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Abstract

Using the fixed point method, we prove the generalized Hyers–Ulam–Rassias stability of the following
functional equation in multi-Banach spaces:

n∑
j=1

f
(
− 2xj +

n∑
i=1,i 6=j

xi

)
= (n− 6)f

( n∑
i=1

xi

)
+ 9

n∑
i=1

f(xi).
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1. Introduction

A classical question in the theory of functional equations is the following: “When is it true that a
function, which approximately satisfies a functional equation E must be close to an exact solution
of E?” If the problem accepts a solution, we say that the equation E is stable. Such a problem was
formulated by Ulam [40] in 1940 and solved in the next year for the Cauchy functional equation
by Hyers [17]. It gave rise the stability theory for functional equations. The result of Hyers was
extended by Aoki [1] in 1950, by considering the unbounded Cauchy differences. In 1978, Th. M.
Rassias [36] proved that the additive mapping T , obtained by Hyers or Aoki, is linear if, in addition,
for each x ∈ E the mapping f(tx) is continous in t ∈ R. Găvruta [16] generalized the Rassias’
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result. Following the techniques of the proof of the corollary of Hyers [17] we observed that Hyers
introduced (in 1941) the following Hyers continuity condition: about the continuity of the mapping for
each fixed, and then he proved homogenouity of degree one and therefore the famous linearity. This
condition has been assumed further till now, through the complete Hyers direct method, in order to
prove linearity for generalized Hyers–Ulam stability problem forms (see [19]). Beginning around the
year 1980 The stability problems of several functional equations and approximate homomorphisms
have been extensively investigated by a number of authors and there are many interesting results
concerning this problem (see [3], [6], [11]–[15], [20]–[31], [37], [38]).

J.M. Rassias [34] following the spirit of the innovative approach of Hyers [17], Aoki [1] and Th.
M. Rassias [36] for the unbounded Cauchy difference proved a similar stability theorem in which he
replaced the factor ‖x‖p + ‖y‖p by ‖x‖p · ‖y‖q for p, q ∈ R with p+ q 6= 1 (see also [33] for a number
of other new results).

In 2003 Cădariu and Radu applied the fixed point method to the investigation of the Jensen
functional equation [4] (see also [5], [6], [18], [32]). They could present a short and a simple proof
(different of the “direct method ”, initiated by Hyers in 1941) for the generalized Hyers–Ulam stability
of Jensen functional equation [4], for Cauchy functional equation [6] and for quadratic functional
equation [5].

The following functional equation

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y), (1.1)

is called a quadratic functional equation and every solution of equation (1.1) is said to be a quadratic
mapping. F. Skof [39] proved the Hyers–Ulam stability of the quadratic functional equation (1.1) for
mappings f : E1 → E2, where E1 is a normed space and E2 is a Banach space. In [7], S. Czerwik
proved the Hyers–Ulam stability of the quadratic functional equation (1.1). C. Borelli and G. L.
Forti [2] generalized the stability result of the quadratic functional equation (1.1).

Recently, Dales and Polyakov [8] introduced the notion of multi-normed spaces. This concept is
somewhat similar to operator sequence spaces and has some connections with operator spaces and
Banach lattices. Dales and Moslehian [9] investigated stability of Cauchy functional equation in
multi-Banach spaces (see also [28], [35]).

In this paper, for a fixed positive integer n ≥ 2, we introduce the following generalized quadratic
functional equation:

n∑
j=1

f
(
− 2xj +

n∑
i=1,i 6=j

xi

)
= (n− 6)f

( n∑
i=1

xi

)
+ 9

n∑
i=1

f(xi). (1.2)

Every solution of the functional equation (1.2) is said to be a generalized quadratic mapping.
We will adopt the idea of Cădariu and Radu [4], [6], [32], to prove the generalized Hyers–Ulam–

Rassias stability of generalized quadratic functional equation on multi-Banach spaces.

2. Preliminaries

Assume that (E, ‖ · ‖) is a complex linear space and let m ∈ N. We denote by Em the linear space
E⊕E⊕ . . .⊕E consisting of m-tuples (x1, . . . , xm), where x1, . . . , xm ∈ E. The linear operations on
Em are defined coordinatewise. When we write (0, ..., 0, xi, 0, ..., 0) for an element in Em, understand
that xi appears in the ith coordinate. The zero element of either E or Em is denoted by 0. We denote
by Nm the set {1, 2, . . . ,m} and by σm the group of permutations on m symbols.

