Int. J. Nonlinear Anal. Appl. 4 (2013) No. 1, 66-73 ISSN: 2008-6822 (electronic) http://www.ijnaa.semnan.ac.ir

σ -Weak Amenability of Banach Algebras

T. Yazdanpanah*, I. Moazzami Zadeh

Department of Mathematics, Persian Gulf University, Bushehr, 75168, Iran

Abstract

Let \mathcal{A} be a Banach algebra, σ be continuous homomorphism on \mathcal{A} with $\overline{\sigma(\mathcal{A})} = \mathcal{A}$. The bounded linear map $D: \mathcal{A} \to \mathcal{A}^*$ is σ -derivation, if

$$D(ab) = D(a) \cdot \sigma(b) + \sigma(a) \cdot D(b) \qquad (a, b \in \mathcal{A}).$$

We say that \mathcal{A} is σ -weakly amenable, when for each bounded derivation $D : \mathcal{A} \to \mathcal{A}^*$, there exists $a^* \in \mathcal{A}$ such that $D(a) = \sigma(a) \cdot a^* - a^* \cdot \sigma(a)$. For a commutative Banach algebra \mathcal{A} , we show \mathcal{A} is σ -weakly amenable if and only if every σ -derivation from \mathcal{A} into a σ -symmetric Banach \mathcal{A} -bimodule \mathcal{X} is zero. Also, we show that a commutative Banach algebra \mathcal{A} is σ -weakly amenable if and only if $e^{\#}$ and $e^{\#}(a + \alpha) = \sigma(a) + \alpha$.

Keywords: Banach algebra, σ -derivation, σ -weak amenability. 2010 MSC: Primary: 46H20; Secondary 43A20, 46H25.

1. Introduction and preliminaries

The notion of amenable Banach algebra was introduced by B.E. Johnson in [5]. This class of Banach algebras arises naturally out of the cohomology theory for Banach algebras, the algebraic version of which was developed by Hochschild [4]. For a comprehensive account on amenability the reader is referred to the books [2,11,12].

Let \mathcal{A} be a Banach algebra and let \mathcal{X} be a Banach \mathcal{A} -bimodule. Then a derivation from \mathcal{A} into \mathcal{X} is a bounded linear map $D: \mathcal{A} \to \mathcal{X}$ such that for each $a, b \in \mathcal{A}$,

$$D(ab) = D(a) \cdot b + a \cdot D(b)$$

and if $x \in \mathcal{X}$, the mapping $\delta_x : \mathcal{A} \to \mathcal{X}$ defined by $\delta_x(a) = a \cdot x - x \cdot a$ is a derivation. A derivation of this form is called an inner derivation. The set of all derivations from \mathcal{A} into \mathcal{X} is denoted

^{*}Corresponding author

Email addresses: yazdanpanah@pgu.ac.ir (T. Yazdanpanah), iman_moazamizadeh@yahoo.com (I. Moazzami Zadeh)

by $\mathcal{Z}^1(\mathcal{A}, \mathcal{X})$ and the set of all inner derivations from \mathcal{A} into \mathcal{X} is denoted by $\mathcal{N}^1(\mathcal{A}, \mathcal{X})$. Then $\mathcal{H}^1(\mathcal{A}, \mathcal{X}) = \frac{\mathcal{Z}^1(\mathcal{A}, \mathcal{X})}{\mathcal{N}^1(\mathcal{A}, \mathcal{X})}$ is the first Hochschild cohomology group of \mathcal{A} with coefficients in \mathcal{X} .

Notice that $\mathcal{H}^1(\mathcal{A}, \mathcal{X}) = \{0\}$ if and only if every derivation from \mathcal{A} into Banach \mathcal{A} -bimodule \mathcal{X} is an inner derivation.

Let \mathcal{A} be a Banach algebra and \mathcal{X} be a Banach \mathcal{A} -bimodule. Then \mathcal{X}^* is the dual of Banach \mathcal{A} -bimodule, and is also a Banach \mathcal{A} -bimodule as well, if for each $a \in \mathcal{A}, x \in \mathcal{X}$ and $x^* \in \mathcal{X}^*$ we define

$$\langle x, a \cdot x^* \rangle = \langle x \cdot a, x^* \rangle \quad , \quad \langle x, x^* \cdot a \rangle = \langle a \cdot x, x^* \rangle.$$

A Banach algebra \mathcal{A} is amenable if every derivation from \mathcal{A} into every dual Banach \mathcal{A} -bimodule is inner, equivalently if $\mathcal{H}^1(\mathcal{A}, \mathcal{X}^*) = \{0\}$ for every Banach \mathcal{A} -bimodule \mathcal{X} , this definition was introduced by Johnson in [5]. The Banach algebra \mathcal{A} is weakly amenable if $\mathcal{H}^1(\mathcal{A}, \mathcal{A}^*) = \{0\}$; this definition generalizes that introduced by Bade, Curtis and Dales in [1].

