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Abstract

A normed space X is said to have the fixed point property, if for each nonexpansive mapping T :
E −→ E on a nonempty bounded closed convex subset E of X has a fixed point. In this paper, we
first show that if X is a locally compact Hausdorff space then the following are equivalent: (i) X
is infinite set, (ii) C0(X) is infinite dimensional, (iii) C0(X) does not have the fixed point property.
We also show that if A is a commutative complex C?–algebra with nonempty carrier space, then the
following statements are equivalent: (i) Carrier space of A is infinite, (ii) A is infinite dimensional,
(iii) A does not have the fixed point property. Moreover, we show that if A is an infinite dimensional
complex C?–algebra (not necessarily commutative), then A does not have the fixed point property.
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1. Introduction and Preliminaries

Let T : E −→ E be a self-map on the nonempty set E. We denote {x ∈ E : T (x) = x} by Fix(T ) and
call the fixed points set of T . The symbol K denote a field that can be either C or R. Let (X, ‖·‖) be a
normed linear space over K. A mapping T : E ⊆ X −→ X is nonexpansive if ‖T (x)−T (y)‖ 6 ‖x−y‖
for all x, y ∈ E. We say that the normed linear space (X, ‖ ·‖) over K has the fixed point property (or
weak fixed point property) if for every nonempty bounded closed convex (or weakly compact convex,
respectively) subset E of X and every nonexpansive mapping T : E −→ E we have Fix(T ) 6= ∅.

One of the central goals in fixed point theory is to find which normed linear spaces over K have
the (weak) fixed point property.
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Theorem 1.1. Let (X1, ‖ · ‖1) be a Banach space, (X2, ‖ · ‖2) be a normed linear space and there
exist a linear isometry from (X1, ‖ · ‖1) into (X2, ‖ · ‖2) over K. If (X1, ‖ · ‖1) does not have the fixed
point property then (X2, ‖ · ‖2) does not have the fixed point property.

Proof . Let (X1, ‖·‖1) does not have the fixed point property. Then there exist a nonempty bounded
closed convex subset E of X1 and a nonexpansive mapping T : E −→ E such that Fix(T ) = ∅. Let
Ψ : X1 −→ X2 be a linear isometry from (X1, ‖·‖1) into (X2, ‖·‖2) over K. Then Ψ(E) is a nonempty
convex subset of X2 and Ψ(E) is bounded in (X2, ‖ · ‖2). Moreover, since E is a closed subset of
X1 in the Banach space (X1, ‖ · ‖1) and Ψ : X1 −→ X2 is a linear isometry from (X1, ‖ · ‖1) into
(X2, ‖ · ‖2), we deduce that Ψ(E) is a closed subset of X2 in the normed linear space (X2, ‖ · ‖2). We
define the mapping S : Ψ(E) −→ Ψ(E) by

S(Ψ(x)) = Ψ(T (x)) (x ∈ E).

Since for all x and y in X1 we have

‖S(Ψ(x))− S(Ψ(y))‖2 = ‖Ψ(T (x))−Ψ(T (y))‖2

= ‖T (x)− T (y)‖1

6 ‖x− y‖1

= ‖Ψ(x)−Ψ(y)‖2,

we conclude that S : Ψ(E) −→ Ψ(E) is a nonexpansive mapping. We claim that Fix(S) = ∅.
Suppose that Ψ(x1) ∈ Fix(S) where x1 ∈ E. Then

0 = S(Ψ(x1))−Ψ(x1) = Ψ(T (x1))−Ψ(x1) = Ψ(T (x1)− x1),

and so 0 = T (x1)− x1. This implies that x1 ∈ Fix(T ) contadicting to Fix(T ) = ∅. Hence, our claim
is justified. Therefore, (X2, ‖ · ‖2) does not have the fixed point property. �

Corollary 1.2. Let (X, ‖ · ‖) be a Banach space and Y be a closed linear subspace of X over K. If
(Y, ‖ ·‖) does not have the fixed point property, then (X, ‖ ·‖) does not have the fixed point property.

Let A be a complex algebra and let Ae := A × C. Then Ae is a complex algebra with unit
e = (0, 1) whenever algebra operations are defined by

(f, λ) + (g, µ) = (f + g, λ+ µ), α(f, λ) = (αf, αλ), (f + λ)(g, µ) = (fg + µf + λg, λµ),

for f, g ∈ A, λ, µ, α ∈ C. We say that Ae is the unitisation of A. Clearly, Ae is commutative if A
is commutative. Moreover, if ‖ · ‖ is an algebra norm on A then Ae is a normed algebra under the
norm ‖ · ‖ defined by

‖(f, λ)‖ = ‖f‖+ |λ| (f ∈ A, λ ∈ C).