In this section, we recall the notion of a multi-normed space and some preliminaries concerning
multi-normed spaces from [8].
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Definition 2.1. [8] Let (E, ‖ · ‖) be a complex normed space and let m ∈ N. A multi-norm of level
m on {Es : s ∈ Nm} is a sequence

(‖ · ‖s) = (‖ · ‖s : s ∈ Nm),

such that ‖ · ‖s is a norm on Es for each s ∈ Nm, such that ‖x‖1 = ‖x‖ for each x ∈ E and such that
the following Axioms (A1)− (A4) are satisfied for each s ∈ Nm with s ≥ 2:

(A1) for each σ ∈ σs and x1, . . . , xs ∈ E, we have

‖(xσ(1), . . . , xσ(s))‖s = ‖(x1, . . . , xs)‖s;

(A2) for each α1, . . . , αs ∈ C and x1, . . . , xs ∈ Es, we have

‖(α1x1, . . . , αsxs)‖s ≤
(

max
i∈Ns

|αi|
)
‖(x1, . . . , xs)‖s;

(A3) for each x1, . . . , xs ∈ E, we have

‖(x1, . . . , xs−1, 0)‖s = ‖(x1, . . . , xs−1)‖s−1;

(A4) for each x1, . . . , xs ∈ E, we have

‖(x1, . . . , xs−1, xs−1)‖s = ‖(x1, . . . , xs−1)‖s−1.

In this case, we say that ((Es, ‖ · ‖s) : s ∈ Nm) is a multi-normed space of level m.

Definition 2.2. [8] A multi-norm on {Es : s ∈ N} is a sequence

(‖ · ‖s) = (‖ · ‖s : s ∈ N),

such that (‖ · ‖s : s ∈ Nm) is a multi-norm of level m for each m ∈ N. In this case, we say that
((Es, ‖ · ‖s) : s ∈ N) is a multi-normed space.

Lemma 2.3. [8] Let ((Es, ‖ · ‖s) : s ∈ N) be a multi-normed space. The following properties are
immediate consequences of the axioms for multi-normed spaces:

(i) for all x ∈ E and s ∈ N, we have

‖(x, . . . , x)‖s = ‖x‖,

(ii) for all s ∈ N and all x1, . . . , xs ∈ E, we have

max
i∈Ns

‖xi‖ ≤ ‖(x1, . . . , xs)‖s ≤
s∑
i=1

‖xi‖ ≤ smax
i∈Ns

‖xi‖.

The following Lemma is a consequence of (ii):

Lemma 2.4. [8] Suppose that (E, ‖ · ‖) is a Banach space. Then (Es, ‖ · ‖s) is a Banach space for
each s ∈ N.
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Definition 2.5. [8] Let ((Es, ‖·‖s) : s ∈ N) be a multi-normed space for which (E, ‖·‖) is a Banach
space. Then ((Es, ‖ · ‖s) : s ∈ N) is called a multi-Banach space.

Now, we recall two important examples of multi-norms for arbitrary space (E, ‖ · ‖). For other
examples we refer to readers to [8].

Example 2.6. Let (E, ‖ · ‖) be a normed space. For m ∈ N, define ‖ · ‖m on Em by

‖(x1, . . . , xm)‖m = max
i∈Nm

‖xi‖ (x1, . . . , xm ∈ E).

It is immediate that ((Es, ‖ · ‖s) : s ∈ N) is a multi-normed space. The sequence
(‖ · ‖m : m ∈ N) is called minimum multi-norm. The terminology ‘minimum’ is justified by
Lemma 2.3.

Example 2.7. Let (E, ‖·‖) be a normed space and {(‖·‖αm : m ∈ N) : α ∈ A} be the (non-empty)
family of all multi-norms on {Es : s ∈ N}. For s ∈ N, define

|||(x1, . . . , xs)|||s = sup
α∈A
‖(x1, . . . , xs)‖αs (x1, . . . , xs ∈ E).

Then (|||.|||m : m ∈ N) is a multi-norm on {Es : s ∈ N}, which is called maximum multi-norm.