2. σ -WEAK AMENABILITY OF BANACH ALGEBRAS

Let \mathcal{A} and \mathcal{B} be a Banach algebras. We denote by $Hom(\mathcal{A}, \mathcal{B})$ the space of all continuous homomorphisms from \mathcal{A} into \mathcal{B} . In particular, the space of all continuous homomorphisms from \mathcal{A} into \mathcal{A} by $Hom(\mathcal{A}, \mathcal{A})$ or $Hom(\mathcal{A})$.

Let \mathcal{A} be a Banach algebra, \mathcal{X} be a Banach \mathcal{A} -bimodule and $\sigma \in Hom(\mathcal{A})$. We consider the following module actions on \mathcal{X} ,

$$a \cdot x := \sigma(a)x$$
, $x \cdot a := x\sigma(a)$ $(a \in \mathcal{A}, x \in \mathcal{X}).$

We denote the above Banach \mathcal{A} -bimodule by \mathcal{X}_{σ} .

Definition 1. Let \mathcal{A} be a Banach algebra, \mathcal{X} be a Banach \mathcal{A} -bimodule and $\sigma \in Hom(\mathcal{A})$. The bounded linear map $D : \mathcal{A} \to \mathcal{X}$ is σ -derivation, if

$$D(ab) = D(a) \cdot \sigma(b) + \sigma(a) \cdot D(b) \qquad (a, b \in \mathcal{A}).$$

For example every ordinary derivation of Banach algebra \mathcal{A} into Banach \mathcal{A} -bimodule \mathcal{X} is $id_{\mathcal{A}}$ -derivation, where $id_{\mathcal{A}}$ is the identity map on \mathcal{A} . Derivations of this from are studied in [7,8,10]. A bounded linear map $D: \mathcal{A} \to \mathcal{X}$ is called σ -inner derivation, if there exists $x \in \mathcal{X}$ such that

$$D(a) = \delta_x^{\sigma}(a) = \sigma(a) \cdot x - x \cdot \sigma(a) \quad (a \in \mathcal{A}).$$

We denote the set of all σ -derivations from \mathcal{A} into \mathcal{X} by $\mathcal{Z}^{1}_{\sigma}(\mathcal{A}, \mathcal{X})$ and the set of all σ -inner derivations from \mathcal{A} into \mathcal{X} by $\mathcal{N}^{1}_{\sigma}(\mathcal{A}, \mathcal{X})$. We define the space $\mathcal{H}^{1}_{\sigma}(\mathcal{A}, \mathcal{X})$ as the quotient space $\frac{\mathcal{Z}^{1}_{\sigma}(\mathcal{A}, \mathcal{X})}{\mathcal{N}^{1}_{\sigma}(\mathcal{A}, \mathcal{X})}$. The space $\mathcal{H}^{1}_{\sigma}(\mathcal{A}, \mathcal{X})$ is called the first σ -cohomology group of \mathcal{A} with coefficients in \mathcal{X} . Notice that $\mathcal{H}^{1}_{\sigma}(\mathcal{A}, \mathcal{X}) = \{0\}$ if and only if every σ -derivation from \mathcal{A} into Banach \mathcal{A} -bimodule \mathcal{X} is an σ -inner derivation.

Definition 2. The Banach algebra \mathcal{A} is called σ -amenable if every σ -derivation from \mathcal{A} into Banach \mathcal{A} -bimodule \mathcal{X}^* be an σ -inner derivation for each Banach \mathcal{A} -bimodule \mathcal{X} , equivalently if $\mathcal{H}^1_{\sigma}(\mathcal{A}, \mathcal{X}^*) = \{0\}$ for every Banach \mathcal{A} -bimodule \mathcal{X} .

Definition 3. The Banach algebra \mathcal{A} is called σ -weakly amenable if every σ -derivation from \mathcal{A} into \mathcal{A}^* be σ -inner derivation (i.e. $\mathcal{H}^1_{\sigma}(\mathcal{A}, \mathcal{A}^*) = \{0\}$). For example the Banach algebra \mathcal{A} is weakly amenable if and only if \mathcal{A} is $id_{\mathcal{A}}$ -weakly amenable.

