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Abstract

In this paper, a generalization of trapezoid inequality for functions of two independent variables with
bounded variation and some applications are given.
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1. Introduction

Let f : [a, b]→ R be a differentiable mapping on (a, b) whoose derivative f ′ : (a, b)→ R is baunded
on (a, b) , i.e. ‖f ′‖∞ := sup

t∈(a,b)
|f ′(t)| <∞. Then we have the inequality

∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b− a) ‖f ′‖∞ , (1.1)

for all x ∈ [a, b][19]. The constant 1
4

is the best possible. This inequality is well known in the
literature as the Ostrowski inequality.

In [11], Dragomir proved following Ostrowski type inequalities related functions of bounded vari-
ation:
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Theorem 1.1. Let f : [a, b]→ R be a mapping of bounded variation on [a, b] . Then∣∣∣∣∣∣
b∫

a

f(t)dt− (b− a) f(x)

∣∣∣∣∣∣ ≤
[

1

2
(b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣] b∨
a

(f)

holds for all x ∈ [a, b] . The constant 1
2

is the best possible.

2. Preliminaries and Lemmas

In 1910, Fréchet [16] has given the following characterization for the double Riemann-Stieltjes inte-
gral. Assume that f(x, y) and α(x, y) are defined over the rectangle Q = [a, b] × [c, d]; let R be the
divided into rectangular subdivisions, or cells, by the net of straight lines x = xi, y = yi,

a = x0 < x1 < ... < xn = b, and c = y0 < y1 < ... < ym = d;

let ξi, ηj be any numbers satisfying ξi ∈ [xi−1, xi] , ηj ∈ [yj−1, yj] , (i = 1, 2, ..., n; j = 1, 2, ...,m); and
for all i, j let

∆11α(xi, yj) = α(xi−1, yj−1)− α(xi−1, yj)− α(xi, yj−1) + α(xi, yj).

Then if the sum

S =
n∑

i=1

m∑
j=1

f (ξi, ηj) ∆11α(xi, yj)

tends to a finite limit as the norm of the subdivisions approaches zero, the integral of f with respect
to α is said to exist. We call this limit the restricted integral, and designate it by the symbol

b∫
a

d∫
c

f(x, y)dydxα(x, y). (2.1)

If in the above formulation S is replaced by the sum

S∗ =
n∑

i=1

m∑
j=1

f (ξij, ηij) ∆11α(xi, yj),

where ξij, ηij are numbers satisfying ξij ∈ [xi−1, xi] , ηij ∈ [yj−1, yj] , we call the limit, when it exist,
the unrestricted integral, and designate it by the symbol

b∫
a

d∫
c

f(x, y)dydxα(x, y). (2.2)

Clearly, the existence of (2.2) implies both the existence of (2.1) and its equality (2.2). On the other
hand, Clarkson ([8]) has shown that the existence of (2.1) does not imply the existence of (2.2).

In [7], Clarkson and Adams gave the following definitions of bounded variation for functions of
two variables:
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2.1. Definitions

The function f(x, y) is assumed to be defined in rectangle R(a ≤ x ≤ b, c ≤ y ≤ d). By the term net
we shall, unless otherwise specified mean a set of parallels to the axes:

x = xi(i = 0, 1, 2, ...,m), a = x0 < x1 < ... < xm = b;

y = yj(j = 0, 1, 2, ..., n), c = y0 < y1 < ... < yn = d.

Each of the smaller rectangles into which R is devided by a net will be called a cell. We employ the
notation

∆11f(xi, yj) = f(xi+1, yj+1)− f(xi+1, yj)− f(xi, yj+1) + f(xi, yj),

∆f(xi, yj) = f(xi+1, yj+1)− f(xi, yj).

The total variation function, φ(x) [ψ(y)] , is defined as the total variation of f(x, y) [f(x, y)] considered
as a function of y [x] alone in interval (c, d) [(a, b)], or as +∞ if f(x, y) [f(x, y)] is of unbounded
variation.

Definition 2.1. (Vitali-Lebesque-Fréchet-de la Vallée Poussin). The function f(x, y) is said tobe
of bounded variation if the sum

m−1 , n−1∑
i=0 , j=0

|∆11f(xi, yj)|

is bounded for all nets.

