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Abstract

In this paper, we are interested to study the Sine-Gordon equation in generalized function theory,
we give a result of existence and uniqueness of generalized solution with initial data are distributions
(elements of the Colombeau algebra). Then we study the association concept with the classical
solution.
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1. Introduction

In 1982, Colombeau introduced an algebra G of generalized functions to deal with the multiplication
problem for distributions, see [4, 5]. This algebra G is a differential algebra which contains the space
D′ of distributions. Furthermore, nonlinear operations more general than the multiplication make
sense in the algebra G. Therefore the algebra G is a very convenient one to find and study solutions
of nonlinear differential equations with singular data and coefficients. The paper is placed in the
framework of algebras of generalized functions introduced by Colombeau in [4, 5]. Note also several
examples have been studied by many authors in [12], [15, 16, 17] [13,16,17]. In particular, the authors
[18] [18] processing the nonlinear wave with a data u|{t < 0} = 0. In this paper, we study the Sine-
Gordon equation which a nonlinear wave, but in this time with conditions initial are distribution.
The paper is organized as follows. In section 2, we recall the theory of Colombeau. Section 3, we
proved the existence and uniqueness of solution in the algebra of Colombeau. The association with
the classical solution is established in Section 4
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2. Notations

We shall fix the notation and introduce a number of known as well as new classes of generalized
functions here. For more details, see [9].
Let Ω be an open subset of Rn. The basic objects of the theory as we use it are families (uε)ε∈(0,1] of
smooth functions uε ∈ C∞(Ω) for 0 < ε ≤ 1. We single out the following subalgebras.

Moderate families, denoted by EM(Ω), are defined by the property :

∀K ⊆ Ω, ∀α ∈ Nn
0 , ∃p ≥ 0 : sup

x∈K
|∂αuε(x)| = O

(
ε−p
)

as ε→ 0. (2.1)

Null families, denoted by N (Ω), are defined by the property :

∀K ⊆ Ω, ∀α ∈ Nn
0 , ∀q ≥ 0 : sup

x∈K
|∂αuε(x)| = O (εq) as ε→ 0. (2.2)

Thus moderate families satisfy a locally uniform polynomial estimate as ε→ 0,
together with all derivatives, while null functionals vanish faster than any power of ε in the same
situation. The null families from a differential ideal in the collection of moderate families.

The Colombeau algebra is the factor algebra

G(Ω) = EM(Ω)/N (Ω).

The algebra G(Ω) just defined coincides with the special Colombeau algebra in [9], where the notation
Gs(Ω) has been employed. It was called the simplified Colombeau algebra in [1].
The Colombeau algebra on a closed half space Rn×[0,∞) is defined in a similary way. The restriction
of an element u ∈ G (Rn × [0,∞)) to the line {t = 0} is defined on representatives by

u |{t=0}= class of
(
uε(., 0)

)
ε∈(0,1]

.

Similary, restrictions of the elements of G(Ω) to open subsets of Ω are defined on representatives. One
can see that Ω → G(Ω) is a sheaf of differential algebras on Rn. The space of compactly supported
distributions is imbedded in G(Ω) by convolution :

i : E ′(Ω)→ G(Ω), i(w) = class of
(
w ∗ (ϕε) |Ω

)
ε∈(0,1]

, (2.3)

where
ϕε(x) = ε−nϕ

(x
ε

)
(2.4)

is obtained by scaling a fixed test function ϕ ∈ S(Rn) of integral one with all moments vanishing. By
the sheaf property, this can be extended in a unique way to an imbedding of the space of distributions
D′(ω).

One of the main features of the Colombeau construction is the fact that this imbedding renders
C∞(Ω) a faithful subalgebra. In fact, given f ∈ C∞(Ω), one can define a corresponding element
of G(ω) by the constant imbedding σ(f) = class of [(ε, x) → f(x)]. Then the important equality
i(f) = σ(f) holds in G(Ω).

If u ∈ G(Ω) and f is a smooth function which is of at most polynomial growth at infinity, together
with all its derivatives, the superposition f(u) is a well-defined element of G(Ω).