Note that (Ae, ‖ · ‖) is a unital Banach algebra if (A, ‖ · ‖) is a Banach algebra.
Let A be a complex algebra with unit e and let G(A) be the set of all invertible elements of A.

We define the spectrum of an element f ∈ A to be the set {λ ∈ C : λe− f /∈ G(A)} and denote it by
σA(f).

Let A be a complex algebra and Ae be the unitisation of A. For f ∈ A, the set σAe(f, 0) is called
the spectrum of f and denoted by σA(f).

Let A be a complex normed algebra and let f ∈ A. The spectral radius of f is denoted by rA(f)
and defined by
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rA(f) = inf
{
‖fn‖ 1

n : n ∈ N
}
.

It is known [5, Lemma 1.2.5 and Theorem 1.2.8] that

rA(f) = limn→∞ ‖fn‖ 1
n = sup{|λ| : λ ∈ σA(f)}.

Let A be a complex algebra. A character on A is a nonzero multiplicative linear functional on
A. We denote by ∆(A) the set of all characters on A. If A has the unite e, then φ(e) = 1 for all
φ ∈ ∆(A). Note that each φ ∈ ∆(A) has a unique extension φ̃ ∈ ∆(Ae) given by

φ̃(f + λe) = φ(f) + λ (f ∈ A, λ ∈ C).

It is known that if A is complex Banach algebra and φ ∈ ∆(A), then φ is bounded and ‖φ‖ 6 1. In
particular, ‖φ‖ = 1 if A is unital. Moreover, if A is a unital commutative complex Banach algebra,
then ∆(A) 6= ∅ and σA(f) = {φ(f) : φ ∈ ∆(A)} for all f ∈ A. If A is without unit, it is possible
∆(A) = ∅. (See [5, Example 2.1.6 and Example 2.1.7])

Let A be a commutative complex Banach algebra with ∆(A) 6= ∅. For each f ∈ A, we define
f̂ : ∆(A) −→ C by f̂(φ) = φ(f) and say that f̂ is the Gelfand transform of f . We denote {f̂ : f ∈ A}
by Â. Then Â strongly separates the points of ∆(A). Moreover, the following statements are
equivalent:

(i) Â is self-adjoint.

(ii) For each f ∈ A, there exists an element g ∈ A such that φ(g) = φ(f) for all φ ∈ ∆(A).

We endow ∆(A) with the Gelfand topology, the weakest topology on ∆(A) for which every f̂ ∈ Â is
continuous. ∆(A) with the Gelfand topology is called the carrier space of A. We know [5, Theorem
2.2.3] that

(i) ∆(A) is a locally compact Hausdorff space,

(ii) ∆(Ae) is one-point compactification of ∆(A),

(iii) ∆(A) is compact if A has the unit element.

Fupinwong studied the fixed point property of commutative complex Banach algebras in [3] and
obtained the following result.

Theorem 1.3. (See [3, Theorem 3.1]) Let A be an infinite dimensional commutative complex Banach
algebra with ∆(A) 6= ∅ satisfying each of the following:

(i) Â is self-adjoint,

(ii) if f, g ∈ A such that |φ(f)| 6 |φ(g)| for all φ ∈ ∆(A), then ‖f‖ 6 ‖g‖,

(iii) inf {rA(f) : f ∈ A, ‖f‖ = 1} > 0.

Then A does not have the fixed point property.

Fupinwong and Dhompongsa were obtained the mentioned result in [4] whenever A is unital. (See
[4, Theorem 4.3])

Let X be a locally compact Hausdorff space. We denote by C(X) and C0(X) the set of all
complex-valued continuous functions on X and the set of all functions in C(X) which vanish at
infinity, respectively. Then C(X) is a commutative complex algebra with unit 1X and C0(X) is a
complex subalgebra of C(X). Moreover, C0(X) = C(X) if X is compact. It is known that C0(X)
under the uniform norm on X defined by
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‖f‖X = sup {|f(x)| : x ∈ X} (f ∈ C0(X))

is a commutative complex Banach algebra. Moreover, C0(X) is without unit if X is not compact.
Applying the concept of peak points, it is shown [1] that certain uniformly closed subalgebras of

C(X) do not have the fixed point property, where X is a compact Hausdorff space.
Dhompongsa, Fupinwong and Lawton studied the fixed point property and weak fixed point

property of complex C?–algebras in [2].
In Section 2, applying Theorem 1.3 we study the fixed point property of C0(X) and certain its

uniformly closed subalgebras.
In Section 3, we show that a commutative complex C?–algebra A does not have the fixed point

property if and only if A is infinite dimensional. We also prove that if A is an infinite dimensional
complex C?–algebra (not necessarily commutative), then A does not have the fixed point property.

