n, σ2n) for n = 1, 2, 3, . . . .

Therefore,

F (σ1n, σ2n) ≥ F2(σ1n, σ2n)− F1(σ1n, σ2n) >
1

2
F2(σ1n, σ2n)

>
1

2
exp[G(σ1n, σ2n)]λ > exp[G(σ1n, σ2n)]µ1 .

by (3.3). Therefore,

ρ ≥ ρ2. (3.5)

So, from (3.1) and (3.5) we get ρ = ρ2 and this proves the theorem. �

Remark 3.2. For Banach valued Dirichlet series to hold the equality, the condition ρg(f1) 6= ρg(f2)
is not necessary. Because if we take f1(s1, s2) = 2es1+s2 , f2(s1, s2) = −es1+s2 and g(s1, s2) = es1+s2

then clearly F1(σ1, σ2) = 2eσ1+σ2 , F2(σ1, σ2) = eσ1+σ2 and

G(σ1, σ2) = eσ1+σ2

Therefore
ρg(f1) = ρg(f2) = 0.
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On the other hand
f1 + f2 = es1+s2 .

Therefore
ρg(f1 + f2) = 0.

Thus,
ρg(f1 + f2) = max{ρg(f1), ρg(f2)}.

Also if we take f1(s1, s2) = 2es1+s2 , f2(s1, s2) = g(s1, s2) = es1+s2 . Then clearly ρg(f1 − f2) =
max{ρg(f1), ρg(f2)}.

Theorem 3.3. Let f1(s1, s2) and g(s1, s2) be two entire functions defined by the Banach valued
Dirichlet series (1.2) and f2(s1, s2) be an entire function defined by (1.2) where the coefficients amn ∈
C. Then ρg(f1.f2) ≤ max{ρg(f1), ρg(f2)}.

Proof . Let f = f1.f2 and the notations ρ, ρ1, ρ2 have the analogous meanings as in Theorem 3.1.
Without loss of generality let ρ1 and ρ2 both are finite and ρ1 ≤ ρ2. Then for arbitrary ε > 0 and
for all large σ1, σ2

F (σ1, σ2) ≤ F1(σ1, σ2)F2(σ1, σ2)

< exp[G(σ1, σ2)]
ρ1+ε exp[G(σ1, σ2)]

ρ2+ε

≤ exp{2[G(σ1, σ2)]
ρ2+ε}

≤ exp[G(σ1, σ2)]
ρ2+2ε.

Therefore,
log logF (σ1, σ2) < (ρ2 + 2ε) logG(σ1, σ2) for all large σ1, σ2.

Since ε > 0 is arbitrary so ρ ≤ ρ2, which proves the theorem. �

Remark 3.4. For Banach valued Dirichlet series the equality may hold. For example, suppose
f1(s1, s2) = f2(s1, s2) = g(s1, s2) = es1+s2 . Then clearly ρg(f1) = ρg(f2) = 0. On the other hand
f1.f2 = e2(s1+s2). Therefore, ρg(f1.f2) = 0. Thus

ρg(f1.f2) = max{ρg(f1), ρg(f2)}.

Theorem 3.5. Let f1(s1, s2), f2(s1, s2) and g(s1, s2) be three entire functions defined by the Banach
valued Dirichlet series (1.2) such that Tg(f1), Tg(f2) and Tg(f1± f2) are defined. Then Tg(f1± f2) ≤
max{Tg(f1), Tg(f2)}, the equality holds if Tg(f1) 6= Tg(f2).

Proof . We may suppose that Tg(f1) and Tg(f2) both are finite because in the contrary case
the inequality follows immediately. We prove the theorem for addition only, because the proof for
subtraction is analogous.

Let f = f1 + f2, T = Tg(f), Ti = Tg(fi) and ρ = ρ(fi) = ρ(f) = ρ(g), i = 1, 2 and suppose that
T1 ≤ T2. For arbitrary ε > 0 and for all large σ1, σ2 we have by definition,

logF1(σ1, σ2) < (T1 + ε)G(ρσ1, ρσ2)

or

F1(σ1, σ2) < exp[(T1 + ε)G(ρσ1, ρσ2)] ≤ exp[(T2 + ε)G(ρσ1, ρσ2)]
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and
F2(σ1, σ2) < exp[(T2 + ε)G(ρσ1, ρσ2)].

So, for all large σ1, σ2,

F (σ1, σ2) ≤ F1(σ1, σ2) + F2(σ1, σ2) < 2 exp[(T2 + ε)G(ρσ1, ρσ2)].

Therefore,
logF (σ1, σ2) < log 2 + (T2 + ε)G(ρσ1, ρσ2)

or
logF (σ1, σ2)

G(ρσ1, ρσ2)
< (T2 + ε) + o(1).