We need a couple of further notions from the theory of Colombeau generalized functions. An
element u of G(Ω) is called of local Lp−type (1 ≤ p ≤ ∞), if it has a representative with the property

lim sup
ε→0
‖uε‖Lp(K) <∞
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for every K ⊂ Ω.
Regularity theory is based on the subalgebra G∞(Ω) of regular generalized functions in G(Ω). It

is defined by those elements which have a representative satisfying

∀K ⊂ Ω ∃p ≥ 0 ∀α ∈ Nn
0 : sup

x∈K
|∂αuε(x)| = O

(
ε−p
)

as ε→ 0. (2.5)

Observe the change of quantifiers with respect to formula (2.1); locally, all derivatives of a regular
generalized function have the same order of growth in ε > 0. One has that (see [13]).

G∞(Ω) ∩ D′(Ω) = C∞(Ω).

For the purpose of describing the regularity of Colombeau generalized functions, G∞(Ω) plays the
same role as C∞(Ω) does in the setting of distributions.

A net
(
rε

)
ε∈(0,1]

of complex numbers is called a slow scale net if

|rε|p = O
(
ε−1
)

as ε→ 0

for every p ≥ 0. We refer to [6] for a detailed discussion of slow scale nets.
Finally, an element u ∈ G(Ω) is called of total slow scale type, if for some representative, ‖∂αuε‖L∞(K)

forms a slow scale net for every K ⊂ Ω and α ∈ Nn
0 .

We end this section by recalling the association relation on the Colombeau algebra G(Ω). It
identifies elements of G(Ω) if they coincide in the weak limit. That is, u, v ∈ G(Ω) are called
associated,

u ≈ v, if lim
ε→0

∫ (
uε(x)− vε(x)

)
ψ(x)dx = 0

for all test functions ψ ∈ D(Ω). We shall also say that u is associated with a distribution w if uε → w
in the sense of distributions as ε→ 0

3. Existence/uniqueness of generalized solutions

This section is devoted to solving the Sine-Gordon equation in the Colombeau algebra G
(
R×[0,∞)

)
.

Recall first that if u is a classical solution of the following problem{
(∂2
t − ∂2

x)u = 2 sin(u) ∀x ∈ R, t ∈ R+,

u(x, 0) = a(x), ∂tu(x, 0) = b(x) x ∈ R.
(3.1)

Then it solves the integral equation

u(x, t) =
1

2

(
a(x− t) + a(x + t)

)
+

1

2

∫ x+t

x−t
b(x)dx +

∫ t

0

∫ x+t−s

x−t+s
sin (u(z, s)) dz ds. (3.2)

Let K0 = [−κ, κ] b a compact interval. For 0 ≤ t ≤ s ≤ κ, the interval It and the trapezoidal region
Ks are defined by

It =
{
x ∈ R | |x| ≤ κ− t

}
Ks =

{
(x, t) ∈ R× [0,∞) | 0 ≤ t ≤ s, x ∈ It

}
.
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Using (3.2), the following estimates are easily deduced (0 ≤ t ≤ T ≤ κ)

‖u‖L∞(KT ) ≤ ‖a‖L∞(I0) + T ‖b‖L∞(I0) + 2T

∫ T

0

‖sin(u)‖L∞(Ks) ds, (3.3)

‖u(., t)‖L∞(It)
≤ ‖a‖L∞(I0) + T ‖b‖L∞(I0) + 2T

∫ T

0

‖sin(u(., t))‖L∞(Is) ds. (3.4)

Proposition 3.1. Let a, b ∈ G(R), then the problem (3.2) has a unique solution u ∈ G
(
R× [0,∞)

)
.

