Int. J. Nonlinear Anal. Appl. 7 (2016) No. 1, 111-130

ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2015.300

Some common fixed point theorems for four (ψ,φ) -weakly contractive mappings satisfying rational expressions in ordered partial metric spaces

R.A. Rashwan*, S.M. Saleh

Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt

(Communicated by Themistocles M. Rassias)

Abstract

The aim of this paper is to prove some common fixed point theorems for four mappings satisfying (ψ, φ) -weak contractions involving rational expressions in ordered partial metric spaces. Our results extend, generalize and improve some well-known results in the literature. Also, we give two examples to illustrate our results.

Keywords: Common fixed point; rational contractions; ordered partial metric spaces; dominating and dominated mappings.

2010 MSC: Primary 54H25; Secondary 47H10.

1. Introduction and preliminaries

The existence and uniqueness of fixed points of operators has been a subject of great interest since the work of Banach [1] in 1922. There exist vast literature concerning its various generalizations and extensions. Existence of fixed points in ordered metric spaces has been initiated in 2004 by Ran and Reurings [2], and further studied by Nieto and Lopez [3]. Subsequently, several interesting and valuable results have appeared in this direction see for examples [4]-[12].

The concept of a partial metric space was introduced by Matthews [13] in 1994. After that, fixed point results in partial metric spaces have been studied, see for example [14]-[25]. First, we present some necessary definitions and results which will be needed in the sequel.

Email addresses: rr_rashwan54@yahoo.com (R.A. Rashwan), samirasaleh2007@yahoo.com (S.M. Saleh)

Received: July 2013 Revised: November 2014

^{*}Corresponding author

Definition 1.1. [13] Let X be a nonempty set. A mapping $p: X \times X \to [0, \infty)$ is said to be a partial metric on X if for all $x, y, z \in X$ the following conditions are satisfied:

- $(p_1) \ x = y \Leftrightarrow p(x, x) = p(x, y) = p(y, y),$
- $(p_2) \ p(x,x) \le p(x,y),$
- $(p_3) p(x,y) = p(y,x),$
- $(p_4) p(x,y) \le p(x,z) + p(z,y) p(z,z).$

The pair (X, p) is called a partial metric space.

If p(x,y) = 0, then (p_1) and (p_2) imply that x = y. But converse dose not hold always.

Example 1.2. [13]

- 1. The function $p(x,y) = \max\{x,y\}$ for all $x,y \in R^+$ defines a partial metric p on R^+ .
- 2. If $X = \{[a, b] : a, b \in R, a \leq b\}$ then $p([a, b], [c, d]) = \max\{b, d\} \min\{a, c\}$ defines a partial metric p on X.

Each partial metric p on X generates a T_0 topology τ_p on X which has as a base the family of open p-balls $\{B_p(x,\varepsilon): x \in X, \varepsilon > 0\}$, where $B_p(x,\varepsilon) = \{y \in X: p(x,y) < p(x,x) + \varepsilon\}$ for all $x \in X$ and $\varepsilon > 0$.

If p is a partial metric on X, then the function $p^s: X \times X \to R^+$ given by

$$p^{s}(x,y) = 2p(x,y) - p(x,x) - p(y,y),$$

is a metric on X.

Definition 1.3. [13] Let (X, p) be a partial metric space. Then,

- (i) a sequence $\{x_n\}$ in a partial metric space (X,p) converges to a point $x \in X$ if and only if $p(x,x) = \lim_{n \to \infty} p(x,x_n)$,
- (ii) a sequence $\{x_n\}$ in a partial metric space (X, p) is said to be a Cauchy sequence if $\lim_{n,m\to\infty} p(x_n, x_m)$ exists and is finite,
- (iii) (X, p) is said to be complete if every Cauchy sequence $\{x_n\}$ in X converges, with respect to τ_p , to a point $x \in X$ such that $p(x, x) = \lim_{n,m \to \infty} p(x_n, x_m)$.

Remark 1.4. A limit of a sequence in a partial metric space need not be unique. Moreover, the function p(.,.) need not be continuous in the sense that $x_n \to x$ and $y_n \to y$ implies $p(x_n, y_n) \to p(x,y)$. For example, if $X = [0, +\infty)$ and $p(x,y) = \max\{x,y\}$ for $x,y \in X$, then for $\{x_n\} = \{1\}$, $p(x_n,x) = x = p(x,x)$ for each $x \ge 1$ and so, for example, $x_n \to 2$ and $x_n \to 3$ when $n \to \infty$.

It is easy to see that every τ_p -closed subset of a complete partial metric space is complete.

Lemma 1.5. [13] Let (X, p) be a partial metric space. Then

- (i) $\{x_n\}$ is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, p^s) .
- (ii) A partial metric space (X, p) is complete if and only if the metric space (X, p^s) is complete. Furthermore, $\lim_{n\to\infty} p^s(x_n, x) = 0$, if and only if

$$p(x,x) = \lim_{n \to \infty} p(x_n, x) = \lim_{n,m \to \infty} p(x_n, x_m).$$

Definition 1.6. [15] Let (X, p) be a partial metric space, $F: X \to X$ be a given mapping. We say that F is continuous at $x_0 \in X$, if for every $\varepsilon > 0$, there exists $\eta > 0$ such that $F(B_p(x_0, \eta)) \subseteq B_p(F(x_0, \varepsilon))$.

Lemma 1.7. [24] Let $\{x_n\}$ and $\{y_n\}$ be two sequences in partial metric space (X, p) such that

$$\lim_{n \to \infty} p(x_n, x) = \lim_{n \to \infty} p(x_n, x_n) = p(x, x),$$

and

$$\lim_{n \to \infty} p(y_n, y) = \lim_{n \to \infty} p(y_n, y_n) = p(y, y),$$

then $\lim_{n\to\infty} p(x_n,y_n) = p(x,y)$. In particular, $\lim_{n\to\infty} p(x_n,z) = p(x,z)$ for every $z\in X$.

Definition 1.8. Let X be a nonempty set. Then (X, \leq, p) is called an ordered partial metric space if and only if:

- (i) (X, p) is a partial metric space,
- (ii) (X, \preceq) is a partially ordered set.

Definition 1.9. Let (X, \preceq) be a partially ordered set. $x, y \in X$ are called comparable if $x \preceq y$ or $y \preceq x$ holds.

Definition 1.10. Let (X, \preceq) be a partially ordered set. A mapping f on X is said to be monotone nondecreasing if for all $x, y \in X$, $x \preceq y$ implies $fx \preceq fy$.

Definition 1.11. [4], [5] Let (X, \preceq) be a partially ordered set. A mapping f on X is said to be

- (i) dominating if $x \leq fx$ for all $x \in X$,
- (ii) dominated if $fx \leq x$ for all $x \in X$.

For examples illustrating the above definitions were given in [4].

Definition 1.12. [26] A function $\psi:[0,\infty)\to[0,\infty)$ is called altering distance function if

- (i) ψ is increasing and continuous,
- (ii) $\psi(t) = 0$ if and only if t = 0.

Now, we recall the following definition of partial-compatibility.

Definition 1.13. [23] Let (X, p) be a partial metric space and $T, g : X \to X$ be given mappings. We say that the pair (T, g) is partial-compatible if the following conditions hold:

- (i) p(x,x) = 0 implies that p(gx,gx) = 0.
- (ii) $\lim_{n\to\infty} p(Tgx_n, gTx_n) = 0$, whenever $\{x_n\}$ is a sequence in X such that $Tx_n \to t$ and $gx_n \to t$ for some $t \in X$.

Note that Definition 1.13 extends and generalizes the notion of compatibility introduced by Jungck [27] in the setting of metric spaces.

Definition 1.14. Let (X,d) be a metric space. A mapping $f:X\to X$ is said to be weakly contraction if

$$d(fx, fy) \le d(x, y) - \varphi(d(x, y)).$$

for all $x, y \in X$, where $\varphi : [0, \infty) \to [0, \infty)$ is a continuous and non-decreasing function with $\varphi(t) = 0$ if and only if t = 0.

In 1997, Alber and Guerre-Delabriere [28] proved that weakly contractive mapping defined on a Hilbert space is a Picard operator. Afterwards, Rhoades [29] proved that the corresponding result is also valid when Hilbert space is replaced by a complete metric space. Dutta et al. [30] generalized the weak contractive condition and proved a fixed point theorem for a selfmap, which in turn generalizes Theorem 1 in [29] and the corresponding result in [28].