2. The fixed point property of C0(X)

Applying Urysohn’s lemma [9, Theorem 2.12], Theorem 1.3, and Schauder–Tychonoff fixed point
theorem [8, Theorem 5.28], we study the fixed point property of C0(X) whenever X is a locally
compact Hausdorff space.

Theorem 2.1. Let X be a locally compact Hausdorff space and A = C0(X). Then the following
statements are equivalent:

(i) X is infinite set.

(ii) A is infinite dimensional.

(iii) (A, ‖ · ‖X) does not have the fixed point property.

Proof . (i) =⇒ (ii). Let X be infinite set. We can choose a sequence {xn}∞n=1 in X such that xi 6= xj
if i, j ∈ N and i 6= j. By Urysohn’s lemma, we obtain a sequence {fn}∞n=1 of functions in C0(X) such
that f1(x1) = 1 and

fn(x1) = . . . = fn(xn−1) = 0, fn(xn) = 1 (n ∈ N, n > 2).

To prove that C0(X) is infinite dimensional, it is sufficient we show that the set {f1, · · · , fn} is a
linearly independent set in C0(X) for all n ∈ N. Since f1(x1) = 1, we deduce that {f1} is a linearly
independent set in C0(X). Suppose that n ∈ N with n > 2. Let

α1f1 + · · ·+ αnfn = 0 (2.1)

where α1, · · · , αn ∈ C. Since f1(x1) = 1 and f2(x1) = · · · = fn(x1) = 0, we conclude that α1 = 0 by
(2.1). Suppose that j ∈ {1, · · · , n} such that α1 = · · · = αj−1 = 0. Then

αjfj + · · ·+ αnfn = 0, (2.2)

by (2.1). If j = n, then α1 = · · · = αn−1 = 0 and αnfn = 0 by (2.2). Thus αn = 0 since fn(xn) = 1.
If j ∈ {1, · · · , n− 1}, then by (2.2) we have αj = 0 since fj(xj) = 1 and fj+1(xj) = · · · = fn(xj) = 0.
Therefore, αj = 0 for all j ∈ {1, · · · , n} and so the set {f1, · · · , fn} is a linearly independent set in
C0(X). Hence, (ii) holds.

(ii) =⇒ (iii). Let A be infinite dimensional. It is known [6, Theorem 2.3] that

∆(A) = {ex : x ∈ X}, (2.3)

where ex : A −→ C is defined by ex(f) = f(x) for all f ∈ A. Let F ∈ Â. Then there exists f ∈ A
such that F = f̂ , the Gelfand transform of f . Since f̄ ∈ A and
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F (ex) = F (ex) = f̂(ex) = ex(f) = f(x) = f̄(x) = ex(f̄) = f̂(ex),

for all x ∈ X, we deduce that F = f̂ by (2.3). Hence, F ∈ Â and so Â is self-adjoint.
Let f, g ∈ A such that |φ(f)| 6 |φ(g)| for all φ ∈ ∆(A). Since ex ∈ ∆(A) for each x ∈ X, we have

|f(x)| = |ex(f)| 6 |ex(g)| = |g(x)|

for each x ∈ X. Therefore, ‖f‖X 6 ‖g‖X .
Let f ∈ A such that ‖f‖X = 1. Since ‖gn‖X = (‖g‖X)n for all g ∈ A and for each n ∈ N, we

have ‖fn‖X = 1 for each n ∈ N, and so

rA(f) = limn→∞ (‖fn‖X)
1
n = 1.

Therefore,

inf{rA(f) : f ∈ A, ‖f‖X = 1} = inf{1} = 1 > 0.