Proof . To prove the existence of a solution, take representatives aε, bε and let uε ∈ C∞
(
R× [0,∞)

)
be the unique solution to the Sine-Gordon equation with regularized data{

(∂2
t − ∂2

x)uε = 2 sin(uε) ∀x ∈ R, t ∈ R+,

uε(x, 0) = aε(x), ∂tuε(x, 0) = bε(x) x ∈ R.
(3.5)

The classical solution uε to (3.5) is constructed by rewriting (3.5) as an integral equation and invoking
a fixed point argument (this involves applying estimate (3.3) successively to all derivatives). If we

show that the net (uε)ε∈(0,1] belongs to EM
(
R× [0,∞)

)
, its equivalence class in G

(
R× [0,∞)

)
will

be a solution. To show that the zero-th derivative of uε satisfies the estimate (2.3), we take a region
KT with its horizontal slices It and invoke inequality (3.3) to see that

‖uε‖L∞(KT ) ≤ ‖aε‖L∞(I0) + T ‖bε‖L∞(I0) + 2T

∫ T

0

‖sin(uε)‖L∞(Ks) ds. (3.6)

Using that each of the terms involving aε, bε is of order O(ε−p) for some p, we infer from Gronwall’s
inequality for the function s→ ‖uε‖Ks

. Thus uε is moderates on the region KT , that is, it satisfies the
estimate (3.3) there. To get the estimates for the higher order derivatives, one just differentiates the
equation and employs the same arguments inductively, using that the lower order terms are already
known to be moderate from the previous steps.

To prove uniqueness, we consider representatives uε, vε ∈ E
(
R× [0,∞)

)
of two solutions u and

v. Their difference satisfies(
∂2
t − ∂2

x

)
(uε − vε) = 2 sin(uε)− 2 sin(vε) + ηε

(uε − vε)(x, 0) = aε(x) + η0ε, ∂t(uε − vε)(x, 0) = bε(x) + η1ε

for certain null elements ηε, η0ε, η1ε. Thus uε−vε satisfies an estimate of the form (3.6), but with the
null elements ηε, η0ε, η1ε replacing aε, bε there. This implies as above that the L∞−norm of uε − vε
on KT is of order O(εq) for every q ≥ 0. By [9], the null estimate (2.4) on uε − vε suffices to have

null estimates on all derivatives. Thus u = v in G
(
R× [0,∞)

)
. �

Remark 3.2. In case the data are continuous or smooth functions, the relation of the generalized
solution to the classical solution is as follows:
Assume first that a, b belong to C∞(R), let w ∈ C∞

(
R × [0,∞)

)
be the classical solution. Then w

coincides with the generalized solution u ∈ G
(
R× [0,∞)

)
, that is, u = i(w) in G

(
R× [0,∞)

)
. This

follows from the fact that the imbedding i coincides with the constant imbedding σ on C∞(R), so
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uε ≡ w is a representative of the generalized solution. Second, assume the data a, b are continuous

functions and let w ∈ C∞
(
R × [0,∞)

)
be the corresponding continuous (weak) solution. Then the

generalized solution u ∈ G
(
R × [0,∞)

)
is associated with w. This follows from the classical result

of continuous dependence of the continuous solution on the initial data. Third, when the data are
distributions, there may be no meaning for a distributional solution, in general. Yet the solution in

G
(
R × [0,∞)

)
may still be associated with a distribution. Some incidents of such a situation will

be described in the next section.

4. Association with classical solution

Let v the solution to {
(∂2
t − ∂2

x) v = 0 ∀x ∈ R , t ∈ R+,

v(x, 0) = a(x) , ∂tv(x, 0) = b(x) x ∈ R

and w the solution to {
(∂2
t − ∂2

x)w = 2 sin(w +m) ∀x ∈ R , t ∈ R+,

w(x, 0) = 0 , ∂tw(x, 0) = 0 x ∈ R

with

m(x, t) =
1

2
β0

(
H (t− |x|)−H (−t− |x|)

)
,

where H is the Heaviside function.

Proposition 4.1. The generalized solution uε of (3.5) in G(R× R+) is associated with v + w.

Proof . Let vε by the classical solution to{
(∂2
t − ∂2

x) vε = 0 ∀x ∈ R , t ∈ R+,

vε(x, 0) = aε(x) , ∂tvε(x, 0) = bε(x) x ∈ R.

We have {
(∂2
t − ∂2

x) (uε − vε − w) = 2 sin (uε)− 2 sin(w +m) ∀x ∈ R , t ∈ R+,

(uε − vε − w) (x, 0) = 0 , ∂t (uε − vε − w) (x, 0) = 0 x ∈ R.