In [31] Dass and Gupta proved the following fixed point theorem.

Theorem 1.15. [31] Let (X, d) be a complete metric space and $T: X \to X$ be a mapping such that there exist $\alpha, \beta \geq 0$ with $\alpha + \beta < 1$ satisfying

$$d(Tx, Ty) \le \alpha \frac{d(y, Ty)[1 + d(x, Tx)]}{[1 + d(x, y)]} + \beta d(x, y), \quad \text{for all } x, y \in X.$$
(1.1)

Then T has a unique fixed point.

In [7], Cabrera et al. proved the above theorem in the framwark of partially ordered metric spaces. Recently, Karapinar et al. [20] obtained the following result in partial metric spaces.

Theorem 1.16. [20] Let (X,p) be a complete partial metric space and $T:X\to X$ be a mapping satisfying

$$\psi(p(Tx, Ty)) \le \psi(M(x, y)) - \varphi(M(x, y)), \quad \forall x, y \in X,$$

where

$$M(x,y) = \max \left\{ \frac{p(y,Ty)[1 + p(x,Tx)]}{1 + p(x,y)}, p(x,y) \right\},\,$$

and $\psi:[0,\infty)\to[0,\infty)$ is a continuous and monotone non-decreasing function with $\psi(t)=0$ if and only if t=0 and $\varphi:[0,\infty)\to[0,\infty)$ is a lower semi-continuous function with $\varphi(t)=0$ if and only if t=0. Then T has a unique fixed point.

The purpose of this paper is to prove some common fixed point theorems for four mappings f, g, S and T satisfying a generalized contraction of rational type in ordered partial metric spaces, where the mappings f, g are dominated and S, T are dominating maps. Two illustrative examples are given.

2. Main Results

In this section we prove some common fixed point theorems which give conditions for existence and uniqueness of a common fixed point for a generalized contraction of rational type in ordered partial metric spaces.

Let Φ denote the set of all functions $\varphi:[0,\infty)\to[0,\infty)$ such that

- (i) φ is a lower semi-continuous function,
- (ii) $\varphi(t) = 0$ if and only if t = 0.

Theorem 2.1. Let (X, \leq, p) be an ordered complete partial metric space. Let $f, g, S, T : X \to X$ be four mappings such that $f(X) \subseteq T(X)$, $g(X) \subseteq S(X)$, f, g are dominated mappings and S, T are dominating mappings. Suppose that for all comparable elements $x, y \in X$, we have

$$\psi(p(fx,gy)) \le \psi(M(x,y)) - \varphi(M(x,y)), \tag{2.1}$$

where

$$M(x,y) = \max \left\{ \frac{p(Ty, gy)[1 + p(Sx, fx)]}{1 + p(Sx, Ty)}, p(Sx, Ty) \right\},$$

and ψ is an altering distance function and $\varphi \in \Phi$. If for a nonincreasing sequence $\{x_n\}$ in X with $y_n \leq x_n$ for all n and $\lim_{n \to \infty} p^s(y_n, z) = 0$, it follows $z \leq x_n$ for all $n \in \mathbb{N}$, and either

- (i) (f, S) is partial-compatible, f or S is continuous on (X, p^s) or
- (ii) (g,T) is partial-compatible, g or T is continuous on (X,p^s) ,

then f, g, S and T have a common fixed point.

Proof. Let x_0 be an arbitrary point in X. Since $f(X) \subseteq T(X)$, $g(X) \subseteq S(X)$, we can choose $x_1, x_2 \in X$ such that $y_0 = fx_0 = Tx_1$, and $y_1 = gx_1 = Sx_2$. Continuing this process, we define the sequences $\{x_n\}$ and $\{y_n\}$ in X by

$$y_{2n} = fx_{2n} = Tx_{2n+1}, \quad y_{2n+1} = gx_{2n+1} = Sx_{2n+2}, \text{ for all } n \ge 0.$$

By the given assumptions we obtain

$$x_{2n+2} \leq Sx_{2n+2} = gx_{2n+1} \leq x_{2n+1} \leq Tx_{2n+1} = fx_{2n} \leq x_{2n}$$

Thus, for all $n \in \mathbb{N}$ we have $x_{n+1} \leq x_n$. Suppose that $p(y_{2n-1}, y_{2n}) > 0$ for all n.

If not then $p(y_{2n-1}, y_{2n}) = 0$ for some n and so $y_{2n-1} = y_{2n}$. Further, since x_{2n} and x_{2n+1} are comparable, so from (2.1), we get

$$\psi(p(y_{2n}, y_{2n+1})) = \psi(p(fx_{2n}, gx_{2n+1})) < \psi(M(x_{2n}, x_{2n+1})) - \varphi(M(x_{2n}, x_{2n+1})),$$
(2.2)

where

$$M(x_{2n}, x_{2n+1}) = \max \left\{ \frac{p(Tx_{2n+1}, gx_{2n+1})[1 + p(Sx_{2n}, fx_{2n})]}{1 + p(Sx_{2n}, Tx_{2n+1})}, p(Sx_{2n}, Tx_{2n+1}) \right\}$$

$$= \max \left\{ \frac{p(y_{2n}, y_{2n+1})[1 + p(y_{2n-1}, y_{2n})]}{1 + p(y_{2n-1}, y_{2n})}, p(y_{2n-1}, y_{2n}) \right\}$$

$$= p(y_{2n}, y_{2n+1}).$$

Hence from (2.2) we get

$$\psi(p(y_{2n}, y_{2n+1})) \le \psi(p(y_{2n}, y_{2n+1})) - \varphi(p(y_{2n}, y_{2n+1})),$$

So $\varphi(p(y_{2n}, y_{2n+1})) = 0$, and $y_{2n} = y_{2n+1}$. Similarly, we obtain $y_{2n+1} = y_{2n+2}$ and so on. Therefore $\{y_n\}$ becomes a constant sequence and y_{2n} is the common fixed point of f, g, S and T.

Now, we suppose that $p(y_{2n-1}, y_{2n}) > 0$ for all $n \in \mathbb{N}$. Since x_{2n} and x_{2n+1} are comparable, from (2.1) we have

$$\psi(p(y_{2n}, y_{2n+1})) = \psi(p(fx_{2n}, gx_{2n+1}))
\leq \psi(M(x_{2n}, x_{2n+1})) - \varphi(M(x_{2n}, x_{2n+1})),$$
(2.3)

where

$$M(x_{2n}, x_{2n+1}) = \max \left\{ \frac{p(Tx_{2n+1}, gx_{2n+1})[1 + p(Sx_{2n}, fx_{2n})]}{1 + p(Sx_{2n}, Tx_{2n+1})}, p(Sx_{2n}, Tx_{2n+1}) \right\}$$

$$= \max \left\{ \frac{p(y_{2n}, y_{2n+1})[1 + p(y_{2n-1}, y_{2n})]}{1 + p(y_{2n-1}, y_{2n})}, p(y_{2n-1}, y_{2n}) \right\}$$

$$= \max \left\{ p(y_{2n}, y_{2n+1}), p(y_{2n-1}, y_{2n}) \right\}.$$

If $M(x_{2n}, x_{2n+1}) = p(y_{2n}, y_{2n+1})$, then from (2.3) we obtain

$$\psi(p(y_{2n}, y_{2n+1})) \le \psi(p(y_{2n}, y_{2n+1})) - \varphi(p(y_{2n}, y_{2n+1})).$$

Hence $\varphi(p(y_{2n}, y_{2n+1})) = 0$, and so $p(y_{2n}, y_{2n+1}) = 0$, gives a contradiction. Thus $M(x_{2n}, x_{2n+1}) = p(y_{2n-1}, y_{2n})$, and from (2.3) we obtain

$$\psi(p(y_{2n}, y_{2n+1})) \le \psi(p(y_{2n-1}, y_{2n})) - \varphi(p(y_{2n-1}, y_{2n})) \le \psi(p(y_{2n-1}, y_{2n})).$$

Since ψ is increasing, we get

$$p(y_{2n}, y_{2n+1}) \le p(y_{2n-1}, y_{2n}) = M(x_{2n}, x_{2n+1}) \qquad \forall n \ge 0.$$
(2.4)

By similar arguments we can show that

$$p(y_{2n+1}, y_{2n+2}) \le p(y_{2n}, y_{2n+1}) = M(x_{2n+1}, x_{2n+2}) \qquad \forall n \ge 0.$$
(2.5)