Since ε > 0 is arbitrary so

T ≤ T2. (3.6)

This proves the first part of the theorem.
For the second part, let T1 < T2 and suppose that T1 < µ < λ < T2. Then for all large σ1, σ2

F1(σ1, σ2) < exp[µG(ρσ1, ρσ2)] (3.7)

and there exist non decreasing sequences {σ1n}, σ1n →∞, and {σ2n}, σ2n →∞ as n→∞ such that

F2(σ1n, σ2n) > exp[λG(ρσ1n, ρσ2n)]. (3.8)

Now, by using (3.7) and (3.8).

F (σ1n, σ2n) ≥ F2(σ1n, σ2n)− F1(σ1n, σ2n)

> exp[λG(ρσ1n, ρσ2n)]− exp[µG(ρσ1n, ρσ2n)]

> 2 exp[µG(ρσ1n, ρσ2n)]− exp[µG(ρσ1n, ρσ2n)]

> exp[µG(ρσ1n, ρσ2n)]

or
logF (σ1n, σ2n) > µG(ρσ1n, ρσ2n)

or
logF (σ1n, σ2n)

G(ρσ1n, ρσ2n)
> µ.

Therefore,

T ≥ T2. (3.9)

From (3.6) and (3.9) we get T = T2 and this proves the theorem. �

Theorem 3.6. Let f1(s1, s2), g(s1, s2) be two entire functions defined by the Banach valued Dirichlet
series (1.2) and f2(s1, s2) be an entire function defined by (1.2) where the coefficients amn ∈ C such
that Tg(f1), Tg(f2) and Tg(f1.f2) are defined. Then Tg(f1.f2) ≤ Tg(f1) + Tg(f2).

Proof . Let f = f1.f2 and the notations ρ, T, T1 and T2 have the analogous meanings as in The-
orem 3.5. Suppose T1 and T2 both are finite because in the contrary case the theorem is obvious.
Then for arbitrary ε > 0 and for all large σ1, σ2

F (σ1, σ2) ≤ F1(σ1, σ2)F2(σ1, σ2)

< exp[(T1 + ε)G(ρσ1, ρσ2)] exp[(T2 + ε)G(ρσ1, ρσ2)]

= exp[(T1 + T2 + 2ε)G(ρσ1, ρσ2)].

Since ε > 0 is arbitrary we obtain T ≤ T1 + T2 and this proves the theorem. �
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4. Relative order and type of the partial derivatives

Theorem 4.1. Let f(s1, s2) and g(s1, s2) be two entire functions defined by the Banach valued
Dirichlet series (1.2). Then ρg(f) = ρg(

∂f
∂s1

).

Proof . We write,

F̄s1(σ1, σ2) = sup{‖∂f(σ1 + it1, σ2 + it2)

∂(σ1 + it1)
‖;−∞ < tj <∞; j = 1, 2}.

From [[11], p.68], we may write for fixed σ2 and for all large values of σ1

F (σ1, σ2) < σ1F̄s1(σ1, σ2) +O(1)

or

logF (σ1, σ2) < log F̄s1(σ1, σ2) + log σ1 +O(1). (4.1)

Therefore,
log logF (σ1, σ2)

logG(σ1, σ2)
<

log log F̄s1(σ1, σ2)

logG(σ1, σ2)
+ o(1)

for fixed σ2 and for all large σ1, and so,

ρg(f) ≤ ρg

(
∂f

∂s1

)
. (4.2)

To obtain the reverse inequality we have from [[11], p.68] for fixed σ2 and for large σ1

F̄s1(σ1, σ2)− ε ≤
1

δ
F (σ1 + δ, σ2),

where ε > 0 is arbitrary and δ > 0 is fixed. So,

log F̄s1(σ1, σ2) ≤ logF (σ1 + δ, σ2) +O(1) (4.3)

or
log log F̄s1(σ1, σ2)

logG(σ1, σ2)
≤ log logF (σ1 + δ, σ2)

logG(σ1, σ2)
+ o(1).

Since σ2 is any fixed real number, σ1 is large and δ is any fixed number so,

ρg(
∂f

∂s1
) ≤ ρg(f). (4.4)

From (4.2) and (4.4) we get

ρg(f) = ρg

(
∂f

∂s1

)
.

�

Remark 4.2. In Theorem 4.1 putting g(s1, s2) = es1 + es2 , we get ρ(f) = ρ( ∂f
∂s1

).

Theorem 4.3. Let f(s1, s2) and g(s1, s2) be two entire functions defined by the Banach valued
Dirichlet series (1.2) such that ρ(f) = ρ(g). Then Tg(f) = Tg(

∂f
∂s1

).
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Proof . From Remark 4.2, we have, ρ(f) = ρ( ∂f
∂s1

). Therefore, ρ( ∂f
∂s1

) = ρ(g) and so Tg(
∂f
∂s1

) exists.

Suppose ρ(f) = ρ(g) = ρ( ∂f
∂s1

) = ρ. As in Theorem 4.1 we write

F̄s1(σ1, σ2) = sup

{∥∥∥∥∂f(σ1 + it1, σ2 + it2)

∂(σ1 + it1)

∥∥∥∥ ;−∞ < tj <∞; j = 1, 2

}
.