Theorem 4. Let \mathcal{A} be a σ -amenable Banach algebra. Then \mathcal{A} has a bounded approximate identity for $\sigma(\mathcal{A})$; i.e., there exists a bounded net $\{e_{\alpha}\}$ in \mathcal{A} such that

 $\sigma(a)e_{\alpha} \to \sigma(a) \qquad , \qquad e_{\alpha}\sigma(a) \to \sigma(a) \qquad (a \in \mathcal{A})$

Proof. Consider $\mathcal{X} = \mathcal{A}^*$ as a Banach \mathcal{A} -bimodule with the trivial left action, that is:

 $a \cdot x := 0$, $x \cdot a := xa$ $(a \in \mathcal{A}, x \in \mathcal{X})$

Then $D: \mathcal{A} \to \mathcal{X}^*$ defined by $D(a) = \widehat{\sigma(a)}$ is a σ -derivation. Since \mathcal{A} is σ -amenable, there exists $E \in \mathcal{X}^* = \mathcal{A}^{**}$ such that $D = \delta_E^{\sigma}$. Hence

$$\widehat{\sigma(a)} = \sigma(a) \cdot E - E \cdot \sigma(a) = \sigma(a) \cdot E \qquad (a \in \mathcal{A})$$

Now, let $\{e_{\alpha}\}$ be a bounded net in \mathcal{A} such that $\widehat{e_{\alpha}} \xrightarrow{w^*} E$. Then

$$\widehat{\sigma(a)e_{\alpha}} \stackrel{w^*}{\to} \sigma(a) \cdot E = \widehat{\sigma(a)} \quad (a \in \mathcal{A})$$

Hence $\sigma(a)e_{\alpha} \xrightarrow{w} \sigma(a)$ for each $a \in \mathcal{A}$. Which shows that $\{e_{\alpha}\}$ is a weakly right approximate identity for $\sigma(\mathcal{A})$. So $\sigma(\mathcal{A})$ has a bounded right approximate identity and similarly, has a bounded left approximate identity in \mathcal{A} . Thus $\sigma(\mathcal{A})$ has a bounded approximate identity in \mathcal{A} . \Box

Corollary 5. Let \mathcal{A} be a σ -amenable Banach algebra and $\overline{\sigma(\mathcal{A})} = \mathcal{A}$. Then \mathcal{A} has a bounded approximate identity.

We recall that a Banach algebra \mathcal{A} is called essential, if the linear span of $\{a \cdot b; a, b \in \mathcal{A}\}$ is dense in \mathcal{A} .

Theorem 6. Let \mathcal{A} be a σ -weakly amenable Banach algebra such that $\overline{\sigma(\mathcal{A})} = \mathcal{A}$. Then \mathcal{A} is essential.

Proof. Let $\overline{span} \mathcal{A} \cdot \mathcal{A} \neq \mathcal{A}$. By Hahn-Banach Theorem there is a nonzero $a^* \in \mathcal{A}^*$ such that $\langle ab, a^* \rangle = 0$ for each $a, b \in \mathcal{A}$. Define $D : \mathcal{A} \to \mathcal{A}^*$ by $D(a) = \langle \sigma(a), a^* \rangle a^*$. It is routinely checked that D is a σ -derivation. So there is $b^* \in \mathcal{A}^*$ such that

$$D(a) = \sigma(a)b^* - b^*\sigma(a) \quad (a \in \mathcal{A})$$

Hence $\langle \sigma(a), D(a) \rangle = \langle \sigma(a^2) - \sigma(a^2), b^* \rangle = 0$ for each $a \in \mathcal{A}$ and thus $\langle \sigma(a), a^* \rangle \langle \sigma(a), a^* \rangle = 0$ for each $a \in \mathcal{A}$. So $a^* = 0$ on $\sigma(\mathcal{A})$ and since $\overline{\sigma(\mathcal{A})} = \mathcal{A}$, we have $a^* = 0$. This is a contradiction. \Box

Let \mathcal{A} be a Banach algebra. We recall that when \mathcal{A} has a bounded right (left) approximate identity and \mathcal{X} be a Banach \mathcal{A} -bimodule such that $a \cdot x = 0$ ($x \cdot a = 0$) for each $a \in \mathcal{A}$ and $x \in \mathcal{X}$, then $\mathcal{H}^1(\mathcal{A}, \mathcal{X}^*) = \{0\}$ [12, Proposition 2.1.3]. Similarly if \mathcal{A} has a bounded right approximate identity and $\sigma(a) \cdot x = 0$ for each $a \in \mathcal{A}$ and $x \in \mathcal{X}$, then $\mathcal{H}^1_{\sigma}(\mathcal{A}, \mathcal{X}^*) = \{0\}$.

Definition 7. Let \mathcal{A} be a commutative Banach algebra and $\sigma \in Hom(\mathcal{A})$. Banach \mathcal{A} -bimodule \mathcal{X} is called σ -symmetric, if

$$\sigma(a) \cdot x = x \cdot \sigma(a) \qquad (a \in \mathcal{A} \ , \ x \in \mathcal{X}).$$

Note that when \mathcal{A} is a commutative Banach algebra and \mathcal{X} is a σ -symmetric Banach \mathcal{A} -bimodule. Then every σ -inner derivation from \mathcal{A} into \mathcal{X} is zero. Clearly, every symmetric Banach \mathcal{A} -bimodule is a σ -symmetric Banach \mathcal{A} -bimodule.

