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Abstract

A normed space X is said to have the fixed point property, if for each nonexpansive mapping T :
E — FE on a nonempty bounded closed convex subset E of X has a fixed point. In this paper, we
first show that if X is a locally compact Hausdorff space then the following are equivalent: (i) X
is infinite set, (ii) Co(X) is infinite dimensional, (iii) Cy(X) does not have the fixed point property.
We also show that if A is a commutative complex C*—algebra with nonempty carrier space, then the
following statements are equivalent: (i) Carrier space of A is infinite, (ii) A is infinite dimensional,
(iii) A does not have the fixed point property. Moreover, we show that if A is an infinite dimensional
complex C*—algebra (not necessarily commutative), then A does not have the fixed point property.
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1. Introduction and Preliminaries

Let T : E — FE be a self-map on the nonempty set E. We denote {z € E : T'(x) = x} by Fix(T) and
call the fized points set of T. The symbol K denote a field that can be either C or R. Let (X, ||-||) be a
normed linear space over K. A mapping T : E C X — X is nonexpansive it ||T(z) =T (y)|| < ||z —v]|
for all z,y € E. We say that the normed linear space (X, || -||) over K has the fized point property (or
weak fixed point property) if for every nonempty bounded closed convex (or weakly compact convex,
respectively) subset E of X and every nonexpansive mapping 7' : E — E we have Fix(T) # .

One of the central goals in fixed point theory is to find which normed linear spaces over K have
the (weak) fixed point property.
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Theorem 1.1. Let (Xy, || - |[1) be a Banach space, (Xo, || - ||2) be a normed linear space and there
exist a linear isometry from (Xy, || - ||1) into (Xa, | - ||2) over K. If (Xy,||-||1) does not have the fixed
point property then (X, || - ||2) does not have the fixed point property.

Proof . Let (X3, ||-|1) does not have the fixed point property. Then there exist a nonempty bounded
closed convex subset E of X; and a nonexpansive mapping 7' : E — F such that Fix(T) = 0. Let
U : X; — X5 be a linear isometry from (X7, ||-[|1) into (Xs, ||-]|2) over K. Then ¥(FE) is a nonempty
convex subset of Xy and W(FE) is bounded in (X, || - ||2). Moreover, since F is a closed subset of
X; in the Banach space (X1, || - [j1) and ¥ : X; — X, is a linear isometry from (X3, | - ||;) into
(Xa, || - ||2), we deduce that W(E) is a closed subset of X5 in the normed linear space (Xo, || - ||2). We
define the mapping S : V(E) — V(E) by

S(W(z) =¥(T(x)) (ze€kE)
Since for all  and y in X; we have

[S(¥(z)) = STl = [V(T(z)) — ¥(T(y))l
HT( )H Tyl
T —=Ylh

() = W(y)ll2,

we conclude that S : W(FE) — WU(F) is a nonexpansive mapping. We claim that Fix(S) = 0.
Suppose that ¥(z,) € Fix(S) where z; € E. Then

/A

0= S(W(21)) = W(a1) = W(T(21)) = V(1) = V(T (21) — 71),

and so 0 = T'(z1) — x1. This implies that ; € Fix(T) contadicting to Fix(T") = 0. Hence, our claim
is justified. Therefore, (X, || - ||2) does not have the fixed point property. O

Corollary 1.2. Let (X, | - ||) be a Banach space and Y be a closed linear subspace of X over K. If
(Y, ||-]) does not have the fixed point property, then (X, || - ||) does not have the fixed point property.

Let A be a complex algebra and let A, := A x C. Then A, is a complex algebra with unit
e = (0,1) whenever algebra operations are defined by

(LA +(gom) = (f+g,A+n), alf,\)=(af,ar), (f+N(g,n)=(fg+npf+ g, \n),

for f,g € A, \,u,a € C. We say that A, is the unitisation of A. Clearly, A, is commutative if A
is commutative. Moreover, if || - || is an algebra norm on A then A, is a normed algebra under the
norm || - || defined by

IO =T +IA - (fe A eC).