Combining (2.4) and (2.5), we have

$$p(y_n, y_{n+1}) \le p(y_{n-1}, y_n) = M(x_{n-1}, x_n) \quad \forall n \ge 0.$$

Thus, the sequence $\{p(y_n, y_{n+1})\}$ is nonincreasing and so there exists $\delta \geq 0$ such that

$$\lim_{n \to \infty} p(y_n, y_{n+1}) = \lim_{n \to \infty} M(x_n, x_{n+1}) = \delta.$$

Suppose that $\delta > 0$. Then taking the upper limit as $n \to \infty$, in (2.3) and by the lower semi-continuity of φ we get

$$\limsup_{n \to \infty} \psi(p(y_{2n}, y_{2n+1})) \le \limsup_{n \to \infty} \psi(M(x_{2n}, x_{2n+1})) - \liminf_{n \to \infty} \varphi(M(x_{2n}, x_{2n+1})).$$

Using the properties of the functions ψ and φ , we have $\psi(\delta) \leq \psi(\delta) - \varphi(\delta)$, so $\varphi(\delta) = 0$, hence $\delta = 0$, which is a contradiction. We conclude that

$$\lim_{n \to \infty} p(y_{2n}, y_{2n+1}) = \lim_{n \to \infty} M(x_{2n}, x_{2n+1}) = 0.$$
(2.6)

Now, we show that $\{y_n\}$ is a Cauchy sequence in the partial metric space (X, p). For this, it is sufficient to prove that $\{y_{2n}\}$ is a Cauchy sequence in (X, p). Suppose that $\{y_{2n}\}$ is not a Cauchy sequence in (X, p). Then, there is $\varepsilon > 0$ such that for an integer k there exist integers 2n(k), 2m(k) with 2m(k) > 2n(k) > k such that

$$p(y_{2n(k)}, y_{2m(k)}) \ge \varepsilon, \tag{2.7}$$

for every integer k, let m(k) be the least positive integer with 2m(k) > 2n(k), satisfying (2.7) and such that

$$p(y_{2n(k)}, y_{2m(k)-2}) < \varepsilon. \tag{2.8}$$

Now, using (2.7) and the triangular inequality one gets

$$\varepsilon \le p(y_{2n(k)}, y_{2m(k)}) \le p(y_{2n(k)}, y_{2m(k)-2}) + p(y_{2m(k)-2}, y_{2m(k)-1}) + p(y_{2m(k)-1}, y_{2m(k)}) - p(y_{2m(k)-2}, y_{2m(k)-2}) - p(y_{2m(k)-1}, y_{2m(k)-1}).$$

Letting $k \to \infty$, in the above inequality and from (2.6), (2.8) it follows that

$$\lim_{k \to \infty} p(y_{2n(k)}, y_{2m(k)}) = \varepsilon. \tag{2.9}$$

Also, by the triangular inequality, we have

$$p(y_{2n(k)}, y_{2m(k)-1}) \le p(y_{2n(k)}, y_{2m(k)}) + p(y_{2m(k)}, y_{2m(k)-1}) - p(y_{2m(k)}, y_{2m(k)}),$$

and

$$p(y_{2n(k)}, y_{2m(k)}) \le p(y_{2n(k)}, y_{2m(k)-1}) + p(y_{2m(k)-1}, y_{2m(k)}) - p(y_{2m(k)-1}, y_{2m(k)-1}).$$

Letting $k \to \infty$, in the two above inequalities and using (2.6) and (2.9) we have

$$\lim_{k \to \infty} p(y_{2n(k)}, y_{2m(k)-1}) = \varepsilon. \tag{2.10}$$

Similarly,

$$p(y_{2n(k)-1}, y_{2m(k)-2}) \le p(y_{2n(k)-1}, y_{2n(k)}) + p(y_{2n(k)}, y_{2m(k)-1}) + p(y_{2m(k)-1}, y_{2m(k)-2}) - p(y_{2n(k)}, y_{2n(k)}) - p(y_{2m(k)-1}, y_{2m(k)-1}),$$

and

$$p(y_{2n(k)}, y_{2m(k)-1}) \le p(y_{2n(k)}, y_{2n(k)-1}) + p(y_{2n(k)-1}, y_{2m(k)-2}) + p(y_{2m(k)-2}, y_{2m(k)-1}) - p(y_{2n(k)-1}, y_{2n(k)-1}) - p(y_{2m(k)-2}, y_{2m(k)-2}).$$

Letting $k \to \infty$, in the two above inequalities and using (2.6) and (2.10) we have

$$\lim_{k \to \infty} p(y_{2n(k)-1}, y_{2m(k)-2}) = \varepsilon.$$
 (2.11)

Since $x_{2n(k)}$, $x_{2m(k)-1}$ are comparable, then from (2.1), we obtain

$$\psi(p(y_{2n(k)}, y_{2m(k)-1})) = \psi(p(fx_{2n(k)}, gx_{2m(k)-1}))
\leq \psi(M(x_{2n(k)}, x_{2m(k)-1})) - \varphi(M(x_{2n(k)}, x_{2m(k)-1})).$$
(2.12)

Where

$$M(x_{2n(k)}, x_{2m(k)-1}) = \max \left\{ \frac{p(Tx_{2m(k)-1}, gx_{2m(k)-1})[1 + p(Sx_{2n(k)}, fx_{2n(k)})]}{1 + p(Sx_{2n(k)}, Tx_{2m(k)-1})}, p(Sx_{2n(k)}, Tx_{2m(k)-1}) \right\}$$

$$= \max \left\{ \frac{p(y_{2m(k)-2}, y_{2m(k)-1})[1 + p(y_{2n(k)-1}, y_{2n(k)})]}{1 + p(y_{2n(k)-1}, y_{2m(k)-2})}, p(y_{2n(k)-1}, y_{2m(k)-2}) \right\}.$$

Letting $k \to \infty$ in (2.12) and from (2.6), (2.10), (2.11), we get

$$\psi(\varepsilon) \le \psi(\max\{0, \varepsilon\}) - \varphi(\max\{0, \varepsilon\}) = \psi(\varepsilon) - \varphi(\varepsilon).$$

Hence $\varphi(\varepsilon) = 0$, i.e. $\varepsilon = 0$, which is a contradiction. Thus we proved that $\{y_n\}$ is a Cauchy sequence in (X, p). Since (X, p) is complete then from Lemma 1.5 (X, p^s) is a complete metric space. Therefore there exists $z \in X$, such that $\lim_{n \to \infty} p^s(y_n, z) = 0$. Also, from Lemma 1.5 we obtain

$$p(z,z) = \lim_{n \to \infty} p(y_n, z) = \lim_{m, n \to \infty} p(y_n, y_m).$$
(2.13)

Moreover, since $\{y_n\}$ is a Cauchy sequence in the metric space (X, p^s) , then $\lim_{m,n\to\infty} p^s(y_n, y_m) = 0$. On the other hand, by (p_2) and (2.6), we have $p(y_n, y_n) \leq p(y_n, y_{n+1}) \to 0$, as $n \to \infty$ and hence we get

$$\lim_{n \to \infty} p(y_n, y_n) = 0. \tag{2.14}$$

Therefore from the definition of p^s and (2.14), we have $\lim_{m,n\to\infty} p(y_n,y_m) = 0$. Hence, from (2.13), we have

$$p(z,z) = \lim_{n \to \infty} p(y_n, z) = \lim_{m,n \to \infty} p(y_n, y_m) = 0.$$
 (2.15)

Then we conclude that

$$\lim_{n \to \infty} p(y_{2n}, z) = \lim_{n \to \infty} p(fx_{2n}, z) = \lim_{n \to \infty} p(Tx_{2n+1}, z) = 0,$$

$$\lim_{n \to \infty} p(y_{2n+1}, z) = \lim_{n \to \infty} p(gx_{2n+1}, z) = \lim_{n \to \infty} p(Sx_{2n+2}, z) = 0.$$

Assume that S is continuous on (X, p^s) . Then

$$\lim_{n \to \infty} p^s(SSx_{2n+2}Sfx_{2n+2}) = 0.$$

Also, since the (f, S) is partial-compatible, we have $\lim_{n\to\infty} p(fSx_{2n+2}, Sfx_{2n+2}) = 0$. Further, since p(z, z) = 0, then again the partial-compatibility of the pair (f, S) gives that p(Sz, Sz) = 0.