Theorem 8. Let \mathcal{A} be a commutative Banach algebra, $\sigma \in Hom(\mathcal{A})$ and $\overline{\sigma(\mathcal{A})} = \mathcal{A}$. Then \mathcal{A} is σ -weakly amenable if and only if for each σ -symmetric Banach \mathcal{A} -bimodule \mathcal{X} , every σ -derivation from \mathcal{A} into \mathcal{X} is zero.

Proof. Suppose that \mathcal{A} is σ -weakly amenable, \mathcal{X} is a σ -symmetric Banach \mathcal{A} -bimodule and $D : \mathcal{A} \to \mathcal{X}$ be an arbitrary σ -derivation. By Theorem 6, \mathcal{A} is essential. Assume that $D \neq 0$. So there are a_0 and b_0 in \mathcal{A} such that

$$D(a_0b_0) = D(a_0)\sigma(b_0) + \sigma(a_0)D(b_0) \neq 0.$$

Without lose of generality we can assume that $\sigma(a_0)D(b_0) \neq 0$. Then

 $\exists x^* \in \mathcal{X}^* \quad s.t. \quad \langle \sigma(a_0) D(b_0), x^* \rangle = 1$

The mapping $d : \mathcal{A} \to \mathcal{A}^*$ defined by $d(a) = D(a)x^*$ is a σ -derivation, and hence d = 0. On the other hand,

$$0 = \langle \sigma(a_0), d(b_0) \rangle = \langle \sigma(a_0), D(b_0)x^* \rangle = \langle \sigma(a_0)D(b_0), x^* \rangle = 1$$

This is a contradiction and so D = 0.

The converse is trivial. \Box

Let \mathcal{A} be a Banach algebra and $\sigma \in Hom(\mathcal{A})$. The Banach algebra $\mathcal{A}^{\#} = \mathcal{A} \oplus \mathbb{C}$, is the unitization of \mathcal{A} with $|| a + \alpha || = || a || + | \alpha |$ for $a \in \mathcal{A}$ and $\alpha \in \mathbb{C}$. Define $\sigma^{\#} : \mathcal{A}^{\#} \to \mathcal{A}^{\#}$ by $\sigma^{\#}(a + \alpha) = \sigma(a) + \alpha$ for each $a \in \mathcal{A}$ and $\alpha \in \mathbb{C}$. It is easy too see that $\sigma^{\#}$ is a bounded endomorphism of $\mathcal{A}^{\#}$.

We know that $(\mathcal{A}^{\#})^* = \mathcal{A}^* \oplus \mathbb{C}e^*$, where

$$\langle a+\beta, a^*+\alpha e^*\rangle = a^*(a)+\alpha\beta$$
 for $a\in\mathcal{A}, a^*\in\mathcal{A}^*, \alpha, \beta\in\mathbb{C}$

In particular $e^*(a + \alpha) = \alpha$. Note that $|| a^* + \alpha e^* || = max \{ || a^* ||, |\alpha| \}$ for $a^* \in \mathcal{A}^*$ and $\alpha \in \mathbb{C}$. Now for $a, b \in \mathcal{A}$, $a^* \in \mathcal{A}^*$ and $\alpha, \beta \in \mathbb{C}$ we have

$$(a+\alpha) \cdot (a^* + \beta e^*) = aa^* + \alpha a^* + (a^*(a) + \alpha \beta)e^*$$
$$(a^* + \beta e^*) \cdot (a+\alpha) = a^*a + \alpha a^* + (a^*(a) + \beta \alpha)e^*$$

Note that $\mathbb{C}e^*$ is a closed $\mathcal{A}^{\#}$ -submodule of $(\mathcal{A}^{\#})^*$, but \mathcal{A}^* is not a $\mathcal{A}^{\#}$ -submodule of $(\mathcal{A}^{\#})^*$. The projection map $P_2: (\mathcal{A}^{\#})^* \to \mathbb{C}e^*$ is not a $\mathcal{A}^{\#}$ -bimodule homomorphism.

We know that $\mathcal{A}^{\#}$ is a Banach \mathcal{A} -bimodule with the following module actions:

 $a \cdot (b+\beta) = ab+\beta a$, $(b+\beta) \cdot a = ba+\beta a$ $(a, b \in \mathcal{A}, \beta \in \mathbb{C}).$

So $(\mathcal{A}^{\#})^*$ is a Banach \mathcal{A} -bimodule with the following module actions:

$$a \cdot (a^* + \alpha e^*) = aa^* + a^*(a)e^*$$
 , $(a^* + \alpha e^*) \cdot a = a^*a + a^*(a)e^*$

for $a \in \mathcal{A}$, $a^* \in \mathcal{A}^*$ and $\alpha \in \mathbb{C}$.