Note that (A, || - ||) is a unital Banach algebra if (A, || - ||) is a Banach algebra.

Let A be a complex algebra with unit e and let G(A) be the set of all invertible elements of A.
We define the spectrum of an element f € A to be the set {\ € C: Ae— f ¢ G(A)} and denote it by
oalf).

Let A be a complex algebra and A, be the unitisation of A. For f € A, the set o4, (f,0) is called
the spectrum of f and denoted by o4(f).

Let A be a complex normed algebra and let f € A. The spectral radius of f is denoted by r4(f)
and defined by
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ra(f) =it { |1/
It is known [5, Lemma 1.2.5 and Theorem 1.2.8] that
ra(f) = limn oo [ f1]7 = sup{]A| + A€ ou(f)}

Let A be a complex algebra. A character on A is a nonzero multiplicative linear functional on
A. We denote by A(A) the set of all characters on A. If A has the unite e, then ¢(e) = 1 for all
¢ € A(A). Note that each ¢ € A(A) has a unique extension ¢ € A(A.) given by

O(f+re)=0(f)+X (feA reC).

It is known that if A is complex Banach algebra and ¢ € A(A), then ¢ is bounded and ||¢|| < 1. In
particular, ||¢|| = 1 if A is unital. Moreover, if A is a unital commutative complex Banach algebra,
then A(A) # 0 and oa(f) = {o(f) : ¢ € A(A)} for all f € A. If A is without unit, it is possible
A(A) = 0. (See [5, Example 2.1.6 and Example 2.1.7])

Let A be a commutative complex Banach algebra with A(A) # 0. For each f € A, we define
f:A(A) — C by f(¢) = ¢(f) and say that f is the Gelfand transform of f. We denote {f : f € A}
by A. Then A strongly separates the points of A(A). Moreover, the following statements are
equivalent:

(i) A is self-adjoint.

wo nEN}.

(ii) For each f € A, there exists an element g € A such that ¢(g) = ¢(f) for all p € A(A).

We endow A(A) with the Gelfand topology, the weakest topology on A(A) for which every fedis
continuous. A(A) with the Gelfand topology is called the carrier space of A. We know [5, Theorem
2.2.3] that

(i) A(A) is a locally compact Hausdorff space,
(ii) A(Ae) is one-point compactification of A(A),
(iii) A(A) is compact if A has the unit element.

Fupinwong studied the fixed point property of commutative complex Banach algebras in [3] and
obtained the following result.

Theorem 1.3. (See [3, Theorem 3.1]) Let A be an infinite dimensional commutative complex Banach
algebra with A(A) # () satisfying each of the following:

(i) A is self-adjoint,
(ii) if f,g € A such that |¢(f)] < [¢(g)] for all ¢ € A(A), then [[f]] <{lgl],

(i) inf {ra(f) : f € A, |[f]| = 1} > 0.
Then A does not have the fixed point property.

Fupinwong and Dhompongsa were obtained the mentioned result in [4] whenever A is unital. (See
[4, Theorem 4.3])

Let X be a locally compact Hausdorff space. We denote by C(X) and Cy(X) the set of all
complex-valued continuous functions on X and the set of all functions in C'(X) which vanish at
infinity, respectively. Then C(X) is a commutative complex algebra with unit 1x and Cy(X) is a
complex subalgebra of C'(X). Moreover, Cyo(X) = C(X) if X is compact. It is known that Cy(X)
under the uniform norm on X defined by



24 Alimohammadi

Ifllx =sup{[f(z)]: 2 € X} (f € Co(X))

is a commutative complex Banach algebra. Moreover, Cy(X) is without unit if X is not compact.

Applying the concept of peak points, it is shown [I] that certain uniformly closed subalgebras of
C'(X) do not have the fixed point property, where X is a compact Hausdorff space.