Definition 2.2. (Fréchet). The function f(x, y) is said tobe of bounded variation if the sum

m−1 , n−1∑
i=0 , j=0

εiεj |∆11f(xi, yj)|

is bounded for all nets and all possible choices of εi = ±1 and εj = ±1.

Definition 2.3. (Hardy-Krause). The function f(x, y) is said tobe of bounded variation if it satis-
fies the condition of Definition 2.1 and if in addition f(x, y) is of bounded variation in y (i.e. φ(x) is
finite) for at least one x and f(x, y) is of bounded variation in y (i.e. ψ(y) is finite) for at least one
y.

Definition 2.4. (Arzelà). Let (xi, yi) (i = 0, 1, 2, ...,m) be any set of points satisfiying the condi-
tions

a = x0 < x1 < ... < xm = b;

c = y0 < y1 < ... < ym = d.

Then f(x, y) is said tobe of bounded variation if the sum

m∑
i=1

|∆f(xi, yi)|

is bounded for all such sets of points.
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Therefore, one can define the consept of total variation of a function of variables, as follows:

Let f be of bounded variation on Q = [a, b]×[c, d], and let
∑

(P ) denote the sum
n∑

i=1

m∑
j=1

|∆11f(xi, yj)|

corresponding to the partition P of Q. The number

∨
Q

(f) :=
d∨
c

b∨
a

(f) := sup
{∑

(P ) : P ∈ P(Q)
}
,

is called the total variation of f on Q. Here P([a, b]) denotes the family of partitions of [a, b] .
In [17], authors proved following Lemmas related double Riemann-Stieltjes integral:

Lemma 2.5. (Integrating by parts) If f ∈ RS(α) on Q, then α ∈ RS(f) on Q, and we have

d∫
c

b∫
a

f(t, s)dtdsα(t, s) +

d∫
c

b∫
a

α(t, s)dtdsf(t, s) (2.3)

= f(b, d)α(b, d)− f(b, c)α(b, c)− f(a, d)α(a, d) + f(a, c)α(a, c).

Lemma 2.6. Assume that g ∈ RS(α) on Q and α is of bounded variation on Q, then∣∣∣∣∣∣
d∫

c

b∫
a

g(x, y)dxdyα(x, y)

∣∣∣∣∣∣ ≤ sup
(x,y)∈Q

|g(x, y)|
∨
Q

(α) . (2.4)

Moreover, Jawarneh and Noorani obtained following Ostrowski type inequality for functions of
two variables with bounded variation in [17]:

Theorem 2.7. Let f : Q → R be mapping of bounded variation on Q. Then for all (x, y) ∈ Q, we
have inequality∣∣∣∣∣∣(b− a) (d− c) f(x, y)−

d∫
c

b∫
a

f(t, s)dtds

∣∣∣∣∣∣ ≤
[

1

2
(b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣]

×
[

1

2
(d− c) +

∣∣∣∣y − c+ d

2

∣∣∣∣]∨
Q

(f)

where
∨
Q

(f) denotes the total (double) variation of f on Q.

In resent years the subject Ostrowski type inequalities for functions of bounded variation are
studied by many authors. For more information and recent developments on inequalities for functions
of bounded variation, please refer to ([1],[2] [4]-[6], [9]-[15],[18],[20]-[24]). But, There are a few works
on inequalities functions of two variables with bounded variation (see [3],[17])

The aim of this paper is to establish the generalization of trapezoid inequality for functions of
two independent variables with bounded variation and apply it for quadrature formula.
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3. Main Results

First, we will give the following notations used in main Theorem.

υ(h) := max {hi| i = 0, ..., n− 1} , hi := xi+1 − xi

υ(l) := max { lj| j = 0, ...,m− 1} , lj := yj+1 − lj

J(x, y) = (b− x) (d− y) f(b, d) + (b− x) (y − c) f(b, c)

+ (x− a) (d− y) f(a, d) + (x− a) (y − c) f(a, c)−
b∫

a

d∫
c

f(t, s)dsdt.

Theorem 3.1. Let the function f : Q = [a, b] × [c, d] → R is of bounded variation on Q. Then we
have the inequality

|J(x, y)| ≤
[

1

2
(b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣] [1

2
(d− c) +

∣∣∣∣y − c+ d

2

∣∣∣∣] b∨
a

d∨
c

(f) (3.1)

for all (x, y) ∈ Q.