We need to show that $\lim_{n\to\infty} p(fSx_{2n+2}, gx_{2n+1}) = p(Sz, z)$, $\lim_{n\to\infty} p(SSx_{2n+2}, fSx_{2n+2}) = 0$ and $\lim_{n\to\infty} p(SSx_{2n+2}, Tx_{2n+1}) = p(Sz, z)$. So, since

$$p^{s}(fSx_{2n+2}, gx_{2n+1}) \le p^{s}(fSx_{2n+2}, Sfx_{2n+2}) + p^{s}(Sfx_{2n+2}, gx_{2n+1}),$$

and

$$p^{s}(Sfx_{2n+2}, gx_{2n+1}) \le p^{s}(Sfx_{2n+2}, fSx_{2n+2}) + p^{s}(fSx_{2n+2}, gx_{2n+1}).$$

Letting $n \to \infty$, in the two above inequalities and using the continuity of S and the partial-compatibility of the pair (f, S) we have

$$\lim_{n \to \infty} p^s(fSx_{2n+2}, gx_{2n+1}) = p^s(Sz, z).$$

On the other hand

$$p^{s}(fSx_{2n+2}, gx_{2n+1}) = 2p(fSx_{2n+2}, gx_{2n+1}) - p(fSx_{2n+2}, fSx_{2n+2}) - p(gx_{2n+1}, gx_{2n+1}),$$

that is

$$2p(fSx_{2n+2}, gx_{2n+1}) = p^{s}(fSx_{2n+2}, gx_{2n+1}) + p(fSx_{2n+2}, fSx_{2n+2}) + p(gx_{2n+1}, gx_{2n+1}).$$

Taking limit as $n \to \infty$ we conclude that

$$2\lim_{n\to\infty} p(fSx_{2n+2}, gx_{2n+1}) = p^s(Sz, z) = 2p(Sz, z).$$

Hence $\lim_{n\to\infty} p(fSx_{2n+2}, gx_{2n+1}) = p(Sz, z)$. Since S is continuous, and $\{y_n\}$ converges to z in (X, p), hence

$$\lim_{n \to \infty} p(SSx_{2n+2}, Sz) = \lim_{n \to \infty} p(Sy_{2n+1}, Sz) = p(Sz, Sz) = 0.$$

Thus,

$$\lim_{n \to \infty} p(Sfx_{2n+2}, Sz) = \lim_{n \to \infty} p(Sy_{2n+2}, Sz) = p(Sz, Sz) = 0.$$

Then by triangular inequality we obtain

$$p(SSx_{2n+2}, fSx_{2n+2}) \le p(SSx_{2n+2}, Sz) + p(Sz, Sfx_{2n+2}) + p(Sfx_{2n+2}, fSx_{2n+2}) - p(Sfx_{2n+2}, Sfx_{2n+2}).$$

This implies that

$$\lim_{n \to \infty} p(SSx_{2n+2}, fSx_{2n+2}) = 0.$$

From Lemma 1.7 we obtain

$$\lim_{n \to \infty} p(SSx_{2n+2}, Tx_{2n+1}) = p(Sz, z).$$

Now, since, $Sx_{2n+2} = gx_{2n+1} \leq x_{2n+1}$, so from (2.1), we obtain

$$\psi(p(fSx_{2n+2}, gx_{2n+1})) \le \psi(M(Sx_{2n+2}, x_{2n+1})) - \varphi(M(Sx_{2n+2}, x_{2n+1})), \tag{2.16}$$

where

$$M(Sx_{2n+2}, x_{2n+1}) = \max \left\{ \frac{p(Tx_{2n+1}, gx_{2n+1})[1 + p(SSx_{2n+2}, fSx_{2n+2})]}{1 + p(SSx_{2n+2}, Tx_{2n+1})}, p(SSx_{2n+2}, Tx_{2n+1}) \right\}.$$

From (2.16), taking the upper limit as $n \to \infty$, we have $\psi(p(Sz,z)) \le \psi(p(Sz,z)) - \varphi(p(Sz,z))$, and so $\varphi(p(Sz,z)) = 0$. Hence Sz = z.

On other hand, since $x_{2n+1} \leq Tx_{2n+1}$ and $\lim_{n\to\infty} Tx_{2n+1} = z$, it follows that $z \leq x_{2n+1}$. Thus from (2.1), we obtain

$$\psi(p(fz, gx_{2n+1})) \le \psi(M(z, x_{2n+1})) - \varphi(M(z, x_{2n+1})), \tag{2.17}$$

where

$$M(z, x_{2n+1}) = \max \left\{ \frac{p(Tx_{2n+1}, gx_{2n+1})[1 + p(Sz, fz)]}{1 + p(Sz, Tx_{2n+1})}, p(Sz, Tx_{2n+1}) \right\}$$
$$= \max \left\{ \frac{p(y_{2n}, y_{2n+1})[1 + p(z, fz)]}{1 + p(z, y_{2n})}, p(z, y_{2n}) \right\}.$$

On taking the upper limit in (2.17) as $n \to \infty$, we get $\psi(p(fz,z)) \le \psi(p(z,z)) - \varphi(p(z,z))$, so $\psi(p(fz,z)) \le 0$, and fz = z = Sz.

Since $f(X) \subseteq T(X)$, there exists a point $w \in X$ such that fz = Tw. Suppose that $gw \neq Tw$. Since $w \leq Tw = fz \leq z$ implies $w \leq z$. From (2.1), we obtain

$$\psi(p(Tw, gw)) = \psi(p(fz, gw)) \le \psi(M(z, w)) - \varphi(M(z, w)), \tag{2.18}$$

where

$$M(z, w) = \max \left\{ \frac{p(Tw, gw)[1 + p(Sz, fz)]}{1 + p(Sz, Tw)}, p(Sz, Tw) \right\}$$

= \text{max} \{p(Tw, gw), 0\} = p(Tw, gw).

Hence from (2.18), we get $\psi(p(Tw, gw)) \leq \psi(p(Tw, gw)) - \varphi(p(Tw, gw))$, a contradiction. Therefore, Tw = gw. Since g is dominated map and T is dominating map,

$$w \prec Tw = z$$
 and $z = qw \prec w \Rightarrow w = z$.

Hence Sz = fz = Tz = gz = z. Thus f, g, S and T have a common fixed point. The proof is similar when f is continuous. Similarly, the result follows when (ii) holds. \square

Corollary 2.2. Let (X, \leq, p) be an ordered complete partial metric space. Let $f, g, S, T : X \to X$ be four mappings such that $f(X) \subseteq T(X)$, $g(X) \subseteq S(X)$, f, g are dominated mappings and S, T are dominating mappings. Suppose that for all comparable elements $x, y \in X$, we have

$$p(fx, gy) \le M(x, y) - \varphi(M(x, y)),$$

where

$$M(x,y) = \max \left\{ \frac{p(Ty, gy)[1 + p(Sx, fx)]}{1 + p(Sx, Ty)}, p(Sx, Ty) \right\},$$

and $\varphi \in \Phi$. If for a nonincreasing sequence $\{x_n\}$ in X with $y_n \leq x_n$ for all n and $\lim_{n \to \infty} p^s(y_n, z) = 0$, it follows $z \leq x_n$ for all $n \in \mathbb{N}$, and either

- (i) (f,S) is partial-compatible, f or S is continuous on (X,p^s) or
- (ii) (g,T) is partial-compatible, g or T is continuous on (X,p^s) ,

then f, g, S and T have a common fixed point.

Proof. In Theorem 2.1, taking $\psi(t) = t$ for all $t \in [0, \infty)$. \square

Corollary 2.3. Let (X, \leq, p) be an ordered complete partial metric space. Let $f, g, S, T : X \to X$ be four mappings such that $f(X) \subseteq T(X)$, $g(X) \subseteq S(X)$, f, g are dominated mappings and S, T are dominating mappings. Suppose that for all comparable elements $x, y \in X$, we have

$$p(fx, gy) \le k \max \left\{ \frac{p(Ty, gy)[1 + p(Sx, fx)]}{1 + p(Sx, Ty)}, p(Sx, Ty) \right\},$$

where $k \in (0,1)$. If for a nonincreasing sequence $\{x_n\}$ in X with $y_n \leq x_n$ for all n and $\lim_{n \to \infty} p^s(y_n, z) = 0$, it follows $z \leq x_n$ for all $n \in \mathbb{N}$, and either

- (i) (f,S) is partial-compatible, f or S is continuous on (X,p^S) or
- (ii) (g,T) is partial-compatible, g or T is continuous on (X,p^S) ,

then f, g, S and T have a common fixed point.