Dhompongsa, Fupinwong and Lawton studied the fixed point property and weak fixed point
property of complex C*—algebras in [2].

In Section , applying Theorem we study the fixed point property of Cy(X) and certain its
uniformly closed subalgebras.

In Section [3, we show that a commutative complex C*—algebra A does not have the fixed point
property if and only if A is infinite dimensional. We also prove that if A is an infinite dimensional
complex C*—algebra (not necessarily commutative), then A does not have the fixed point property.

2. The fixed point property of Co(X)

Applying Urysohn’s lemma [9, Theorem 2.12], Theorem , and Schauder—Tychonoff fixed point
theorem [8, Theorem 5.28], we study the fixed point property of Cy(X) whenever X is a locally
compact Hausdorff space.

Theorem 2.1. Let X be a locally compact Hausdorff space and A = Cy(X). Then the following
statements are equivalent:

(i) X is infinite set.
(ii) A is infinite dimensional.
(iii) (A, |- ||x) does not have the fixed point property.

Proof . (i) = (ii). Let X be infinite set. We can choose a sequence {z,} —, in X such that z; # z;
if i, j € Nand i # j. By Urysohn’s lemma, we obtain a sequence {f,}. -, of functions in Cy(X) such

that f1(z;) =1 and

fo(@) = ... = falwn1) =0, folz,) =1 (neN, n>2).

To prove that Co(X) is infinite dimensional, it is sufficient we show that the set {fi,---, f,} is a
linearly independent set in Cy(X) for all n € N. Since fi(z1) = 1, we deduce that {f} is a linearly
independent set in Cy(X). Suppose that n € N with n > 2. Let

a1f1+"'+anfn20 (21)
where aq,- -+, a, € C. Since fi(z1) =1 and fo(z1) = -+ = fu(21) = 0, we conclude that oy = 0 by
(2.1). Suppose that j € {1,---,n} such that a; = --- = a;_; = 0. Then
by (2.1). If j = n, then a; = -+ = a,,_1 = 0 and «,, f, = 0 by (2.2). Thus «,, = 0 since f,(z,) = 1.
If je{1,---,n—1}, then by (2.2)) we have o; = 0 since f;(z;) =1 and fj11(x;) =+ = ful(z;) = 0.
Therefore, a; = 0 for all j € {1,--- ,n} and so the set {fi,---, f,} is a linearly independent set in

Co(X). Hence, (ii) holds.
(ii) = (iii). Let A be infinite dimensional. It is known [6, Theorem 2.3] that

A(A) ={e, :x € X}, (2.3)

where e, : A — C is defined by e,(f) = f(x) for all f € A. Let F' € A. Then there exists f € A
such that F' = f, the Gelfand transform of f. Since f € A and
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-~

Fley) = Fleo) = flex) = eo(f) = f(2) = f(2) = eo(f) = [lea),

y {.) Hence, F € A and so A is self-adjoint.
)| for all ¢ € A( ). Since e, € A(A) for each z € X, we have

for all € X, we deduce that F = ? b
Let f,g € A such that |¢(f)| < |o(g
)

[F(@)] = lex ()] < lea(9)] = [g(2)]

for each x € X. Therefore, ||f||x <9/ x-
Let f € A such that || f]lx = 1. Since ||¢g"||x = (||lgllx)" for all ¢ € A and for each n € N, we
have ||f*||x = 1 for each n € N, and so

ra(f) = lim, o (|| f7]x)" = 1.

Therefore,
inf{ra(f): f €A fllx =1} =inf{1} =1 > 0.