We recall two fundamental results in fixed point theory.

Theorem 2.8. [4] Let (X, d) be a complete metric space and let J : X → X be strictly contractive,
i.e.,

d(Jx, Jy) ≤ Lf(x, y), ∀x, y ∈ X

for some Lipschitz constant L < 1. Then
(1) the mapping J has a unique fixed point x∗ = Jx∗;
(2) the fixed point x∗ is globally attractive, i.e.,

lim
n→∞

Jnx = x∗,

for any starting point x ∈ X;
(3) one has the following estimation inequalities:

d(Jnx, x∗) ≤ Lnd(x, x∗),

d(Jnx, x∗) ≤ 1

1− L
d(Jnx, Jn+1x),

d(x, x∗) ≤ 1

1− L
d(x, Jx),

for all nonnegative integers n and all x ∈ X.

Definition 2.9. Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on
X if d satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
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Theorem 2.10. [10] Let (X, d) be a complete generalized metric space and let J : X → X be a
strictly contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X,
either

d(Jnx, Jn+1x) =∞,

for all nonnegative integers n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

3. Main results

Throughout this paper, n will be a positive integer such that n ≥ 2.

Lemma 3.1. Let X and Y be linear spaces and suppose that a mapping Q : X → Y satisfies the
functional equation (1.2) for all x1, . . . , xn ∈ X. Then the mapping L is quadratic.

Proof . Since n is a positive integer, putting x1 = · · · = xn = 0 in (1.2), we get Q(0) = 0. Letting
xm = 0 in (1.2) for all 1 ≤ m ≤ n with m 6= i, j, we get

Q(xi − 2xj) +Q(xj − 2xi) + 4Q(xi + xj) = 9Q(xi) + 9Q(xj), (3.1)

for all xi, xj ∈ X. Letting xj = 0 in (3.1), we have

Q(−2xi) = 4Q(xi), (3.2)

for all xi ∈ X. Replacing xi by xi + xj in (3.1), we get

Q(xi − xj) +Q(−xj − 2xi) + 4Q(xi + 2xj) = 9Q(xi + xj) + 9Q(xj), (3.3)

for all xi, xj ∈ X. Replacing xj by −xj in (3.3), we have

Q(xi + xj) +Q(xj − 2xi) + 4Q(xi − 2xj) = 9Q(xi − xj) + 9Q(−xj), (3.4)

for all xi, xj ∈ X. Letting xi = 0 in (3.4), we get

2Q(xj) + 4Q(−2xj) = 18Q(−xj), (3.5)

for all xj ∈ X. It follows from (3.2) and (3.5) that Q(−xj) = Q(xj) for all xj ∈ X, i.e. Q is even.
Using evenness of Q and (3.4), we have

Q(xi + xj) +Q(2xi − xj) + 4Q(xi − 2xj) = 9Q(xi − xj) + 9Q(xj), (3.6)

for all xi, xj ∈ X. Interchange xi and xj in (3.6), we get

Q(xi + xj) +Q(xi − 2xj) + 4Q(2xi − xj) = 9Q(xi − xj) + 9Q(xi), (3.7)

for all xi, xj ∈ X. Adding (3.6) and (3.7), we have

2Q(xi + xj) + 5Q(xi − 2xj) + 5Q(2xi − xj) = 18Q(xi − xj) + 9Q(xi),+9Q(xj) (3.8)



68 Alizadeh, Moradlou

for all xi, xj ∈ X. Using (3.1) and (3.8) we conclude that

Q(xi + xj) +Q(xi − xj) = 2Q(xi) + 2Q(xj),

for all xi, xj ∈ X. This means Q is quadratic. �

Let X and Y be vector spaces. For a given mapping f : X → Y , we define

Df(x1, . . . , xn) =
n∑
j=1

f
(
− 2xj +

n∑
i=1,i 6=j

xi

)
− (n− 6)f

( n∑
i=1

xi

)
− 9

n∑
i=1

f(xi),

for all x1, . . . , xn ∈ X.
Now, we prove the generalized Hyers–Ulam–Rassias stability of generalized quadratic mapping

on multi-Banach spaces for the functional equation Df(x1, . . . , xn) = 0.