Proof . Using Lemma 2.5, we get

b∫
a

d∫
c

(x− t) (y − s) dsdtf(t, s) = (b− x) (d− y) f(b, d) + (b− x) (y − c) f(b, c)

+ (x− a) (d− y) f(a, d) + (x− a) (y − c) f(a, c)−
b∫

a

d∫
c

f(t, s)dsdt

= J(x, y)

(3.2)

for all (x, y) ∈ Q.
Taking modulus and using Lemma 2.6 in (3.2), we obtain

|J(x, y)| =

∣∣∣∣∣∣
b∫

a

d∫
c

(x− t) (y − s) dsdtf(t, s)

∣∣∣∣∣∣
≤ sup

t∈[a,b]
s∈[c,d]

|x− t| |y − s|
b∨
a

d∨
c

(f)

= max {x− a, b− x}max {y − c, b− y}
b∨
a

d∨
c

(f)

=

[
1

2
(b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣] [1

2
(d− c) +

∣∣∣∣y − c+ d

2

∣∣∣∣] b∨
a

d∨
c

(f)

which is the required result. �
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Remark 3.2. Under assumption Theorem 3.1 with x = b and y = d,then we have the ”left rectangle
inequality” ∣∣∣∣∣∣(b− a) (d− c) f(a, c)−

b∫
a

d∫
c

f(t, s)dsdt

∣∣∣∣∣∣ ≤ (b− a) (d− c)
b∨
a

d∨
c

(f).

Remark 3.3. If we take x = a and y = c in Theorem 3.1, then we have the ”right rectangle
inequality” ∣∣∣∣∣∣(b− a) (d− c) f(b, d)−

b∫
a

d∫
c

f(t, s)dsdt

∣∣∣∣∣∣ ≤ (b− a) (d− c)
b∨
a

d∨
c

(f).

Remark 3.4. Under assumption Theorem 3.1 with x = a+b
2

and y = c+d
2

, then we get the ”trapezoid
inequality”∣∣∣∣∣∣f(b, d) + f(b, c) + f(a, d) + f(a, c)

4
− 4

(b− a) (d− c)

b∫
a

d∫
c

f(t, s)dsdt

∣∣∣∣∣∣ ≤ 1

4

b∨
a

d∨
c

(f)

which was given by Jawarneh and Noorani in [17]. The constant 1
4

is the best possible. For a simple
proof of sharpness of constant see [3].

4. Applications to quadrature formula

Let us consider the arbitrary division In : a = x0 < x1 < ... < xn = b, and Jm : c = y0 < y1 <
... < ym = d. We introduce intermediate points ξi ∈ [xi, xi+1] (i = 0, 1, ..., n− 1), and ηj ∈ [yj, yj+1]
(j = 0, 1, ...,m− 1) , and define

T (f, In, Jm, ξ, η) : =
n−1∑
i=0

m−1∑
j=0

(xi+1 − ξi) (yj+1 − ηj) f(xi+1, yj+1)

+
n−1∑
i=0

m−1∑
j=0

(xi+1 − ξi) (ηj − yj) f(xi+1, yj)

+
n−1∑
i=0

m−1∑
j=0

(ξi − xi) (yj+1 − ηj) f(xi, yj+1)

+
n−1∑
i=0

m−1∑
j=0

(ξi − xi) (ηj − yj) f(xi, yj).

(4.1)

Theorem 4.1. Let the function f : Q = [a, b]× [c, d]→ R is of bounded variation on Q. Then

b∫
a

d∫
c

f(t, s)dsdt = T (f, In, Jm, ξ, η) +R(f, In, Jm, ξ, η)
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where T (f, In, Jm, ξ, η) defined in (4.1) and the remainder term R(f, In, Jm, ξ, η) satisfies

|R(f, In, Jm, ξ, η)| ≤
[

1

2
υ(h) + max

0≤i<n

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣]
×
[

1

2
υ(l) + max

0≤j<m

∣∣∣∣ηj − yj + yj+1

2

∣∣∣∣] b∨
a

∨
≤ υ(h)υ(l)

b∨
a

d∨
c

(f).