Hence, A does not have the fixed point property by Theorem 1.3.
(iii) =⇒ (i). Let X be a nonempty finite set. Let x ∈ X. Since X \ {x} is a finite set and

X is a Hausdorff space, we deduce that X \ {x} is closed in X and so {x} is an open set in X.
Hence, the given topology on X is P(X), the power set of X. This implies that there exists a linear
isometry from (C0(X), ‖ · ‖X) onto Cn with the Euclidean norm, where n is the cardinal number
of X. Hence, every bounded closed subset E of C0(X) is compact in (C0(X), ‖ · ‖X). Let E be a
nonempty bounded closed convex subset of C0(X) and T : E −→ E be a nonexpansive mapping.
Then E is a nonempty compact convex subset of the Banach space (C0(X), ‖ · ‖X) and T : E −→ E
is continuous. Hence, T has a fixed point by Schauder–Tychonoff fixed point theorem [8, Theorem
5.28]. Therefore, (C0(X), ‖ · ‖X) has the fixed point property and so (iii) does not hold. �

Let X be a locally compact Hausdorff space and K be a compact subset of X. We denote by
C0Z(X,K) the set of all f ∈ C0(X) such that f |K = 0. It is easy to see that C0Z(X,K) is a
self–adjoint uniformly closed subalgebra of C0(X). Moreover, C0Z(X,K) = C0(X) if and only if
K = ∅.

Theorem 2.2. Let X be a locally compact Hausdorff space and K be a compact subset of X such
that X \K 6= ∅. Then the following statements hold.

(i) If f ∈ C0Z(X,K) and g = f |X\K, then g ∈ C0(X \K).

(ii) If g ∈ C0(X \K) and the function g0 : X −→ C defines by

g0(x) =

{
g(x) x ∈ X \K,
0 x ∈ K.

then g0 ∈ C0Z(X,K).

(iii) The map Φ : C0Z(X,K) −→ C0(X \K) defined by Φ(f) = f |X\K, is an isometrical isomorphism
from (C0Z(X,K), ‖ · ‖X) onto

(
C0(X \K), ‖ · ‖X\K

)
.

(iv) C0Z(X,K) strongly separates the points of X \K.

(v) For each x ∈ X \K, ex ∈ ∆ (C0Z(X,K)).

(vi) If x, y ∈ X \K with x 6= y, then ex 6= ey.
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(vii) ∆ (C0Z(X,K)) = {ex : x ∈ X \K}.

Proof . (i) Let f ∈ C0Z(X,K) and g = f |X\K . Clearly, g ∈ C(X \K). Let ε > 0 and

H = {x ∈ X : |f(x)| > ε}.

Then H is a closed set in X and H ⊆ X \K. Since f ∈ C0(X), there exists a compact subset L of
X such that

f (X \ L) ⊆ {z ∈ C : |z| < ε}.

Set E = H ∩ L. Then E is a compact set in X and E ⊆ X \K. Thus E is a compact set in X \K.
Moreover,

|g(x)| = |f(x)| < ε,

for all x ∈ (X \K) \ E. Therefore, g ∈ C0 (X \K) and so (i) holds.
(ii) Let g ∈ C0 (X \K) and the function g0 : X −→ C defines as above. To prove g0 ∈ C0Z (X,K),

it is sufficient we show that g0 ∈ C0(X) since g0|K = 0. Let x0 ∈ X \ K and choose ε > 0. The
continuity of g : X \K −→ C at x0 implies that there exists a neighborhood U0 of x0 in X \K such
that

|g(x)− g(x0)| < ε (∀x ∈ U0). (2.4)

Since X \K is an open set in X, we deduce that U0 is a neighborhood of x0 in X. Since g0(x0) =
0 = g(x0) and g0|X\K = g, we conclude that

|g0(x)− g0(x0)| < ε (∀x ∈ U0),

by (2.4). Therefore, g0 is continuous at x0.
Let x0 ∈ K and choose ε > 0. Since g ∈ C0 (X \K), there exists a compact subset H in X \K

such that
g ((X \K) \H) ⊆ {z ∈ C : |z| < ε} . (2.5)

The compactness of H in X \K implies that H is a compact set in X and so H is closed in X. Set
U = X \K. Then U is an open set in X and K ⊆ U . Hence, U is a neighborhood of x0 in X. If
x ∈ K, then

|g0(x)− g0(x0)| = 0 < ε.

Suppose that x ∈ U \K. Then x ∈ (X \H) \K = (X \K) \H and so |g(x)| < ε by (2.5). Hence,

|g0(x)− g0(x0)| = |g(x)− 0| = |g(x)| < ε.

Therefore, g0 is continuous at x0. So, g ∈ C(X).
Let ε > 0 be given. Since g ∈ C0(X \K), there exists a compact set H of X \K such that

g ((X \K) \H) ⊆ {z ∈ C : |z| < ε}.