Proof. In Theorem 2.1, taking $\psi(t) = t$ and $\varphi(t) = (1-k)t$, for all $t \in [0, \infty)$. \square

Corollary 2.4. Let (X, \leq, p) be an ordered complete partial metric space. Let $f, g, S, T : X \to X$ be four mappings such that $f(X) \subseteq T(X)$, $g(X) \subseteq S(X)$, f, g are dominated mappings and S, T are dominating mappings. Suppose that for all comparable elements $x, y \in X$, we have

$$p(fx, gy) \le \alpha \frac{p(Ty, gy)[1 + p(Sx, fx)]}{1 + p(Sx, Ty)} + \beta p(Sx, Ty),$$

where $\alpha, \beta \geq 0$ with $\alpha + \beta < 1$. If for a nonincreasing sequence $\{x_n\}$ in X with $y_n \leq x_n$ for all n and $\lim_{n \to \infty} p^s(y_n, z) = 0$, it follows $z \leq x_n$ for all $n \in \mathbb{N}$, and either

- (i) (f,S) is partial-compatible, f or S is continuous on (X,p^S) or
- (ii) (g,T) is partial-compatible, g or T is continuous on (X,p^S) ,

then f, g, S and T have a common fixed point.

Proof. In Corollary 2.3, taking $k = \alpha + \beta$, we get

$$\alpha \frac{p(Ty, gy)[1 + p(Sx, fx)]}{1 + p(Sx, Ty)} + \beta p(Sx, Ty) \le k \max \left\{ \frac{p(Ty, gy)[1 + p(Sx, fx)]}{1 + p(Sx, Ty)}, p(Sx, Ty) \right\}.$$

Hence we apply Corollary 2.3. \square

If we put f = q in Theorem 2.1 we have the following corollary.

Corollary 2.5. Let (X, \leq, p) be an ordered complete partial metric space. Let $f, S, T : X \to X$ be three mappings such that $f(X) \subseteq T(X)$, $f(X) \subseteq S(X)$, f is dominated mapping and S, T are dominating mappings. Suppose that for all comparable elements $x, y \in X$, we have

$$\psi(p(fx, fy)) \le \psi(M(x, y)) - \varphi(M(x, y)),$$

where

$$M(x,y) = \max \left\{ \frac{p(Ty, fy)[1 + p(Sx, fx)]}{1 + p(Sx, Ty)}, p(Sx, Ty) \right\},$$

and ψ is an altering distance function and $\varphi \in \Phi$. If for a nonincreasing sequence $\{x_n\}$ in X with $y_n \leq x_n$ for all n and $\lim_{n \to \infty} p^s(y_n, z) = 0$, it follows $z \leq x_n$ for all $n \in \mathbb{N}$, and either

- (i) (f, S) is partial-compatible, f or S is continuous on (X, p^s) or
- (ii) (f,T) is partial-compatible, g or T is continuous on (X,p^s) ,

then f, S and T have a common fixed point.

If we put S = T in Theorem 2.1 we have the following corollary.

Corollary 2.6. Let (X, \leq, p) be an ordered complete partial metric space. Let $f, g, T: X \to X$ be mappings such that $f(X) \cup g(X) \subseteq T(X)$, f, g are dominated mappings and T is dominating mapping. Suppose that for all comparable elements $x, y \in X$, we have

$$\psi(p(fx, gy)) \le \psi(M(x, y)) - \varphi(M(x, y)),$$

where

$$M(x,y) = \max \left\{ \frac{p(Ty, gy)[1 + p(Tx, fx)]}{1 + p(Tx, Ty)}, p(Tx, Ty) \right\},$$

and ψ is an altering distance function and $\varphi \in \Phi$. If for a nonincreasing sequence $\{x_n\}$ in X with $y_n \leq x_n$ for all n and $\lim_{n \to \infty} p^s(y_n, z) = 0$, it follows $z \leq x_n$ for all $n \in \mathbb{N}$, and either

- (i) (f,T) is partial-compatible, f or T is continuous on (X,p^s) or
- (ii) (g,T) is partial-compatible, g or T is continuous on (X,p^s) ,

then f, g and T have a common fixed point.

Further, if we put f = g and S = T in Theorem 2.1 we have the following corollary.

Corollary 2.7. Let (X, \leq, p) be an ordered complete partial metric space. Let $f, T : X \to X$ be mappings such that $f(X) \subseteq T(X)$, f is dominated mapping and T is dominating mapping. Suppose that for all comparable elements $x, y \in X$, we have

$$\psi(p(fx, fy)) \le \psi(M(x, y)) - \varphi(M(x, y)),$$

where

$$M(x,y) = \max \left\{ \frac{p(Ty, fy)[1 + p(Tx, fx)]}{1 + p(Tx, Ty)}, p(Tx, Ty) \right\},\,$$

and ψ is an altering distance function and $\varphi \in \Phi$. If one of the following two conditions is satisfied

- (i) (f,T) is partial-compatible, f or T is continuous on (X,p^s) , or
- (ii) if for a nonincreasing sequence $\{x_n\}$ in X with $y_n \leq x_n$ for all n and $\lim_{n \to \infty} p^s(y_n, z) = 0$, it follows $z \leq x_n$ for all $n \in \mathbb{N}$.

Then f and T have a common fixed point.

Putting T = S = I in Theorem 2.1 we have the following corollary.

Corollary 2.8. Let (X, \leq, p) be an ordered complete partial metric space. Let $f, g: X \to X$ be mappings such that f, g are dominated mappings. Suppose that for all comparable elements $x, y \in X$, we have

$$\psi(p(fx,gy)) \le \psi(M(x,y)) - \varphi(M(x,y)),$$

where

$$M(x,y) = \max \left\{ \frac{p(y,gy)[1 + p(x,fx)]}{1 + p(x,y)}, p(x,y) \right\},\,$$

and ψ is an altering distance function and $\varphi \in \Phi$. If one of the following two conditions is satisfied:

(i) f or g is continuous on (X, p^s) , or

(ii) If for a nonincreasing sequence $\{x_n\}$ in X and $\lim_{n\to\infty} p^s(x_n,z) = 0$, implies that $z \leq x_n$ for all $n \in \mathbb{N}$.

Then f and g have a common fixed point.

If we take f = g and S = T = I in Theorem 2.1, we obtain the following corollary which improved Theorem 2 in [7].

Corollary 2.9. Let (X, \leq, p) be an ordered complete partial metric space. Let $f: X \to X$ be mappings such that f is dominated mapping. Suppose that for all comparable elements $x, y \in X$, we have

$$\psi(p(fx, fy)) \le \psi(M(x, y)) - \varphi(M(x, y)),$$

where

$$M(x,y) = \max \left\{ \frac{p(y, fy)[1 + p(x, fx)]}{1 + p(x, y)}, p(x, y) \right\},\,$$

and ψ is an altering distance function and $\varphi \in \Phi$. If one of the following two conditions is satisfied:

- (i) f is continuous on (X, p^s) , or
- (ii) if for a nonincreasing sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} p^s(x_n,z) = 0$, implies that $z \leq x_n$ for all $n \in \mathbb{N}$.

Then f has a fixed point.

By removing the continuity and compatibility assumptions in Theorem 2.1, we prove the following theorem.

Theorem 2.10. Let (X, \leq, p) be an ordered complete partial metric space. Let $f, g, S, T : X \to X$ be four mappings such that $f(X) \subseteq T(X)$, $g(X) \subseteq S(X)$, f, g are dominated mappings and S, T are dominating mappings. Suppose that the condition (2.1) holds for all comparable elements $x, y \in X$, and ψ and φ are the same as in Theorem 2.1. Let one of f(X), g(X), S(X) or T(X) be a closed subset of X If for a nonincreasing sequence $\{x_n\}$ in X with $y_n \leq x_n$ for all n and $\lim_{n \to \infty} p^s(y_n, z) = 0$, it follows $z \leq x_n$ for all $n \in \mathbb{N}$, then f, g, S and T have a common fixed point.