Then from (4.1) we get

logF (σ1, σ2) < log F̄s1(σ1, σ2) + log σ1 +O(1)

or
logF (σ1, σ2)

G(ρσ1, ρσ2)
<

log F̄s1(σ1, σ2)

G(ρσ1, ρσ2)
+ o(1).

So taking σ1, σ2 →∞ we get

Tg(f) ≤ Tg(
∂f

∂s1
). (4.5)

Again for a fixed σ2 and large σ1 we get from (4.3) for a fixed δ > 0

log F̄s1(σ1, σ2)

G(ρσ1, ρσ2)
≤ logF (σ1 + δ, σ2)

G(ρσ1, ρσ2)
+ o(1).

Since σ2 is any fixed real number, σ1 is large and δ is any fixed number so,

Tg(
∂f

∂s1
) ≤ Tg(f). (4.6)

From (4.5) and (4.6) we get Tg(f) = Tg(
∂f
∂s1

). �

5. Asymptotic behavior

Theorem 5.1. Let f(s1, s2), g1(s1, s2) and g2(s1, s2) be three entire functions defined by the Banach
valued Dirichlet series (1.2) and suppose g1 ∼ g2. Then ρg1(f) = ρg2(f).

Proof . Let ε > 0. Then by definition, for all large σ1, σ2, there exists l (0 < l <∞) such that

G1(σ1, σ2) < (l + ε)G2(σ1, σ2). (5.1)

Now for all large σ1, σ2
log logF (σ1, σ2) < (ρg1(f) + ε) logG1(σ1, σ2)

or using (5.1),

F (σ1, σ2) < exp[G1(σ1, σ2)]
ρg1 (f)+ε

< exp[(l + ε)G2(σ1, σ2)]
ρg1 (f)+ε

< exp[G2(σ1, σ2)]
ρg1 (f)+2ε.

Therefore,
log logF (σ1, σ2)

logG2(σ1, σ2)
< ρg1(f) + 2ε.

Since ε > 0 is arbitrary small, so ρg2(f) ≤ ρg1(f). The reverse inequality is clear because g2 ∼ g1
and so ρg1(f) = ρg2(f). �
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Remark 5.2. For Banach valued Dirichlet series the condition g1 ∼ g2 is not necessary. For example,
let f(s1, s2) = g1(s1, s2) = es1+s2 and g2(s1, s2) = e2(s1+s2). Then clearly F (σ1, σ2) = G1(σ1, σ2) =
eσ1+σ2 and G2(σ1, σ2) = e2(σ1+σ2). Therefore, g1 ∼ g2 does not hold but ρg1(f) = ρg2(f) = 0.

Theorem 5.3. Let f1(s1, s2), f2(s1, s2) and g(s1, s2) be three entire functions defined by the Banach
valued Dirichlet series (1.2) and suppose f1 ∼ f2. Then ρg(f1) = ρg(f2).

Proof . Let ε > 0. Then by definition, for all large σ1, σ2, there exists l, (0 < l <∞) such that

F1(σ1, σ2) < (l + ε)F2(σ1, σ2).

Now for all large σ1, σ2
logF1(σ1, σ2) < logF2(σ1, σ2) + log(l + ε).

Therefore,
log logF1(σ1, σ2)

logG(σ1, σ2)
<

log logF2(σ1, σ2)

logG(σ1, σ2)
+ o(1)

i.e.
ρg(f1) ≤ ρg(f2).

The reverse inequality is clear because f2 ∼ f1 and so ρg(f1) = ρg(f2). �

Remark 5.4. For Banach valued Dirichlet series the condition f1 ∼ f2 is not necessary which follows
from the following example.

Let f1(s1, s2) = g(s1, s2) = es1+s2 and f2(s1, s2) = e2(s1+s2). Then clearly f1 ∼ f2 does not hold
but ρg(f1) = ρg(f2) = 0.

Theorem 5.5. Let f1(s1, s2), f2(s1, s2) and g(s1, s2) be three entire functions defined by the Banach
valued Dirichlet series (1.2) such that Tg(f1) and Tg(f2) are defined and suppose f1 ∼ f2. Then

Tg(f1) = Tg(f2).

Proof . Let ε > 0 and ρ(f1) = ρ(f2) = ρ(g) = ρ. Then by definition, for all large σ1, σ2, there exists
l (0 < l <∞) such that

F1(σ1, σ2) < (l + ε)F2(σ1, σ2)

or
logF1(σ1, σ2) < logF2(σ1, σ2) +O(1)

or
logF1(σ1, σ2)

G(ρσ1, ρσ2)
<

logF2(σ1, σ2)

G(ρσ1, ρσ2)
+ o(1).

Since ε > 0 is arbitrary small, so Tg(f1) ≤ Tg(f2). The reverse inequality is clear because f2 ∼ f1
and so Tg(f1) = Tg(f2). �
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