Hence, A does not have the fixed point property by Theorem

(iii) = (i). Let X be a nonempty finite set. Let € X. Since X \ {z} is a finite set and
X is a Hausdorff space, we deduce that X \ {z} is closed in X and so {z} is an open set in X.
Hence, the given topology on X is P(X), the power set of X. This implies that there exists a linear
isometry from (Co(X),| - ||x) onto C* with the Euclidean norm, where n is the cardinal number
of X. Hence, every bounded closed subset E of Cy(X) is compact in (Co(X), | - ||x). Let E be a
nonempty bounded closed convex subset of Cy(X) and T': E — E be a nonexpansive mapping.
Then E is a nonempty compact convex subset of the Banach space (Co(X), || - ||x) and T : B — E
is continuous. Hence, T" has a fixed point by Schauder—Tychonoff fixed point theorem [8, Theorem
5.28]. Therefore, (Co(X), || - || x) has the fixed point property and so (iii) does not hold. O

Let X be a locally compact Hausdorff space and K be a compact subset of X. We denote by
CoZ(X, K) the set of all f € Cy(X) such that f|x = 0. It is easy to see that CoZ(X, K) is a
self-adjoint uniformly closed subalgebra of Cy(X). Moreover, CyZ (X, K) = Cy(X) if and only if
K =10.

Theorem 2.2. Let X be a locally compact Hausdorff space and K be a compact subset of X such
that X \ K # (. Then the following statements hold.

(i) If f € CoZ(X,K) and g = f|x\x, then g € Co(X \ K).
(ii) If g € Co(X \ K) and the function go : X — C defines by

) ve X\K,
9o() :{ g( ) T e K.\
then g()GCoZ(X,K).

(iii) The map ® : CoZ (X, K) — Co(X \ K) defined by ®(f) = f|x\x, is an isometrical isomorphism
from (CoZ(X, K), || - [lx) onto (Co(X \ K), || - x\x)-

(iv) CoZ(X, K) strongly separates the points of X \ K.
(v) For each x € X \ K, e, € A(CoZ(X, K)).
(vi) If v,y € X \ K with x # y, then e, # e,.



26 Alimohammadi

(vii) A (CoZ(X,K)) ={e, :x € X\ K}.
Proof . (i) Let f € CoZ(X,K) and g = f|x\k. Clearly, g € C(X \ K). Let € > 0 and
H={xe X :|f(x)| > e}

Then H is a closed set in X and H C X \ K. Since f € Cy(X), there exists a compact subset L of
X such that

FX\L)C{ze€C:|z| <e}.

Set E = HNL. Then E is a compact set in X and £ C X \ K. Thus E is a compact set in X \ K.
Moreover,

lg(@)] = [f(x)] <,

for all z € (X \ K) \ E. Therefore, g € Cy (X \ K) and so (i) holds.

(ii) Let g € Cy (X \ K) and the function go : X — C defines as above. To prove gy € CoZ (X, K),
it is sufficient we show that gy € Co(X) since go|x = 0. Let 2y € X \ K and choose € > 0. The
continuity of g : X \ K — C at z, implies that there exists a neighborhood Uy of zy in X \ K such
that

lg(z) — g(z0)| < e (Vx € Up). (2.4)

Since X \ K is an open set in X, we deduce that Uy is a neighborhood of xy in X. Since go(xg) =
0 = g(xo) and go|x\x = g, we conclude that

|90(7) — go(wo)| <& (Vo € Uy),

by (2.4). Therefore, go is continuous at .
Let zp € K and choose € > 0. Since g € Cy (X \ K), there exists a compact subset H in X \ K
such that
g(X\K)\H)C{zeC:|z|<e}. (2.5)

The compactness of H in X \ K implies that H is a compact set in X and so H is closed in X. Set
U= X\ K. Then U is an open set in X and K C U. Hence, U is a neighborhood of zy in X. If
x € K, then

lgo(z) — go(xo)| =0 < e.
Suppose that z € U\ K. Then z € (X \ H) \ K = (X \ K) \ H and so |g(x)| < & by (2.5). Hence,
190(%) = go(o)| = [g(x) = 0] = [g(x)] <.

Therefore, go is continuous at zy. So, g € C(X).
Let € > 0 be given. Since g € Cy(X \ K), there exists a compact set H of X \ K such that

g(X\NK)\H) C{z€C:|z[ <e}.