Proof. Proceeding exactly as in Theorem 2.1, we have that $\{y_n\}$ is a Cauchy sequence in (X, p). Also,

$$\lim_{n \to \infty} p(y_{2n+1}, z) = \lim_{n \to \infty} p(gx_{2n+1}, z) = \lim_{n \to \infty} p(Sx_{2n+2}, z) = p(z, z) = 0.$$

Suppose that S(X) is a closed subset of X. Hence there exists $u \in X$ such that Su = z. We show that p(fu, z) = 0. since $x_{2n+1} \leq Tx_{2n+1}$ and $\lim_{n \to \infty} Tx_{2n+1} = z$ it follows that $z \leq x_{2n+1}$, and $u \leq Su = z$. Hence $u \leq x_{2n+1}$, so from (2.1) we obtain

$$\psi(p(fu, gx_{2n+1})) \le \psi(M(u, x_{2n+1})) - \varphi(M(u, x_{2n+1})), \tag{2.19}$$

where

$$M(u, x_{2n+1}) = \max \left\{ \frac{p(Tx_{2n+1}, gx_{2n+1})[1 + p(Su, fu)]}{1 + p(Su, Tx_{2n+1})}, p(Su, Tx_{2n+1}) \right\}$$
$$= \max \left\{ \frac{p(y_{2n}, y_{2n+1})[1 + p(z, fu)]}{1 + p(z, y_{2n})}, p(z, y_{2n}) \right\}.$$

Letting $n \to \infty$ in (2.19) and by (2.15) we get $\psi(p(fu,z)) = 0$. Thus we conclude that fu = z = Su. As f is dominated and S is dominating maps. then

$$u \prec Su = z$$
 and $z = fu \prec u$.

Hence z=u. Thus fz=Sz=z. From $f(X)\subseteq T(X)$, there exists $v\in X$ such that z=Tv. We show that p(qv,z)=0. From (2.1) we get

$$\psi(p(z,gv)) = \psi(p(fz,gv)) \le \psi(M(z,v)) - \varphi(M(z,v)), \tag{2.20}$$

where

$$M(z,v) = \max \left\{ \frac{p(Tv, gv)[1 + p(Sz, fz)]}{1 + p(Sz, Tv)}, p(Sz, Tv) \right\} = p(z, gv).$$

Therefore from (2.20) we deduce that

$$\psi(p(z, gv)) \le \psi(p(z, gv)) - \varphi(p(z, gv)).$$

Hence $\varphi(p(z,gv)) = 0$, so gv = z. Since g is dominated and T is dominating maps. then

$$v \prec Tv = z$$
 and $z = qv \prec v$.

Hence z = v. Thus fz = Sz = gz = Tz = z. That is z is a common fixed point of f, g, S and T. The proof is similar when f(X), g(X) or T(X) is a closed subset of X. \square

Now, we shall prove the uniqueness of the common fixed point as in the following theorem.

Theorem 2.11. In addition to the hypotheses of Theorem 2.1 (or Theorem 2.10) assume that for all $(x, y) \in X \times X$, there exists $z \in X$ such that $z \leq x$ and $z \leq y$. Then, f, g, S and T have a unique common fixed point.

Proof. The set of common fixed points of f, g, S and T is not empty due to Theorem 2.1 (or Theorem 2.10). Suppose that u and v are two common fixed points of f, g, S and T, that is, fu = gu = Su = Tu = u and fv = gv = Sv = Tv = v. Theorem 2.1 (or Theorem 2.10) gives us that p(u, u) = p(v, v) = 0. By assumption, there exists $z_0 \in X$ such that

$$z_0 \leq u \quad \text{and} \quad z_0 \leq v.$$
 (2.21)

Now, proceeding similarly to the proof of Theorem 2.1 (or Theorem 2.10), we can define the sequences $\{z_n\}$ and $\{w_n\}$ in X as follows

$$w_{2n} = fz_{2n} = Tz_{2n+1}, \quad w_{2n+1} = gz_{2n+1} = Sz_{2n+2}, \text{ for all } n \ge 0.$$

Since f, g are dominated mappings and S, T are dominating mappings we have

$$z_{2n+2} \leq Sz_{2n+2} = gz_{2n+1} \leq z_{2n+1} \leq Tz_{2n+1} = fz_{2n} \leq z_{2n}$$
 for all $n \geq 0$.

Thus, for all $n \geq 0$ we have $z_{n+1} \leq z_n \leq z_0 \leq u$. Further, in similar way for the proof of Theorem 2.1 we can get

$$\lim_{n \to \infty} p(w_n, w_{n+1}) = 0. \tag{2.22}$$

As $z_{2n} \leq u$, putting $x = z_{2n}$ and y = u in (2.1), we obtain

$$\psi(p(w_{2n}, u)) = \psi(p(fz_{2n}, gu)) \le \psi(M(z_{2n}, u)) - \varphi(M(z_{2n}, u)),$$

where

$$M(z_{2n}, u) = \max \left\{ \frac{p(Tu, gu)[1 + p(Sz_{2n}, fz_{2n})]}{1 + p(Sz_{2n}, Tu)}, p(Sz_{2n}, Tu) \right\} = p(w_{2n-1}, u).$$

Thus

$$\psi(p(w_{2n}, u)) \le \psi(p(w_{2n-1}, u)) - \varphi(p(w_{2n-1}, u)) \le \psi(p(w_{2n-1}, u)).$$

Since ψ is increasing, we have

$$p(w_{2n}, u) \le p(w_{2n-1}, u). \tag{2.23}$$

Also, since $z_{2n+1} \leq u$, putting x = u and $y = z_{2n+1}$ in (2.1), we have

$$\psi(p(u, w_{2n+1})) = \psi(p(fu, gz_{2n+1})) \le \psi(M(u, z_{2n+1})) - \varphi(M(u, z_{2n+1})), \tag{2.24}$$

where

$$M(u, z_{2n+1}) = \max \left\{ \frac{p(Tz_{2n+1}, gz_{2n+1})[1 + p(Su, fu)]}{1 + p(Su, Tz_{2n+1})}, p(Su, Tz_{2n+1}) \right\}$$
$$= \max \left\{ \frac{p(w_{2n}, w_{2n+1})}{1 + p(u, w_{2n})}, p(u, w_{2n}) \right\}.$$

(I) If $M(u, z_{2n+1}) = \frac{p(w_{2n}, w_{2n+1})}{1 + p(u, w_{2n})}$, then from (2.22) we obtain $\lim_{n \to \infty} M(u, z_{2n+1}) = 0$. Therefore from (2.24) we have $\lim_{n \to \infty} \psi(p(u, w_{2n+1})) = 0$. Hence

$$\lim_{n \to \infty} p(u, w_{2n+1}) = 0. \tag{2.25}$$

(II) If $M(u, z_{2n+1}) = p(u, w_{2n})$, so from (2.24) we have

$$\psi(p(u, w_{2n+1})) \le \psi(p(u, w_{2n})) - \varphi(p(u, w_{2n})) \le \psi(p(u, w_{2n})), \tag{2.26}$$

Since ψ is increasing, we obtain

$$p(u, w_{2n+1}) \le p(u, w_{2n}). \tag{2.27}$$

Combining (2.23) and (2.27) we conclude that

$$p(u, w_{n+1}) \le p(u, w_n) \qquad \forall n \ge 0. \tag{2.28}$$

So, the sequence $\{p(u, w_n)\}$ is non-increasing and bounded below, so there exists $\gamma \geq 0$ such that

$$\lim_{n \to \infty} p(u, w_n) = \gamma. \tag{2.29}$$

Suppose that $\gamma > 0$. Then from (2.26) taking the upper limit as $n \to \infty$, and by the lower semi-continuity of φ we get

$$\limsup_{n\to\infty} \psi(p(u,w_{2n+1})) \le \limsup_{n\to\infty} \psi(p(u,w_{2n})) - \liminf_{n\to\infty} \varphi(p(u,w_{2n})).$$

Using the properties of the functions ψ and φ , we have $\psi(\gamma) \leq \psi(\gamma) - \varphi(\gamma)$, so $\gamma = 0$, which is a contradiction. We conclude that $\lim_{n \to \infty} p(u, w_n) = 0$.

From (I) and (II) we conclude that

$$\lim_{n \to \infty} p(u, w_{2n}) = 0. \tag{2.30}$$

Similarly, using the same argument we can get

$$\lim_{n \to \infty} p(v, w_{2n}) = 0. \tag{2.31}$$

Since $p(u, v) \le p(u, w_{2n}) + p(w_{2n}, v) - p(w_{2n}, w_{2n})$, and from (2.22), (2.30), (2.31), we conclude that $p(u, v) \le 0$. Therefore u = v. \square

To support our results, we give the following examples.