(4.2)

Proof . Applying Theorem 3.1 to interval [xi, xi+1]× [yj, yj+1] , we have∣∣∣ (xi+1 − ξi) (yj+1 − ηj) f(xi+1, yj+1) + (xi+1 − ξi) (ηj − yj) f(xi+1, yj)

+ (ξi − xi) (yj+1 − ηj) f(xi, yj+1) + (ξi − xi) (ηj − yj) f(xi, yj)

−
xi+1∫
xi

yj+1∫
yj

f(t, s)dsdt
∣∣∣

≤
[

1

2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] [1

2
lj +

∣∣∣∣ηj − yj + yj+1

2

∣∣∣∣] xi+1∨
xi

yj+1∨
yj

(f)

(4.3)

for i ∈ {0, 1, ..., n− 1}and j ∈ {0, 1, ...,m− 1} .
By the generalized triangle inequality and summing the inequality (4.3) over i from 0 to n − 1

and j from 0 to m− 1,

|R(f, In, Jm, ξ, η)|

≤
n−1∑
i=0

m−1∑
j=0

∣∣∣ (xi+1 − ξi) (yj+1 − ηj) f(xi+1, yj+1) + (xi+1 − ξi) (ηj − yj) f(xi+1, yj)

+ (ξi − xi) (yj+1 − ηj) f(xi, yj+1) + (ξi − xi) (ηj − yj) f(xi, yj)−
xi+1∫
xi

yj+1∫
yj

f(t, s)dsdt
∣∣∣

≤
n−1∑
i=0

m−1∑
j=0

[
1

2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] [1

2
lj +

∣∣∣∣ηj − yj + yj+1

2

∣∣∣∣] xi+1∨
xi

yj+1∨
yj

(f)

≤ max
0≤i<n

[
1

2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] max
0≤j<m

[
1

2
lj +

∣∣∣∣ηj − yj + yj+1

2

∣∣∣∣] n−1∑
i=0

m−1∑
j=0

xi+1∨
xi

yj+1∨
yj

(f)

≤
[

1

2
υ(h) + max

0≤i<n

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] [1

2
υ(l) + max

0≤j<m

∣∣∣∣ηj − yj + yj+1

2

∣∣∣∣] b∨
a

d∨
c

(f).

This completes the proof of first inequality in (4.2).
In last inequality, if we observe that∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣ ≤ 1

2
hi and max

i∈[0,...,n−1]

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣ ≤ 1

2
υ(h), (4.4)
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and similarly,

max
j∈[0,...,m−1]

∣∣∣∣ηj − yj + yj+1

2

∣∣∣∣ ≤ 1

2
υ(l) (4.5)

we have the inequality

|R(f, In, Jm, ξ, η)| ≤ υ(h)υ(l)
b∨
a

d∨
c

(f).

This completes the proof of theorem. �

Remark 4.2. If we take ξi = xi+1 and ηj = yj+1, then

b∫
a

d∫
c

f(t, s)dsdt = DL(f, In, Jm) +RL(f, In, Jm)

where DL(f, In, Jm) is built from the left rectangle rule

DL(f, In, Jm) =
n−1∑
i=0

m−1∑
j=0

f(xi, yj)hilj

and remainder term RL(f, In, Jm) satisfies

|RL(f, In, Jm)| ≤ υ(h)υ(l)
b∨
a

d∨
c

(f).

Remark 4.3. If we take ξi = xi and ηj = yj, then

b∫
a

d∫
c

f(t, s)dsdt = DR(f, In, Jm) +RR(f, In, Jm)

where DR(f, In, Jm) is constructed from the right rectangle rule

DR(f, In, Jm) =
n−1∑
i=0

m−1∑
j=0

f(xi+1, yj+1)hilj

and remainder satisfies

|RR(f, In, Jm)| ≤ υ(h)υ(l)
b∨
a

d∨
c

(f).

Remark 4.4. If we take ξi = xi+xi+1

2
and ηj =

yj,+yj+1

2
then

b∫
a

d∫
c

f(t, s)dsdt = T (f, In, Jm) +R(f, In, Jm)

where T (f, In, Jm) is constructed from the trapezoid rule

T (f, In, Jm) =
1

4

n−1∑
i=0

m−1∑
j=0

[f(xi+1, yj+1) + f(xi+1, yj) + f(xi, yj+1) + f(xi, yj)]hilj



On the generalization of Trapezoid Inequality . . . 7 (2016) No. 1, 77-85 85

and remainder satisfies

|R(f, In, Jm)| ≤ 1

4
υ(h)υ(l)

b∨
a

d∨
c

(f).

The constant 1
4

is the best possible.
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