Theorem 3.2. Let E be a linear space and {(F l, ‖ · ‖l) : l ∈ N} be a multi-Banach space. Suppose
that m ∈ N and f : E → F is a mapping satisfying f(0) = 0 for which there exists a control function
ϕ : Enm → [0,∞) such that

‖
(
Df(X(1)), . . . , Df(X(m))

)
‖m ≤ ϕ(X(1), . . . , X(m)), (3.9)

for all X(1) = (x
(1)
1 , . . . , x

(1)
n ), . . . , X(m) = (x

(m)
1 , . . . , x

(m)
n ) ∈ En. If there exists a Lipschitz constant

L < 1 such that

ϕ
(
X(1), . . . , X(m)

)
≤ 4Lϕ

(X(1)

2
, . . . ,

X(m)

2

)
,

for all X(1), . . . , X(m) ∈ En, then there exists a unique quadratic mapping Q : E → F such that

‖f(x1)−Q(x1), . . . , f(xm)−Q(xm)‖m

≤ 1

4− 4L

[
2

9
ϕ
(
Xi,j(0, 2x1), Xi,j(0, 2x2), . . . , Xi,j(0, 2xm)

)
+

1

18
ϕ
(
Xi,j(−2x1, 2x1), Xi,j(−2x2, 2x2), . . . , Xi,j(−2xm, 2xm)

)
+ ϕ

(
Xi,j(0, x1), Xi,j(0, x2), . . . , Xi,j(0, xm)

)]
,

(3.10)

for all x1, . . . , xm ∈ E, where

Xi,j(x, y) = (0, . . . , 0, x︸︷︷︸
i th

, 0, . . . , 0, y︸︷︷︸
j th

, 0, . . . , 0),

for all x, y ∈ E.

Proof . For convenience, set

ϕi,j(x1, x2, . . . , xm) =
2

9
ϕ
(
Xi,j(0, 2x1), Xi,j(0, 2x2), . . . , Xi,j(0, 2xm)

)
+

1

18
ϕ
(
Xi,j(−2x1, 2x1), Xi,j(−2x2, 2x2), . . . , Xi,j(−2xm, 2xm)

)
+ ϕ

(
Xi,j(0, x1), Xi,j(0, x2), . . . , Xi,j(0, xm)

)
,
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where x1, . . . , xm ∈ E and 1 ≤ i < j ≤ n. Consider the set X := {g : E → F, g(0) = 0} and
introduce the generalized metric on X:

d(g, h) = inf
{
C ∈ R+ : ‖(g(x1)− h(x1), . . . , g(xm)− h(xm))‖m

≤ Cϕi,j(x1, x2, . . . , xm), ∀x1, x2, . . . , xm ∈ E
}
.

It is easy to show that (X, d) is complete. Now we consider the linear mapping J : X → X such
that Jg(x) := 1

4
g(2x) for all x ∈ E. For any g, h ∈ X, we have

d(g, h) < C

=⇒ ‖(g(x1)− h(x1), . . . , g(xm)− h(xm))‖m ≤
Cϕi,j(x1, x2, . . . , xm), (x1, x2, . . . , xm ∈ E)

=⇒
∥∥∥(1

4
g(2x1)−

1

4
h(2x1), . . . ,

1

4
g(2xm)− 1

4
h(2xm)

)∥∥∥
m
≤

1

4
Cϕi,j(2x1, 2x2, . . . , 2xm),

=⇒
∥∥∥(1

4
g(2x1)−

1

4
h(2x1), . . . ,

1

4
g(2xm)− 1

4
h(2xm)

)∥∥∥
m
≤

LCϕi,j(x1, x2, . . . , xm),

=⇒ d(Jg, Jh) ≤ LC.

Therefore, we see that
d(Jg, Jh) ≤ Ld(g, h), ∀g, h ∈ X.