Clearly, H is a compact set in X. Set L = K ∪ H. Then H is a compact set in X and X \ L =
(X \K) \H. So

|g0(x)| = |g(x)| < ε,



Nonexpansive mappings on complex C?-algebras . . . 7 (2016) No. 1, 21-29 27

for all x ∈ X \ L. Therefore, g0 ∈ C0(X) and so (ii) holds.
(iii) By (i), Φ is well–defined. Clearly, Φ is an algebra homomorphism. Let f ∈ C0Z(X,K).

Then f ∈ C0(X) and f |K = 0. Thus ‖f‖X = ‖f‖X\K and so

‖Φ(f)‖X\K = ‖f |X\K‖X\K = ‖f‖X\K = ‖f‖X .

Therefore, Φ is an isometry.
Let g ∈ C0(X \K). We define the function g0 : X −→ C by

g0(x) =

{
g(x) x ∈ X \K,
0 x ∈ K.

Then g0 ∈ C0Z(X,K) by (ii) and g0|K = g. Therefore, Φ is surjective.
(iv) Let x1, x2 ∈ X\K such that x1 6= x2. By Urysohn’s lemma, there exists a function f0 ∈ C0(X)

such that f0(x1) = 1 and f0(x) = 0 for all x ∈ K ∪ {x2}. So f0 ∈ C0Z(X,K) and f0(x1) 6= f0(x2).
Therefore, C0Z(X,K) separates the points of X \K.

Let x ∈ X \ K. By Urysohn’s lemma, there exists a function f1 ∈ C0(X) such that f1(x) = 1
and f1(y) = 0 for all y ∈ K. So f1 ∈ C0Z(X,K) and f1(x) 6= 0. Therefore, (iv) holds.

(v) Let x ∈ X \K. Clearly, ex is a multiplicative complex linear functional on C0Z(X,K). By
(iv), there exists a function f1 ∈ C0Z(X,K) such that f1(x) 6= 0 and so ex(f1) 6= 0. Therefore,
ex ∈ ∆ (C0Z(X,K)).

(vi) Let x, y ∈ X \K such that x 6= y. By (iv), there exists a function f0 ∈ C0Z(X,K) such that
f0(x) 6= f0(y). Hence, ex(f0) 6= ey(f0) and so ex 6= ey.

(vii) By (v), we have
{ex : x ∈ X \K} ⊆ ∆ (C0Z(X,K)) . (2.6)

Let ψ ∈ ∆ (C0Z(X,K)). By (iii), the map Φ : C0Z(X,K) −→ C0(X \K) defined by

Φ(f) = f |X\K (f ∈ C0Z(X,K))

is an isometrical algebra isomorphism from (C0Z(X,K), ‖ · ‖X) onto
(
C0(X \K), ‖ · ‖X\K

)
. There-

fore, ψ ◦ Φ−1 is a multiplicative complex linear function on C0(X \ K). On the other hand, there
exists a function f0 ∈ C0Z(X,K) such that ψ(f0) 6= 0. Set g0 = Φ(f0). Then g0 ∈ C0(X \K) and
f0 = Φ−1(g0). Thus (ψ ◦ Φ−1) (g0) 6= 0 and so ψ ◦ Φ−1 ∈ ∆ (C0(X \K)). Since ∆(C0(X \ K)) =
{ex : x ∈ X \K}, there exists y ∈ X \K such that ψ ◦Φ−1 = ey on C0(X \K). Let f ∈ C0Z(X,K).
Then Φ(f) ∈ C0(X \K) and so

(ψ ◦ Φ−1)(Φ(f)) = ey(f).

This implies that ψ(f) = ey(f). Therefore, ψ = ey on C0Z(X,K) and so

∆(C0Z(X,K)) ⊆ {ex : x ∈ X \K} . (2.7)

From (2.6) and (2.7), we have

∆(C0Z(X,K)) = {ex : x ∈ X \K}.

Therefore, (vii) holds. �

Theorem 2.3. Let X be a locally compact Hausdorff space and K be a compact subset of X. If
X \K is infinite set, then (C0Z(X,K), ‖ · ‖X) does not have the fixed point property.