By using (3.4) with L1-norm we obtain

‖uε − vε − w‖L1(KT ) ≤ 2T

∫ T

0

‖sin (uε)− sin(w +m)‖L1(Ks) ds

≤ 2T

∫ T

0

‖sin(uε)− sin(vε + w)‖L1(Ks) ds

+ 2T 2 ‖sin (vε + w)− sin(w +m)‖L1(KT )

≤ 2T

∫ T

0

‖uε − vε − w‖L1(Ks) ds

+ 2T 2 ‖sin (vε + w)− sin(w +m)‖L1(KT ) .

(4.1)

Since sin(vε + w) − sin(w + m) converges to zero almost everywhere and remains bounded,
Lebesgue’s theorem shows that its L1-norm on KT converges to zero. By Gronwall’s lemma, it
follows that the L1-norm of uε − vε − w converges to zero on any KT as well. Hence uε converges to
v + w weakly,which translates into the claimed association result. �



92 Chadli, Melliani, Moujahid, Elomari

References

[1] H.A. Biagioni, A nolinear Theory of Generalized Functions, Lect. Notes Math. 1421. Springer-Verlag, Berlin,
1990.

[2] H.A. Biagioni, Generalized solutions of nonlinear first-order systems, Monatsh. Math. 118 (1994) 7–20.
[3] L.S. Chadli, S. Melliani and A. Moujahid, Generalized solution of a mixed problem for linear hyperbolic systems,

Int. J. Pure Appl. Math. 96 (2014) 47–58.
[4] J.F. Colombeau, New Generalized Function and Multiplication of Distribution, North Holland, Amsterdam / New

York / Oxford, 1984.
[5] J.F. Colombeau, Elementary Introduction to New Generalized Function, North Holland, Amsterdam / New York

/ Oxford, 1985.
[6] G. Hormann and M. Oberguggenberger, Elliptic regularity and solvability for partial differential equations with

Colombeau coefficients, Electron. J. Diff. Eqns. 14 (2004) 1–30.
[7] A.E. Hurd and D.H. Sattinger, Questions of existence and uniqueness for hyperbolic equations with discontinuous

coefficients, Trans. Amer. Math. Soc. 132 (1968) 159–174.
[8] T. Gramchev, Semilinear hyperbolic systems with singyular initial data, Monarsh. Math. 112 (1991) 99–113.
[9] M. Grosser, M. Kunzinger, M. Oberguggenberger and R. Steinbauer, Geometric Theory of Generalized Functions

with Applications to General Relativity, Mathematics and its Applications 537, Kluwer Acad. Publ., Dordrecht,
2001.

[10] F. Lafon and M. Oberguggenberger, Generalized solutions to symetric hyperbolic systems with discontinuous
coefficients: the multidimensional case, J. Math. Anal. Appl. 160 (1991) 93–106.

[11] M. Nedeljkov, M. Oberguggenberger and S. Pilipovic, Generalized solutions to a semilinear wave equation, Non-
linear Anal. 61 (2005) 461–475.

[12] A. Okubo, Diffusion and Ecological Problems: Mathematical Models, Springer, Berlin, 1980.
[13] M. Oberguggenberger, Hyperbolic systems with discontinuous coefficients : generalized solution and a transmission

problem in acoustic, J. Math. Anal. Appl. 142 (1989) 452–467.
[14] M. Oberguggenberger, Generalized solutions to semilinear hyperbolic systems, Monatshefte Math. 103 (1987)

133–144.
[15] M. Oberguggenberger, Multiplication of distributions and applications to partial differential equations, Pitman

Research Notes Math., 259, Longman Scientific & Technical, Harlow (1992).
[16] M. Oberguggenberger and F. Russo, Nonlinear stochastic wave equations, Integral Transform Special Func. 6

(1998) 71–83.
[17] M. Oberguggenberger and Y.G. Wang, Delta-waves for semi linear hyperbolic Cauchy problems, Math. Nachr.

166 (1994) 317–327.
[18] M. Oberguggenberger, Generalized functions in nonlinear models, Nonlinear Analy. 47 (2001) 5029–5040.


	Introduction
	Notations
	Existence/uniqueness of generalized solutions
	Association with classical solution