This means J is a strictly contractive self-mapping of X, with the Lipschitz constant L.
For each 1 ≤ r ≤ n with r 6= i, j and each 1 ≤ m ≤ s, let x

(m)
i = xm, x

(m)
j = ym and x

(m)
r = 0

in (3.9), we get∥∥∥(f(x1 − 2y1) + f(y1 − 2x1) + 4f(x1 + y1)− 9f(x1)− 9f(y1),

f(x2 − 2y2) + f(y2 − 2x2) + 4f(x2 + y2)− 9f(x2)− 9f(y2), . . . ,

f(xm − 2ym) + f(ym − 2xm) + 4f(xm + ym)− 9f(xm)− 9f(ym)
)∥∥∥

m

≤ ϕ
(
Xi,j(x1, y1), Xi,j(x2, y2), . . . , Xi,j(xm, ym)

)
,

(3.11)

for all x1, y1, x2, y2, . . . , xm, ym ∈ E. Letting x1 = x2 = · · · = xm = 0 in (3.11), we get∥∥∥(f(−2y1)− 4f(y1), f(−2y2)− 4f(y2), . . . ,

f(−2ym)− 4f(ym)
)∥∥∥

m
≤ ϕ

(
Xi,j(0, y1), Xi,j(0, y2), . . . , Xi,j(0, ym)

)
,

(3.12)

for all y1, y2, . . . , ym ∈ E. Interchange x1, x2, . . . , xm by x1 + y1, x2 + y2, . . . , xm + ym, respectively, in
(3.11), we get∥∥∥(f(x1 − y1) + f(−y1 − 2x1) + 4f(x1 + 2y1)− 9f(x1 + y1)− 9f(y1),

f(x2 − y2) + f(−y2 − 2x2) + 4f(x2 + 2y2)− 9f(x2 + y2)− 9f(y2), . . . ,

f(xm − ym) + f(−ym − 2xm) + 4f(xm + 2ym)− 9f(xm + ym)− 9f(ym)
)∥∥∥

m

≤ ϕ
(
Xi,j(x1 + y1, y1), Xi,j(x2 + y2, y2), . . . , Xi,j(xm + ym, ym)

)
,

(3.13)
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for all x1, y1, x2, y2, . . . , xm, ym ∈ E. Replacing y1, y2, . . . , ym by −y1,−y2, . . . ,−ym, respectively, in
(3.13), we have∥∥∥(f(x1 + y1) + f(y1 − 2x1) + 4f(x1 − 2y1)− 9f(x1 − y1)− 9f(−y1),

f(x2 + y2) + f(y2 − 2x2) + 4f(x2 − 2y2)− 9f(x2 − y2)− 9f(−y2), . . . ,

f(xm + ym) + f(ym − 2xm) + 4f(xm − 2ym)− 9f(xm − ym)− 9f(−ym)
)∥∥∥

m

≤ ϕ
(
Xi,j(x1 − y1, y1), Xi,j(x2 − y2, y2), . . . , Xi,j(xm − ym, ym)

)
,

(3.14)

for all x1, y1, x2, y2, . . . , xm, ym ∈ E. Letting x1 = x2 = · · · = xm = 0 in (3.14), we get∥∥∥(2f(y1) + 4f(−2y1)− 18f(−y1),

2f(y2) + 4f(−2y2)− 18f(−y2), . . . ,

2f(ym) + 4f(−2ym)− 18f(−ym)
)∥∥∥

m

≤ ϕ
(
Xi,j(−y1, y1), Xi,j(−y2, y2), . . . , Xi,j(−ym, ym)

)
,

(3.15)

for all y1, y2, . . . , ym ∈ E. It follows from (3.12) and (3.15) that∥∥(f(y1)− f(−y1), f(y2)− f(−y2), . . . , f(ym)− f(−ym)
)∥∥

m

≤ 2

9
ϕ
(
Xi,j(0, y1), Xi,j(0, y2), . . . , Xi,j(0, ym)

)
+

1

18
ϕ
(
Xi,j(−y1, y1), Xi,j(−y2, y2), . . . , Xi,j(−ym, ym)

)
,

(3.16)

for all y1, y2, . . . , ym ∈ E.
Now, using (3.12) and (3.16), we can conclude that∥∥(f(2x1)−4f(x1), f(2x2)− 4f(x2), . . . , f(2xm)− 4f(xm)

)∥∥
m

≤ 2

9
ϕ
(
Xi,j(0, 2x1), Xi,j(0, 2x2), . . . , Xi,j(0, 2xm)

)
+

1

18
ϕ
(
Xi,j(−2x1, 2x1), Xi,j(−2x2, 2x2), . . . , Xi,j(−2xm, 2xm)