The projection $P_1 : (\mathcal{A}^{\#})^* \to \mathcal{A}^*$ defined by $P_1(a^* + \alpha e^*) = a^*$, is a Banach \mathcal{A} -bimodule homomorphism.

Definition 9. Let \mathcal{A} be unital (with unit e) Banach algebra and $\sigma \in Hom(\mathcal{A})$. Banach \mathcal{A} -bimodule \mathcal{X} is called σ -unital, if

$$\sigma(e) \cdot x = x \cdot \sigma(e) = x \qquad (x \in \mathcal{X})$$

We know that if \mathcal{A} is a unital (with unit e) Banach algebra and $\overline{\sigma(\mathcal{A})} = \mathcal{A}$, then $\sigma(e) = e$.

Lemma 10. Let \mathcal{A} be a unital (with unit e) Banach algebra, $\sigma \in Hom(\mathcal{A})$. If \mathcal{X} is a σ -unital Banach \mathcal{A} -bimodule and $D : \mathcal{A} \to \mathcal{X}$ is a σ -derivation, then D(e) = 0.

Proof. $D(e) = D(e \cdot e) = D(e) \cdot \sigma(e) + \sigma(e) \cdot D(e) = 2D(e)$. So we have D(e) = 0.

Theorem 11. Let \mathcal{A} be a commutative Banach algebra, $\sigma \in Hom(\mathcal{A})$ and $\overline{\sigma(\mathcal{A})} = \mathcal{A}$. If $\mathcal{A}^{\#}$ is $\sigma^{\#}$ -weakly amenable. Then \mathcal{A} is σ -weakly amenable.

Proof. Clearly $\mathcal{A}^{\#}$ is a commutative Banach algebra and $\overline{\sigma^{\#}(\mathcal{A}^{\#})} = \mathcal{A}^{\#}$. Suppose that and $d : \mathcal{A} \to \mathcal{X}$ be an arbitrary σ -derivation, where \mathcal{X} is a σ -symmetric Banach \mathcal{A} -bimodule. Note that \mathcal{X} is a $\sigma^{\#}$ -symmetric Banach $\mathcal{A}^{\#}$ -bimodule with the following module actions:

 $(a+\alpha) \cdot x = ax + \alpha x$, $x \cdot (a+\alpha) = xa + \alpha x$ $(a+\alpha \in \mathcal{A}^{\#}, x \in \mathcal{X})$

Define $D: \mathcal{A}^{\#} \to \mathcal{X}$ by $D(a + \alpha) = d(a)$. Clearly D is a bounded linear map. Also we have

$$D((a + \alpha) \cdot (b + \beta)) = d(ab) + \alpha d(b) + \beta d(a)$$

= $d(a)\sigma(b) + \beta d(a) + \sigma(a)d(b) + \alpha d(b)$
= $d(a) \cdot (\sigma(b) + \beta) + (\sigma(a) + \alpha) \cdot d(b)$
= $D(a + \alpha) \cdot \sigma^{\#}(b + \beta) + \sigma^{\#}(a + \alpha) \cdot D(b + \beta)$

Thus D is a $\sigma^{\#}$ -derivation and therefore D = 0. So d = 0 and \mathcal{A} is σ -weakly amenable. \Box

Theorem 12. Let \mathcal{A} be a Banach algebra, $\sigma \in Hom(\mathcal{A})$ and $\overline{\sigma(\mathcal{A})} = \mathcal{A}$. If \mathcal{A} is σ -weakly amenable. Then $\mathcal{A}^{\#}$ is $\sigma^{\#}$ -weakly amenable.

Proof. Let $D: \mathcal{A}^{\#} \to (\mathcal{A}^{\#})^*$ be an arbitrary $\sigma^{\#}$ -derivation. Since $(\mathcal{A}^{\#})^*$ is a $\sigma^{\#}$ -unital Banach \mathcal{A} -bimodule and $\sigma^{\#}(1) = 1$, so D(1) = 0. Let $P_1: (\mathcal{A}^{\#})^* \to \mathcal{A}^*$ defined by $P_1(a^* + \alpha e^*) = a^*$ and $P_2: (\mathcal{A}^{\#})^* \to \mathbb{C}$ defined by $P_2(a^* + \alpha e^*) = \alpha$ for each $a^* \in \mathcal{A}^*$ and $\alpha \in \mathbb{C}$. Define $d: \mathcal{A} \to \mathcal{A}^*$ by $d(a) = P_1(D(a))$ and $\Phi: \mathcal{A} \to \mathbb{C}$ by $\Phi(a) = P_2(D(a))$. Clearly d and Φ are bounded linear maps, furthermore $D(a) = d(a) + \Phi(a)e^*$ for each $a \in \mathcal{A}$. Also for each $a, b \in \mathcal{A}$ we have:

$$d(ab) = P_1 (D(ab)) = P_1 [D(a)\sigma^{\#}(b) + \sigma^{\#}(a)D(b)] = P_1 [(d(a) + \Phi(a)e^*) \sigma(b) + \sigma(a) (d(b) + \Phi(b)e^*)] = P_1 [d(a)\sigma(b) + \langle \sigma(b), d(a) \rangle e^* + \sigma(a)d(b) + \langle \sigma(a), d(b) \rangle e^*] = d(a)\sigma(b) + \sigma(a)d(b).$$

So d is a σ -derivation. Hence there is $a_0^* \in \mathcal{A}^*$ such that

$$d(a) = \sigma(a)a_0^* - a_0^*\sigma(a) \qquad (a \in \mathcal{A})$$

Now by Theorem 6, \mathcal{A} is essential and for each $a, b \in \mathcal{A}$ we have

$$\Phi(ab) = P_2(D(ab))$$

= $\langle \sigma(a), d(b) \rangle + \langle \sigma(b), d(a) \rangle$
= $\langle \sigma(a), \sigma(b)a_0^* - a_0^*\sigma(b) \rangle + \langle \sigma(b), \sigma(a)a_0^* - a_0^*\sigma(a) \rangle$
= $\langle \sigma(a)\sigma(b) - \sigma(b)\sigma(a) + \sigma(b)\sigma(a) - \sigma(a)\sigma(b), a_0^* \rangle = 0$

Consequently $\Phi = 0$.

$$D(a + \alpha \cdot 1) = D(a) = d(a) + \Phi(a)e^* = d(a) = \sigma(a)a_0^* - a_0^*\sigma(a)$$

We have also

$$\begin{split} \delta_{a_0^{*}}^{\sigma^{\#}}(a + \alpha \cdot 1) &= \sigma^{\#}(a + \alpha \cdot 1) \cdot a_0^* - a_0^* \cdot \sigma^{\#}(a + \alpha \cdot 1) \\ &= (\sigma(a) + \alpha) \cdot a_0^* - a_0^* \cdot (\sigma(a) + \alpha) \\ &= \sigma(a)a_0^* + \alpha a_0^* + \langle \sigma(a), a_0^* \rangle e^* - a_0^* \sigma(a) - \alpha a_0^* - \langle \sigma(a), a_0^* \rangle e^* \\ &= \sigma(a)a_0^* - a_0^* \sigma(a) \\ &= D(a + \alpha \cdot 1) \qquad (a + \alpha \cdot 1 \in \mathcal{A}^{\#}) \end{split}$$

Thus $D = \delta_{a_0}^{\sigma^{\#}}$ is an $\sigma^{\#}$ -inner derivation and $\mathcal{A}^{\#}$ is $\sigma^{\#}$ -weakly amenable. \Box

Proposition 13. Let \mathcal{A} be a Banach algebra and $\sigma \in Hom(\mathcal{A})$. If \mathcal{A} is σ -weakly amenable then it is $\tau \circ \sigma$ -weakly amenable, for each continuous homomorphism τ on \mathcal{A} .

Proof. Let $D : \mathcal{A} \to \mathcal{A}^*$ be an arbitrary $\tau o \sigma$ -derivation. Then $D : \mathcal{A} \to \mathcal{A}^*_{\tau}$ is a σ -derivation, because

$$\begin{aligned} \langle c, D(ab) \rangle &= \langle c, D(a)\tau o\sigma(b) + \tau o\sigma(a)D(b) \rangle \\ &= \langle \tau(\sigma(b))c, D(a) \rangle + \langle c\tau(\sigma(a)), D(b) \rangle \\ &= \langle \sigma(b) \cdot c, D(a) \rangle + \langle c \cdot \sigma(a), D(b) \rangle \\ &= \langle c, D(a) \cdot \sigma(b) + \sigma(a) \cdot D(b) \rangle \quad (a, b, c \in \mathcal{A}). \end{aligned}$$

So there is $a^* \in \mathcal{A}^*_{\tau}$ such that

$$D(a) = \delta^{\sigma}_{a^*}(a) = \sigma(a) \cdot a^* - a^* \cdot \sigma(a) \qquad (a \in \mathcal{A})$$