Clearly, H is a compact set in X. Set L = K U H. Then H is a compact set in X and X \ L =
(X\K)\ H. So

l90(x)| = lg(2)| <,
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for all x € X \ L. Therefore, gy € Cy(X) and so (ii) holds.
(iii) By (i), @ is well-defined. Clearly, ® is an algebra homomorphism. Let f € CyZ(X, K).
Then f € Co(X) and f|x = 0. Thus || f||x = || f|lx\x and so

1PCHxevie = I Ixvic e = (1o = (1711 x-

Therefore, ® is an isometry.
Let g € Co(X \ K). We define the function gy : X — C by

s Al

Then gy € CoZ (X, K) by (ii) and go|x = ¢g. Therefore, ® is surjective.

(iv) Let 21, 2o € X\ K such that 21 # x2. By Urysohn’s lemma, there exists a function fy € Cy(X)
such that fo(x1) = 1 and fy(z) = 0 for all z € K U {x2}. So fo € CoZ(X, K) and fo(x1) # fo(xz).
Therefore, CoZ(X, K) separates the points of X \ K.

Let z € X \ K. By Urysohn’s lemma, there exists a function f; € Cy(X) such that fi(z) =1
and fi(y) =0forally € K. So fi € CoZ(X, K) and fi(z) # 0. Therefore, (iv) holds.

(v) Let z € X \ K. Clearly, e, is a multiplicative complex linear functional on CyZ(X, K). By
(iv), there exists a function f; € CoZ (X, K) such that fi(x) # 0 and so e,(f;) # 0. Therefore,
e, € A(CoZ(X, K)).

(vi) Let z,y € X \ K such that = # y. By (iv), there exists a function fy € CyZ (X, K) such that
fo(x) # fo(y). Hence, e,;(fo) # ey(fo) and so e, # e,.

(vii) By (v), we have

{e,:x e X\ K} CA(CZ(X,K)). (2.6)

Let ¢ € A (CoZ(X, K)). By (iii), the map ¢ : CxZ(X, K) — Co(X \ K) defined by
o(f) =flxwe (€ GoZ(X, K))

is an isometrical algebra isomorphism from (CoZ (X, K), || - | x) onto (Co(X \ K), || - ||x\x). There-
fore, 1 o ®~! is a multiplicative complex linear function on Cy(X \ K). On the other hand, there
exists a function fy € CoZ(X, K) such that (fy) # 0. Set go = ®(fy). Then gy € Co(X \ K) and
fo=®(gy). Thus (o ® 1) (gy) # 0 and so o ®~! € A(Cy(X \ K)). Since A(Cy(X \ K)) =
{e,: 2 € X \ K}, there exists y € X \ K such that o ®~! =¢, on Co(X \ K). Let f € CoZ(X, K).
Then ®(f) € Co(X \ K) and so

(Yo @7)(@(f)) = ey (f)
This implies that ¢(f) = e,(f). Therefore, ¥ = e, on CoZ(X, K) and so
A(CoZ(X,K)) C {ey i w € X\ K}. (2.7)
From (2:6) and (1), we have
A(CoZ(X,K)) = {e, 1z € X\ K.
Therefore, (vii) holds. O

Theorem 2.3. Let X be a locally compact Hausdorff space and K be a compact subset of X. If
X\ K is infinite set, then (CoZ (X, K),| - ||x) does not have the fixed point property.
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Proof . Since X \ K is an open subset of X, we deduce that X \ K with the relative topology is
a locally compact Hausdorff space. Since X \ K is infinite set, (Co(X \ K), | - [[x\x) does not have
the fixed point property by Theorem [2.1]