)
+ ϕ

(
Xi,j(0, x1), Xi,j(0, x2), . . . , Xi,j(0, xm)

)
,

(3.17)

for all x1, x2, . . . , xm ∈ E. So∥∥∥1

4
f(2x1)− f(x1),

1

4
f(2x2)− f(x2), . . . ,

1

4
f(2xm)− f(xm)

∥∥∥
m
≤ 1

4
ϕi,j(x1, x2, . . . , xm),

for all x1, x2, . . . , xm ∈ E. Hence d(f, Jf) ≤ 1

4
.

By Theorem 2.10, there exists a mapping Q : E → F such that
(1) Q is a fixed point of J , i.e.,

Q(x) =
1

4
Q(2x), (3.18)
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for all x ∈ E. The mapping Q is a unique fixed point of J in the set

Y = {g ∈ X : d(f, g) <∞}.

This implies that Q is a unique mapping satisfying (3.18) such that there exists C ∈ (0,∞) satisfying

‖Q(x1)− f(x1), . . . , Q(xm)− f(xm)‖m ≤ Cϕi,j(x1, x2, . . . , xm),

for all x1, x2, . . . , xm ∈ E.
(2) d(Jkf,Q)→ 0 as k →∞. This implies the equality

lim
k→∞

1

4k
f
(
2kx
)

= Q(x), (3.19)

for all x ∈ E.

(3) d(f,Q) ≤ 1

1− L
d(f, Jf), which implies the inequality

d(f,Q) ≤ 1

4− 4L
.

This implies that the inequality (3.10) holds.
Replacing X(1) = · · · = X(m) = (x1, x2, . . . , xn) := X in (3.9), using the properties of norm in

multi-normed spaces and (3.19), we have

‖DQ(x1, . . . , xn), . . . , DQ(x1, . . . , xn)‖s

= lim
k→∞

1

4k
‖Df(2kx1, . . . , 2

kxn), . . . , Df(2kx1, . . . , 2
kxn)‖m

= lim
k→∞

1

4k
‖Df(2kx1, . . . , 2

kxn)‖m

≤ lim
k→∞

1

4k
ϕ(2kX, . . . , 2kX)

≤ lim
k→∞

Lkϕ(X, . . . , X) = 0,

for all x1, x2, . . . , xn ∈ E. So

n∑
j=1

Q
(
− 2xj +

n∑
i=1,i 6=j

xi

)
= (n− 6)Q

( n∑
i=1

xi

)
+ 9

n∑
i=1

Q(xi).

By Lemma 3.1, the mapping Q : E → F is Quadratic, i.e., Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y) for
all x, y ∈ E. �

Corollary 3.3. Let E be a linear space and {(F l, ‖ · ‖l) : l ∈ N} be a multi-Banach space. Suppose
that m ∈ N and 0 < p < 2 and f : E → F is a mapping with f(0) = 0 satisfying

‖Df(X(1)), . . . , Df(X(m))‖m ≤ ε
m∑
k=1

n∑
t=1

‖x(k)t ‖p,

for all X(1), . . . , X(m) ∈ En. Then there exists a unique quadratic mapping Q : E → F such that

‖f(x1)−Q(x1), . . . , f(xm)−Q(xm)‖m ≤
(

2p

3(22 − 2p)
+

1

22 − 2p

)
ε

m∑
k=1

‖xk‖p,

for all x1, . . . , xm ∈ E.
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Proof . The proof follows from Theorem 3.2 by taking

ϕ(X(1), . . . , X(m)) = ε

s∑
m=1

n∑
t=1

‖x(m)
t ‖p,

for all X(1), . . . , X(m) ∈ En. We can choose L =
1

22−p to get the desired result. �

Theorem 3.4. Let E be a linear space and {(F l, ‖ · ‖l) : l ∈ N} be a multi-Banach space. Suppose
that m ∈ N and f : E → F is a mapping satisfying f(0) = 0 for which there exists a control function
ϕ : Enm → [0,∞) satisfying (3.9) for all X(1), . . . , X(m) ∈ En. If there exists a Lipschitz constant
L < 1 such that

ϕ
(
X(1), . . . , X(m)