So for arbitrary member $b \in \mathcal{A}_{\tau}$, we have

$$\begin{aligned} \langle b, D(a) \rangle &= \langle b, \sigma(a) \cdot a^* - a^* \cdot \sigma(a) \rangle \\ &= \langle b \cdot \sigma(a), a^* \rangle - \langle \sigma(a) \cdot b, a^* \rangle \\ &= \langle b \tau(\sigma(a)), a^* \rangle - \langle \tau(\sigma(a))b, a^* \rangle \\ &= \langle b, \tau o \sigma(a) a^* - a^* \tau o \sigma(a) \rangle \\ &= \langle b, \delta_{a^*}^{\tau o \sigma}(a) \rangle \quad (a, b \in \mathcal{A}) \end{aligned}$$

Thus D is an $\tau o \sigma$ -inner derivation. \Box

Corollary 14. Let \mathcal{A} be a Banach algebra. If \mathcal{A} is weakly amenable, then \mathcal{A} is σ -weakly amenable for each continuous homomorphism σ on \mathcal{A} .

Proposition 15. Let \mathcal{A} be a Banach algebra and σ be an epimorphism on \mathcal{A} . If \mathcal{A} is σ -weakly amenable, then \mathcal{A} is weakly amenable.

Proof. Let $D : \mathcal{A} \to \mathcal{A}^*$ be an arbitrary derivation. Set $d := Do\sigma : \mathcal{A} \to \mathcal{A}^*$. Then d is a σ -derivation, because

$$d(ab) = Do\sigma(ab)$$

= $D(\sigma(a)\sigma(b))$
= $D(\sigma(a))\sigma(b) + \sigma(a)D(\sigma(b))$
= $Do\sigma(a)\sigma(b) + \sigma(a)Do\sigma(b)$
= $d(a)\sigma(b) + \sigma(a)d(b)$ $(a, b \in \mathcal{A})$

Since \mathcal{A} is σ -weakly amenable so d is an σ -inner derivation. Thus there exists $a^* \in \mathcal{A}^*$ such that

$$d(a) = \delta^{\sigma}_{a^*}(a) = \sigma(a)a^* - a^*\sigma(a) \qquad (a \in \mathcal{A})$$

Let $b \in \mathcal{A}$ be an arbitrary, there is $a \in \mathcal{A}$ such that $\sigma(a) = b$. We have

$$D(b) = Do\sigma(a) = d(a) = \sigma(a)a^* - a^*\sigma(a)$$
$$= ba^* - a^*b$$
$$= \delta_{a^*}(b)$$

Therefor D is an inner derivation and so \mathcal{A} is weakly amenable. \Box

Proposition 16. Let \mathcal{A} and \mathcal{B} are Banach algebras, $\sigma \in Hom(\mathcal{B})$ and $\varphi : \mathcal{A} \to \mathcal{B}$ be an epimorphisms. If \mathcal{A} be commutative and weakly amenable, then \mathcal{B} is σ -weakly amenable.

Proof. Let $D : \mathcal{B} \to \mathcal{B}^*$ be an arbitrary σ -derivation. Then \mathcal{B}^* becomes a Banach \mathcal{A} -bimodule with the following module actions:

$$a \cdot b^* = \sigma(\varphi(a))b^*$$
, $b^* \cdot a = b^*\sigma(\varphi(a))$ $(a \in \mathcal{A}, b^* \in \mathcal{B}^*)$

The bounded linear mapping $Do\varphi : \mathcal{A} \to \mathcal{B}^*$ is a derivation.

It is easy to see that \mathcal{B} is commutative and therefore \mathcal{B}^* is a symmetric Banach \mathcal{B} -bimodule. Hence \mathcal{B}^* is a symmetric Banach \mathcal{A} -bimodule. Now \mathcal{A} is weakly amenable, thus $\mathcal{H}^1(\mathcal{A}, \mathcal{B}^*) = \{0\}$. So $Do\varphi = 0$. Consequently D = 0 and \mathcal{B} is σ -weakly amenable. \Box

Suppose that $\sigma : \mathcal{A} \to \mathcal{A}$ is an epimorphism and \mathcal{I} is a closed ideal of \mathcal{A} such that $\sigma(\mathcal{I}) \subseteq \mathcal{I}$. Then one can define the map $\hat{\sigma} : \frac{\mathcal{A}}{\mathcal{I}} \to \frac{\mathcal{A}}{\mathcal{I}}$ by $\hat{\sigma}(a + \mathcal{I}) = \sigma(a) + \mathcal{I}$ for each $a \in \mathcal{A}$. We notice the mapping $\hat{\sigma}$ is an epimorphism.