Example 2.12. Let X = [0, 1] endowed with usual order \leq and (X, p) be a complete partial metric space, where $p: X \times X \to R^+$ is defined by $p(x, y) = max\{x, y\}$ and let $\psi, \varphi: [0, \infty) \to [0, \infty)$ be defined by $\psi(t) = bt$ and $\varphi(t) = (b-1)t$, where $1 \leq b \leq 2$. Let $f, g, S, T: X \to X$ be defined by

$$fx = \frac{x}{2},$$
 $gx = \begin{cases} 0 & \text{if } x \in [0, \frac{1}{2}] \\ \frac{1}{4} & \text{if } x \in (\frac{1}{2}, 1] \end{cases},$

$$Sx = \begin{cases} 2x & \text{if } x \in [0, \frac{1}{2}] \\ x & \text{if } x \in (\frac{1}{2}, 1] \end{cases}, \quad Tx = \begin{cases} \frac{3}{2}x & \text{if } x \in [0, \frac{1}{2}] \\ 1 & \text{if } x \in (\frac{1}{2}, 1] \end{cases}.$$

Then $f(X) \subseteq T(X)$ $g(X) \subseteq S(X)$. The table shows that f, g are dominated and S, T are dominating mappings.

for each $x \in [0, 1]$	$fx \le x$	$gx \le x$	$x \le Sx$	$x \le Tx$
$x \in [0, \frac{1}{2}]$	$fx = \frac{x}{2} \le x$	$gx = 0 \le x$	$x \le Sx = 2x$	$x \le Tx = \frac{3}{2}x$
$x \in (\frac{1}{2}, 1]$	$fx = \frac{x}{2} \le x$	$gx = \frac{1}{4} \le x$	$x \le Sx = x$	$x \le Tx = 1$

(f, S) is partial-compatible maps and f is a continuous map. To show that f, g, S and T satisfy condition (2.1) for all $x, y \in X$, we consider the following cases

(i) If $x, y \in [0, \frac{1}{2}]$, then

$$M(x,y) = \max\left\{\frac{p(\frac{3}{2}y,0)[1+p(2x,\frac{x}{2})]}{1+p(2x,\frac{3}{2}y)}, p(2x,\frac{3}{2}y)\right\} = \max\left\{\frac{\frac{3}{2}y[1+2x]}{1+p(2x,\frac{3}{2}y)}, p(2x,\frac{3}{2}y)\right\}.$$

We have two cases:

(a) If $p(2x, \frac{3}{2}y) = 2x$ then $M(x, y) = \max\left\{\frac{3}{2}y, 2x\right\} = 2x$. Hence $\psi(p(fx, gy)) = \psi(p(\frac{x}{2}, 0)) = \psi(\frac{x}{2}) = \frac{bx}{2} \le 2x = M(x, y) = \psi(M(x, y)) - \phi(M(x, y)).$

(b) If
$$p(2x, \frac{3}{2}y) = \frac{3}{2}y$$
 then $M(x, y) = \max\left\{\frac{\frac{3}{2}y[1+2x]}{1+\frac{3}{2}y}, \frac{3}{2}y\right\}$. Hence
$$\psi(p(fx, gy)) = \psi(\frac{x}{2}) = \frac{bx}{2} \le 2x \le \frac{3}{2}y \le M(x, y) = \psi(M(x, y)) - \phi(M(x, y)).$$

(ii) If $x \in [0, \frac{1}{2}], y \in (\frac{1}{2}, 1]$, then

$$M(x,y) = \max\left\{\frac{p(1,\frac{1}{4})[1+p(2x,\frac{x}{2})]}{1+p(2x,1)}, p(2x,1)\right\} = \max\left\{\frac{1+2x}{2},1\right\} = 1.$$

Hence

$$\psi(p(fx,gy)) = \psi(p(\frac{x}{2},\frac{1}{4})) = \psi(\frac{1}{4}) = \frac{b}{4} \le M(x,y) = \psi(M(x,y)) - \phi(M(x,y)).$$

(iii) if $x \in (\frac{1}{2}, 1], y \in [0, \frac{1}{2}]$, then

$$M(x,y) = \max\left\{\frac{p(\frac{3}{2}y,0)[1+p(x,\frac{x}{2})]}{1+p(x,\frac{3}{2}y)}, p(x,\frac{3}{2}y)\right\} = \max\left\{\frac{\frac{3}{2}y[1+x]}{1+p(x,\frac{3}{2}y)}, p(x,\frac{3}{2}y)\right\}.$$

We have two cases:

(a) if
$$p(x, \frac{3}{2}y) = x$$
 then $M(x, y) = \max\{\frac{3}{2}y, x\} = x$. Hence
$$\psi(p(fx, gy)) = \psi(p(\frac{x}{2}, 0)) = \psi(\frac{x}{2}) = \frac{bx}{2} \le x = M(x, y)$$
$$= \psi(M(x, y)) - \phi(M(x, y)).$$

(b) If
$$p(x, \frac{3}{2}y) = \frac{3}{2}y$$
 then $M(x, y) = \max\left\{\frac{\frac{3}{2}y[1+x]}{1+\frac{3}{2}y}, \frac{3}{2}y\right\}$. Hence
$$\psi(p(fx, gy)) = \psi(\frac{x}{2}) = \frac{bx}{2} \le x \le \frac{3}{2}y \le M(x, y) = \psi(M(x, y)) - \phi(M(x, y)).$$

(iv) if $x, y \in (\frac{1}{2}, 1]$, then

$$M(x,y) = \max\left\{\frac{p(1,\frac{1}{4})[1+p(x,\frac{x}{2})]}{1+p(x,1)}, p(x,1)\right\} = \max\left\{\frac{1+x}{2},1\right\} = 1.$$

Hence

$$\psi(p(fx,gy)) = \psi(p(\frac{x}{2},\frac{1}{4})) = \psi(\frac{x}{2}) = \frac{bx}{2} \le x \le M(x,y) = \psi(M(x,y)) - \phi(M(x,y)).$$

Thus, the mappings f, g, S and T satisfy the condition (2.1). Therefore all conditions given in Theorem 2.1 are satisfied. Moreover, 0 is the unique common fixed point of f, g, S and T.

Example 2.13. Let X = [0,3] endowed with usual order \leq and (X,p) be a complete partial metric space, where $p: X \times X \to R^+$ is defined by $p(x,y) = max\{x,y\}$ and let $\psi, \varphi: [0,\infty) \to [0,\infty)$ be defined by $\psi(t) = 3t$ and $\varphi(t) = \frac{1}{3}t$. Let $f,g,S,T:X\to X$ be defined by

$$fx = \begin{cases} \frac{x^2}{2} & \text{if } x \in [0, 1) \\ \frac{1}{4} & \text{if } x \in [1, 3] \end{cases}, \qquad gx = \begin{cases} 0 & \text{if } x \in [0, 1) \\ \frac{1}{2} & \text{if } x \in [1, 3] \end{cases},$$
$$Sx = \begin{cases} 3\sqrt{x} & \text{if } x \in [0, 1) \\ x & \text{if } x \in [1, 3] \end{cases}, \qquad Tx = \begin{cases} 2\sqrt{x} & \text{if } x \in [0, 1) \\ 3 & \text{if } x \in [1, 3] \end{cases}.$$

Then $f(X) \subseteq T(X)$, $g(X) \subseteq S(X)$ and S(X) is a closed subset of X. The table shows that f, g are dominated and S, T are dominating mappings.

for each $x \in [0,3]$	$fx \le x$	$gx \le x$	$x \le Sx$	$x \le Tx$
$x \in [0, 1)$	$fx = \frac{x^2}{2} \le x$	$gx = 0 \le x$	$x \le Sx = 3\sqrt{x}$	$x \le Tx = 2\sqrt{x}$
$x \in [1, 3]$	$fx = \frac{1}{4} \le x$	$gx = \frac{1}{2} \le x$	$x \le Sx = x$	$x \le Tx = 3$

Now, we show that f, g, S and T satisfy condition (2.1) for all $x, y \in X$, we consider the following cases

(i) If $x, y \in [0, 1)$, then

$$M(x,y) = \max \left\{ \frac{p(2\sqrt{y},0)[1+p(3\sqrt{x},\frac{x^2}{2})]}{1+p(3\sqrt{x},2\sqrt{y})}, p(3\sqrt{x},2\sqrt{y}) \right\}$$
$$= \max \left\{ \frac{2\sqrt{y}[1+3\sqrt{x}]}{1+p(3\sqrt{x},2\sqrt{y})}, p(3\sqrt{x},2\sqrt{y}) \right\}.$$

We have two cases:

(a) If
$$p(3\sqrt{x}, 2\sqrt{y}) = 3\sqrt{x}$$
 then $M(x, y) = 3\sqrt{x}$. Hence
$$\psi(p(fx, gy)) = \psi(\frac{x^2}{2}) = \frac{3x^2}{2} \le 3\sqrt{x} \le 9\sqrt{x} - \sqrt{x} = \psi(M(x, y)) - \phi(M(x, y)).$$

(b) if
$$p(3\sqrt{x}, 2\sqrt{y}) = 2\sqrt{y}$$
 then $M(x, y) = \max\left\{\frac{2\sqrt{y}[1+3\sqrt{x}]}{1+2\sqrt{y}}, 2\sqrt{y}\right\}$. Hence
$$\psi(p(fx, gy)) = \psi(\frac{x^2}{2}) = \frac{3x^2}{2} \le 3\sqrt{x} \le 2\sqrt{y} \le M(x, y) \le \psi(M(x, y)) - \phi(M(x, y)).$$

(ii) If $X \in [0, 1), y \in [1, 3]$, then

$$M(x,y) = \max \left\{ \frac{p(3,\frac{1}{2})[1 + p(3\sqrt{x},\frac{x^2}{2})]}{1 + p(3\sqrt{x},3)}, p(3\sqrt{x},3) \right\} = 3.$$

Hence

$$\psi(p(fx,gy)) = \psi(p(\frac{x^2}{2},\frac{1}{2})) = \psi(\frac{1}{2}) = \frac{3}{2} \le M(x,y) \le \psi(M(x,y)) - \phi(M(x,y)).$$

(iii) If $X \in [1, 3], y \in [0, 1)$, then

$$M(x,y) = \max\left\{\frac{p(2\sqrt{y},0)[1+p(x,\frac{1}{4})]}{1+p(x,2\sqrt{y})}, p(x,2\sqrt{y})\right\} = \max\left\{\frac{2\sqrt{y}[1+x]}{1+p(x,2\sqrt{y})}, p(x,2\sqrt{y})\right\}.$$

We have two cases:

(a) If
$$p(x, 2\sqrt{y}) = x$$
 then $M(x, y) = \max \{2\sqrt{y}, x\} = x$. Hence
$$\psi(p(fx, gy)) = \psi(p(\frac{1}{4}, 0)) = \psi(\frac{1}{4}) = \frac{3}{4} \le M(x, y) \le \psi(M(x, y)) - \phi(M(x, y)).$$

(b) if
$$p(x, 2\sqrt{y}) = 2\sqrt{y}$$
 then $M(x, y) = \max\left\{\frac{2\sqrt{y}[1+x]}{1+2\sqrt{y}}, 2\sqrt{y}\right\}$. Hence
$$\psi(p(fx, gy)) = \frac{3}{4} \le x \le 2\sqrt{y} \le M(x, y) \le \psi(M(x, y)) - \phi(M(x, y)).$$

(iv) if $x, y \in [1, 3]$, then

$$M(x,y) = \max\left\{\frac{p(3,\frac{1}{2})[1+p(x,\frac{1}{4})]}{1+p(x,3)}, p(x,3)\right\} = \max\left\{\frac{3[1+x]}{4}, 3\right\} = 3.$$

Hence

$$\psi(p(fx,gy)) = \psi(p(\frac{1}{4},\frac{1}{2})) = \psi(\frac{1}{2}) = \frac{3}{2} \le M(x,y) \le \psi(M(x,y)) - \phi(M(x,y)).$$

Thus, the mappings f, g, S and T satisfy the condition (2.1). Therefore all conditions given in Theorem 2.10 are satisfied. Moreover, 0 is the unique common fixed point of f, g, S and T.

References

- [1] S. Banach, Sur les opérations dans les ensembles abstracts et leur application aux équations intégrales, Fund. Math. 3 (1922) 133–181.
- [2] A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435–1443.
- [3] J.J. Nieto and R. Rodrguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order. 22 (2005) 223–239.
- [4] M. Abbas, T. Nazir, and S. Radenović, Common fixed points of four maps in partially ordered metric spaces, Appl. Math. Lett. 24 (2011) 1520–1526.
- [5] M. Abbas, Y.J. Cho and T. Nazir, Common fixed points of ciric-type contractive mappings in two ordered generalized metric spaces, Fixed Point Theory and Appl. 139 (2012) 2012.
- [6] R.P. Agarwal, M.A. El-Gebeily and D. Regan, Generalized contractions in partially ordered metric spaces, Appl Anal. 87 (2008) 109–116.
- [7] I. Cabrera, J. Harjani and K. Sadarangani, A fixed point theorem for contractions of rational type in partially ordered metric spaces, Ann. Univ. Ferrara 59 (2013) 251–258.
- [8] J. Harjani, B. Lopez and K. Sadarangani, A fixed point theorem for mappings satisfying a contractive condition of rational type on a partially ordered metric space, Abstr. Appl. Anal. 2010 (2010) 1–8.
- [9] J.J. Nieto and R. Rodrguez-Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math Sin. 23 (2007) 2205–2212.
- [10] S. Radenović and Z. Kadelburg, Generalized weak contractions in partially ordered metric spaces, Comput. Math. Appl. 60 (2010) 1776–1783.
- [11] R.A. Rashwan and S.M. Saleh, Common fixed point theorems for six mappings in ordered ordered G-metric spaces, Adv. Fixed Point Theory 3 (2013) 105–125.
- [12] W. Shatanawi and M. Postolache, Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces, Fixed Point Theory and Appl. 2013:271 (2013).
- [13] S.G. Matthews, Partial metric topology, Proceedings of the 8th Summer Conference on General Topology and Applications Ann. New York Acad. Sci., Annals of the New York Academy of Sciences 728 (1994) 183–197.
- [14] I. Altun, F. Sola and H. Simsek, Generalized contractions on partial metric spaces, Topol. Appl. 157 (2010) 2778–2785.
- [15] I. Altun and A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl, vol. 2011, Article ID 508730, 10 pages, 2011.
- [16] H. Aydi, Some fixed point results in ordered partial metric spaces, J. Nonlinear Sci. Appl. 4 (2011) 210-217.
- [17] H. Aydi, Fixed point results for weakly contractive mappings in ordered partial metric spaces, J. Adv. Math. Studies 4 (2011) 1–12.
- [18] H. Aydi, Fixed point theorems for generalized weakly contractive condition in ordered partial metric spaces, J. Nonlinear Anal. Optimization: Theory Appl. 2 (2011) 33–48.

[19] L.j. Ćirić, B. Samet, H. Aydi and C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput. 218 (2011) 2398–2406.

- [20] E. Karapinar, W. Shatanawi and K. Tas, Fixed point theorem on partial metric spaces involving rational expressions, Miskolc Math. Notes 14 (2013) 135–142.
- [21] S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl., Volume 2010, Article ID 493298, 6 pages, 2010.
- [22] S. Romaguera, Fixed point theorems for generalized contractions on partial metric spaces, Topol. Appli. 159 (2011) 194–199.
- [23] B. Samet, M. Rajović, R. Lazović and R. Stoiljković, Common fixed point results for nonlinear contractions in ordered partial metric spaces, Fixed Point Theory Appl. 2011. 2011:71, 14 pages.
- [24] N. Shobkolaei, S. Sedghi, J.R. Roshan and I. Altun, Common fixed point of mappings satisfying almost generalized (S,T)-contractive condition in partially ordered partial metric spaces, Appl. Math. Comput. 219 (2012) 443–452.
- [25] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. General Topol. 6 (2005) 229–240.
- [26] M.S. Khan, M. Swales and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30 (1984) 1–9.
- [27] G. Jungck, Compatible mappings and common fixed points, International J. Math. Math. Sei. 9 (1986) 771–779.
- [28] Ya.I. Alber and S. Guerre-Delabriere, *Principles of weakly contractive maps in Hilbert spaces*, new results in operator theory, In: Gohberg I, Lyubich Yu (eds.) Advances and Application vol. 98, Birkhauser Verlag, Basel, (1997) 7–22.
- [29] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001) 2683–2693.
- [30] P.N. Dutta and B.S. Choudhury, A generalization of contraction principle in metric spaces. Fixed Point Theory Appl., 2008 (2008). Article ID 406368,8.
- [31] B.K. Dass and S. Gupta, An extension of Banach contraction principle through rational expressions, Inidan J. Pure Appl. Math. 6 (1975) 1455–1458.