By part (iii) of Theorem [2.2] the map ® : CoZ(X, K) — Co(X \ K) defined by

O(f) = flx\k (f € CoZ(X, K))
is a linear isometry from (CoZ (X, K), || - ||x) onto (Co(X \ K), || - [|x\x). Hence, @' : Co(X\K) —
CoZ(X,K) is a linear isometry from (Co(X\K),| - ||x\x) onto (CoZ(X, K),| - |lx). Therefore,
(CoZ(X,K),|| - || x) does not have the fixed point property by Theorem [1.1] [

Remark 2.4. Let X be a locally compact Hausdorff space and K be a compact subset of X such
that X \ K is an infinite set. By part (iii) and part (vii) of Theorem [2.2] we can show that the
commutative complex Banach algebra (CoZ (X, K), || - ||x) satisfies in all conditions of Theorem [L.3]
and so does not have the fixed point property.

3. Fixed point property of C*—algebras

Applying Gelfand-Naimark theorem [5, Theorem 2.4.5], Theorem and Theorem , we study
the fixed point property of commutative complex C*—algebras.

Theorem 3.1. Let (A, ||-||) be a commutative complex C*—algebra with A(A) # 0. Then the following
statements are equivalent:

(i) A(A) is infinite set.
(ii) A is infinite dimensional.
(iii) (A, ]l - ||) does not have the fixed point property.

Proof . By Gelfand-Naimark theorem, the Gelfand homomorphism z — & : A — Cy(A(A)) is an
isometric x —isomorphism from (A, || - ||) onto (Co(A(A)), ]| - ||aca)). Hence, (A, ] -||) does not have
the fixed point property if and only if (Co(A(A)), || - [|acay) does not have the fixed point property
by Theorem Therefore, the proof is complete by Theorem U

Corollary 3.2. Let X be a locally compact Hausdorff space such that X is an infinite set. If A is
an infinite dimensional self-adjoint uniformly closed complex subalgebra of Co(X), then (A, |- | x)
does not have the fixed point property.

Proof . By hypotheses, (4, [ |x) is a commutative complex C*~algebra under the natural involution
f— f:A— A. Since A is infinite dimensional, (A4, | - ||x) does not have the fixed point property
by Theorem 3.1} []

Example 3.3. Let m € N and define the function g,, : C — C by

gm(2) = exp(—m]z2|).

Let A,, be the complex subalgebra of Cy(C) generated by g¢,, and B,, be the uniform closure of A,,
in (Co(C), || - |lc). Then B,, is a uniformly closed self-adjoint complex subalgebra of Cy(C). Since for
each n € N the set {(gm)k ke{l,... ,n}} is a linearly independent set in B,,, we deduce that B,,
is infinite dimensional. Therefore, (B,,, || - ||c) does not have the fixed point property, by Corollary
0.2
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Remark 3.4. Let X be a locally compact Hausdorff space and K be a compact subset of X such
that X \ K is an infinite set. Then CoZ(X, K) satisfies in conditions of Corollary [3.2] Therefore,
(CoZ(X,K),| - ||x) does not have the fixed point property.

The following result was given by Ogasawara in [7].

Theorem 3.5. (See [7, Theorem 1]) Let (A, || - ||) be an infinite dimensional complex C*—algebra with
the algebra involution *. Then there exists a commutative infinite dimensional complex subalgebra
B of A such that z* € B for each x € B and (B, || - ||) is a complex C*—algebra with the algebra
involution *.

Applying Ogasawara’s theorem (Theorem |3.5), Theorem , and Corollary we obtain the
following result.

Theorem 3.6. Let (A, || - ||) be a complex C*—algebra with the algebra involution x. If A is infinite
dimensional, then (A, || - ||) does not have the fixed point property.

Proof . Let A is infinite dimensional. By Theorem [3.5] there exists a commutative infinite dimen-
sional complex subalgebra B of A such that 2* € B for each z € B and (B, | -||) is a complex
Cr—algebra with the algebra involution . Therefore, (B, || - ||) does not have the fixed point property
by Theorem and so (A, || - ||) does not have the fixed point property by Corollary O
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