Corollary 17. Let $\sigma : \mathcal{A} \to \mathcal{A}$ be an epimorphism and \mathcal{I} be a closed ideal of \mathcal{A} such that $\sigma(\mathcal{I}) \subseteq \mathcal{I}$. If \mathcal{A} be commutative and weakly amenable, then $\frac{\mathcal{A}}{\mathcal{T}}$ is $\widehat{\sigma}$ -weakly amenable.

Proposition 18. Let \mathcal{A} and \mathcal{B} are Banach algebras, $\sigma \in Hom(\mathcal{A})$ such that $\overline{\sigma(\mathcal{A})} = \mathcal{A}$ and $\tau \in Hom(\mathcal{B})$. Also suppose that $\varphi : \mathcal{A} \to \mathcal{B}$ is an epimorphism such that $\varphi o\sigma = \tau o \varphi$. If \mathcal{A} be commutative and σ -weakly amenable, then \mathcal{B} is τ -weakly amenable.

Proof. Let $D : \mathcal{B} \to \mathcal{B}^*$ be an arbitrary τ -derivation. Then \mathcal{B}^* is a symmetric Banach \mathcal{A} -bimodule with the following module actions:

$$a \cdot b^* = \varphi(a)b^*$$
, $b^* \cdot a = b^*\varphi(a)$ $(a \in \mathcal{A}, b^* \in \mathcal{B}^*)$

Set $d := Do\varphi : \mathcal{A} \to \mathcal{B}^*$. Then d is a σ -derivation, since

$$\begin{aligned} \langle c, d(ab) \rangle &= \langle c, D(\varphi(a)\varphi(b)) \rangle \\ &= \langle c, Do\varphi(a)\tau o\varphi(b) + \tau o\varphi(a) Do\varphi(b) \rangle \\ &= \langle c, Do\varphi(a)\varphi(\sigma(b)) + \varphi(\sigma(a)) Do\varphi(b) \rangle \\ &= \langle c, Do\varphi(a) \cdot \sigma(b) + \sigma(a) \cdot Do\varphi(b) \rangle \\ &= \langle c, d(a) \cdot \sigma(b) + \sigma(a) \cdot d(b) \rangle \qquad (a, b \in \mathcal{A} \ , \ c \in \mathcal{B}) \end{aligned}$$

Since \mathcal{A} is σ -weakly amenable so d = 0. Now for $b \in \mathcal{B}$ there is $a \in \mathcal{A}$ such that $\varphi(a) = b$. Therefor we have

$$D(b) = D(\varphi(a)) = d(a) = 0 = \sigma(a) \cdot b^* - b^* \cdot \sigma(a)$$

= $\varphi o \sigma(a) b^* - b^* \varphi o \sigma(a)$
= $\tau(\varphi(a)) b^* - b^* \tau(\varphi(a))$
= $\tau(b) b^* - b^* \tau(b)$
= $\delta_{b^*}^{\tau}(b)$

Thus D be a τ -inner derivation and so \mathcal{B} is τ -weakly amenable. \Box

Acknowledgement. The authors would like to thank the Persian Gulf University Research Council for their financial support.

References

- W.G. Bade, P.C. Curtis and H.G. Dales, Amenability and weak amenability for Beurling and Lipschits algebra, Proc. London Math. Soc. (3) 55 (1987), 359-377.
- [2] H.G. Dales, Banach algebra and Automatic continuity, Oxford University Press, Oxford, 2001.
- [3] F. Ghahramani and R.J. Loy, Generalized notions of amenability, J. Funct. Anal. 208 (2004), 229-260.
- [4] G. Hochschild, On the cohomology groups of an assocative algebra, Ann. Of Math. (2) 46 (1945), 58-67.
- [5] B.E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972), 1-96.
- [6] M. Mirzavaziri and M.S. Moslehian, σ -amenability of Banach algebras, Southeast Asian Bull. Math. 32 (2008), 1-11.
- [7] M. Mirzavaziri and M.S. Moslehian, Automatic continuity of σ -derivations on C^* -algebras, proc. Amer. Math. Soc. 134 (11) (2006), 3319-3327.
- [8] M. Mirzavaziri and M.S. Moslehian, σ -derivations in Banach algebras, Bull. Iranian Math. Soc. 32 (1) (2006), 65-78.
- [9] M.S. Moslehian, Approximate (σ, τ) -contractibility, Nonlinear Funct. Anal. Appl. 11 (5) (2006), 805-813.
- [10] M.S. Moslehian and A.N. Motlagh, Some notes on (σ, τ) -amenability of Banach algebras, Stud. Univ. Babes-Bolyai. Math. 53 (3) (2008), 57-68
- [11] J. Pier, Amenable Banach algebra, Pitman Research Notes in Mathematical Series 172, Longeman, Essex, 1988.
- [12] V. Runde, Lectures on Amenability, Lecture notes in Mathematics 1774, Springer, 2002.