28 Alimohammadi

Proof . Since X \K is an open subset of X, we deduce that X \K with the relative topology is
a locally compact Hausdorff space. Since X \K is infinite set,

(
C0(X \K), ‖ · ‖X\K

)
does not have

the fixed point property by Theorem 2.1.
By part (iii) of Theorem 2.2, the map Φ : C0Z(X,K) −→ C0(X \K) defined by

Φ(f) = f |X\K (f ∈ C0Z(X,K))

is a linear isometry from (C0Z(X,K), ‖ · ‖X) onto
(
C0(X \K), ‖ · ‖X\K

)
. Hence, Φ−1 : C0(X\K) −→

C0Z(X,K) is a linear isometry from (C0(X\K), ‖ · ‖X\K) onto (C0Z(X,K), ‖ · ‖X). Therefore,
(C0Z(X,K), ‖ · ‖X) does not have the fixed point property by Theorem 1.1. �

Remark 2.4. Let X be a locally compact Hausdorff space and K be a compact subset of X such
that X \ K is an infinite set. By part (iii) and part (vii) of Theorem 2.2, we can show that the
commutative complex Banach algebra (C0Z(X,K), ‖ · ‖X) satisfies in all conditions of Theorem 1.3,
and so does not have the fixed point property.

3. Fixed point property of C?–algebras

Applying Gelfand–Naimark theorem [5, Theorem 2.4.5], Theorem 1.1 and Theorem 2.1, we study
the fixed point property of commutative complex C?–algebras.

Theorem 3.1. Let (A, ‖·‖) be a commutative complex C?–algebra with ∆(A) 6= ∅. Then the following
statements are equivalent:

(i) ∆(A) is infinite set.

(ii) A is infinite dimensional.

(iii) (A, ‖ · ‖) does not have the fixed point property.

Proof . By Gelfand–Naimark theorem, the Gelfand homomorphism x 7→ x̂ : A −→ C0(∆(A)) is an
isometric ? –isomorphism from (A, ‖ · ‖) onto

(
C0(∆(A)), ‖ · ‖∆(A)

)
. Hence, (A, ‖ · ‖) does not have

the fixed point property if and only if
(
C0(∆(A)), ‖ · ‖∆(A)

)
does not have the fixed point property

by Theorem 1.1. Therefore, the proof is complete by Theorem 2.1. �

Corollary 3.2. Let X be a locally compact Hausdorff space such that X is an infinite set. If A is
an infinite dimensional self–adjoint uniformly closed complex subalgebra of C0(X), then (A, ‖ · ‖X)
does not have the fixed point property.

Proof . By hypotheses, (A, ‖·‖X) is a commutative complex C?–algebra under the natural involution
f 7→ f̄ : A −→ A. Since A is infinite dimensional, (A, ‖ · ‖X) does not have the fixed point property
by Theorem 3.1. �

Example 3.3. Let m ∈ N and define the function gm : C −→ C by

gm(z) = exp(−m|z|).

Let Am be the complex subalgebra of C0(C) generated by gm and Bm be the uniform closure of Am

in (C0(C), ‖ · ‖C). Then Bm is a uniformly closed self–adjoint complex subalgebra of C0(C). Since for
each n ∈ N the set

{
(gm)k : k ∈ {1, . . . , n}

}
is a linearly independent set in Bm, we deduce that Bm

is infinite dimensional. Therefore, (Bm, ‖ · ‖C) does not have the fixed point property, by Corollary
3.2.
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Remark 3.4. Let X be a locally compact Hausdorff space and K be a compact subset of X such
that X \ K is an infinite set. Then C0Z(X,K) satisfies in conditions of Corollary 3.2. Therefore,
(C0Z(X,K), ‖ · ‖X) does not have the fixed point property.

The following result was given by Ogasawara in [7].

Theorem 3.5. (See [7, Theorem 1]) Let (A, ‖ · ‖) be an infinite dimensional complex C?–algebra with
the algebra involution ?. Then there exists a commutative infinite dimensional complex subalgebra
B of A such that x? ∈ B for each x ∈ B and (B, ‖ · ‖) is a complex C?–algebra with the algebra
involution ?.

Applying Ogasawara’s theorem (Theorem 3.5), Theorem 3.1, and Corollary 1.2 we obtain the
following result.

Theorem 3.6. Let (A, ‖ · ‖) be a complex C?–algebra with the algebra involution ?. If A is infinite
dimensional, then (A, ‖ · ‖) does not have the fixed point property.

Proof . Let A is infinite dimensional. By Theorem 3.5, there exists a commutative infinite dimen-
sional complex subalgebra B of A such that x? ∈ B for each x ∈ B and (B, ‖ · ‖) is a complex
C?–algebra with the algebra involution ?. Therefore, (B, ‖ · ‖) does not have the fixed point property
by Theorem 3.1, and so (A, ‖ · ‖) does not have the fixed point property by Corollary 1.2. �
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