)
≤ 1

4
Lϕ
(

2X(1), . . . , 2X(m)
)
,

for all X(1), . . . , X(m) ∈ En, then there exists a unique quadratic mapping Q : E → F such that

‖f(x1)−Q(x1), . . . , f(xm)−Q(xm)‖m

≤ L

4− 4L

[
2

9
ϕ
(
Xi,j(0, 2x1), Xi,j(0, 2x2), . . . , Xi,j(0, 2xm)

)
+

1

18
ϕ
(
Xi,j(−2x1, 2x1), Xi,j(−2x2, 2x2), . . . , Xi,j(−2xm, 2xm)

)
+ ϕ

(
Xi,j(0, x1), Xi,j(0, x2), . . . , Xi,j(0, xm)

)]
,

(3.20)

for all x1, . . . , xm ∈ E, where

Xi,j(x, y) = (0, . . . , 0, x︸︷︷︸
i th

, 0, . . . , 0, y︸︷︷︸
j th

, 0, . . . , 0),

for all x, y ∈ E.

Proof . Similar to the proof of Theorem 3.2, we consider the linear mapping J : X → X such that
Jg(x) := 4g

(
1
2
x
)

for all x ∈ E. We can conclude that J is a strictly contractive self-mapping of X,
with the Lipschitz constant L.

It follows from (3.17) that∥∥∥f(x1)− 4f(
1

2
x1), f(x2)− 4f(

1

2
x2), . . . , f(xm)− 4f(

1

2
xm)

∥∥∥
m
≤ L

4
ϕi,j(x1, x2, . . . , xm),

for all x1, x2, . . . , xm ∈ E. Hence d(f, Jf) ≤ L

4
.

By Theorem 2.10, there exists a mapping Q : E → F such that
(1) Q is a fixed point of J , i.e.,

Q(x) = 4Q(
x

2
), (3.21)

for all x ∈ E. The mapping Q is a unique fixed point of J in the set

Y = {g ∈ X : d(f, g) <∞}.
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This implies that Q is a unique mapping satisfying (3.21) such that there exists C ∈ (0,∞) satisfying

‖f(x1)−Q(x1), . . . , f(xm)−Q(xm)‖m ≤ Cϕi,j(x1, x2, . . . , xm),

for all x1, x2, . . . , xm ∈ E.
(2) d(Jkf,Q)→ 0 as k →∞. This implies the equality

lim
k→∞

4kf
( x

2k

)
= Q(x),

for all x ∈ E.

(3) d(f,Q) ≤ 1

1− L
d(f, Jf), which implies the inequality

d(f,Q) ≤ L

4− 4L
.

This implies that the inequality (3.20) holds.
The rest of the proof is similar to the proof of Theorem 3.2. �

Corollary 3.5. Let E be a linear space and {(F l, ‖ · ‖l) : l ∈ N} be a multi-Banach space. Suppose
that m ∈ N and p > 2 and f : E → F is a mapping with f(0) = 0 satisfying

‖Df(X(1)), . . . , Df(X(m))‖m ≤ ε
m∑
k=1

n∑
t=1

‖x(k)t ‖p,

for all X(1), . . . , X(m) ∈ En. Then there exists a unique quadratic mapping Q : E → F such that

‖f(x1)−Q(x1), . . . , f(xm)−Q(xm)‖m ≤
(

2p

3(2p − 22)
+

1

2p − 22

)
ε

m∑
k=1

‖xk‖p,

for all x1, . . . , xm ∈ E.

Proof . The proof follows from Theorem 3.4 by taking

ϕ(X(1), . . . , X(m)) = ε

s∑
m=1

n∑
t=1

‖x(m)
t ‖p,

for all X(1), . . . , X(m) ∈ En. We can choose L =
1

2p−2
to get the desired result. �

Acknowledgements

The authors would like to thank Marand Branch, Islamic Azad University for the financial support
of this research, which is based on a research project contract.



74 Alizadeh, Moradlou

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950) 64–66.
[2] C. Borelli and G. L. Forti, On a general Hyers–Ulam stability result, Internat. J. Math. Math. Sci. 18 (1995)

229–236.
[3] D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951) 223–

237.
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Ser. Mat. Inform. 41 (2003) 25–48.
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