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Abstract

In this paper, vector ultrametric spaces are introduced and a fixed point theorem is given for corre-
spondences. Our main result generalizes a known theorem in ordinary ultrametric spaces.
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1. Introduction and preliminaries

An ultrametric space (X, d) is a metric space in which the triangle inequality is replaced by

d(x, y) ≤ max{d(x, z), d(z, y)}, (x, y, z ∈ X).

A generalization of the notion of ultrametric space via partially ordered sets was given in [12, 13]
which led some applications to logic programming [14], computational logic [15], and quantitative
domain theory [5].

In this paper we allow ultrametrics to take values in an arbitrary cone of a complete modular
space. The main result of this paper is a fixed point theorem for correspondences in vector ultrametric
spaces which generalizes the main theorem presented in [11].

We first present some basic notions which will be needed in this paper.
A modular on a real linear space A is a real valued functional ρ on A which satisfies the condi-

tions:
1. ρ(x) = 0 if and only if x = 0,
2. ρ(x) = ρ(−x),
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3. ρ(αx+ βy) ≤ ρ(x) + ρ(y), for all x, y ∈ A and α, β ≥ 0, α + β = 1.

Then, the vector subspace Aρ = {x ∈ X : ρ(αx)→ 0 as α→ 0} of A is called a modular space.
The modular ρ is called convex (see, e.g., [1, 8] for a more general form of convexity) if Condition

(3) is replaced with

ρ(ax+ by) ≤ aρ(x) + bρ(y) for all x, y ∈ X and all a, b ≥ 0 with a+ b = 1.

A sequence (xn)∞n=1 in Aρ is called ρ-convergent (briefly, convergent) to x ∈ Aρ if ρ(xn − x) → 0 as
n → ∞; (xn)∞n=1 is said to be a Cauchy sequence if ρ(xm − xn) → 0 as m,n → ∞. By a ρ-closed
(briefly, closed) set in Aρ it is meant that it contains the limit of all its convergent sequences. And,
Aρ is a complete modular space if every Cauchy sequence in Aρ is convergent to a point of Aρ. The
modular ρ is said to satisfy the ∆2-condition if there exists k > 0 such that ρ(2x) ≤ kρ(x) for all
x ∈ Aρ. The reader is referred to [6, 7] for more details in modular spaces. We also suggest the
reader see [3, 4, 9, 10].

Definition 1.1. A nonempty subset P of a complete modular space Aρ is called a cone if

(i) P is ρ-closed, and P 6= {0};

(ii) a, b ∈ R , a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P ;

(iii) P ∩ (−P) = {0}.

A partial order � can be induced on Aρ by every cone P ⊂ A as x � y whenever y − x ∈ P .
A cone P is called normal (or ρ-normal) if there is a positive real number c (normal constant) such
that

0 � x � y ⇒ ρ(x) ≤ cρ(y), (x, y ∈ Aρ).

When the modular ρ of Aρ satisfies ∆2-condition with ∆2-constant k, it can be replaced with an
equivalent modular σ satisfying ∆2-condition for which the normal constant of P is 1 with respect
to σ. In fact, for such modular ρ it suffices to define

σ(x) = inf
y�x

ρ(y) + inf
x�z

ρ(z) (x ∈ Aρ).

Then, σ is a modular on Aρ which is equivalent to ρ and satisfies ∆2-condition. To see this, we just
show that x = 0 if ρ(x) = 0 and ρ(αx+βy) ≤ ρ(x) +ρ(y) as α, β ≥ 0, α+β = 1. Let ε > 0 be given.
There exist y, z ∈ Aρ such that y � x � z and max{ρ(y), ρ(z)} ≤ ε. Since x− y � z − y, we get

ρ(
x

4
) ≤ ρ(

x− y
2

) + ρ(
y

2
) ≤ cρ(

z − y
2

) + ρ(
y

2
) ≤ cρ(z) + (c+ 1)ρ(y),

where c is the normal constant. This implies that x = 0. Now let x, u ∈ Aρ. Choose y1, y2, z1, z2 ∈ Aρ
such that y1 � x � z1 and y2 � u � z2 with

ρ(y1) + ρ(z1) ≤ σ(x) + ε, ρ(y2) + ρ(z2) ≤ σ(u) + ε.

Since αy1 + βy2 � αx+ βu � αz1 + βz2, we have

σ(αx+ βu) ≤ ρ(αy1 + βy2) + ρ(αz1 + βz2),
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and consequently
σ(αx+ βu) ≤ σ(x) + σ(u) + 2ε.

To see the normal constant of σ, let 0 � x � u. Then,

σ(x) = inf
x�z

ρ(z) ≤ inf
u�z

ρ(z) = σ(u),

that is the desired constant is 1. Finally, σ(x) ≤ 2ρ(x), for each x ∈ Aρ. On the other hand, if
y � x � z, we have

ρ(
x

2
) ≤ ρ(

x− y
2

) + ρ(
y

2
) ≤ cρ(

z − y
2

) + ρ(
y

2
) ≤ (c+ 1)(ρ(y) + ρ(z)),

therefore,

ρ(
x

2
) ≤ (c+ 1)σ(x).

Since σ satisfies ∆2-condition, we get

ρ(x) ≤ k(c+ 1)σ(x), (x ∈ Aρ).

Hence, by a normal cone we always assume that its normal constant is 1. We also would say that
the cone P is unital if there exists a vector e ∈ P with modular 1 such that

x � ρ(x)e (x ∈ P).

Throughout this note, we suppose that P is a cone in complete modular space Aρ where its
modular is convex and satisfies ∆2-condition and � is the partial order induced by P .

Definition 1.2. Let X be a nonempty set. If the mapping d : X × X → Aρ satisfies the following
conditions:

(CUM1) d(x, y) � 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(CUM2) d(x, y) = d(y, x) for all x, y ∈ X ;

(CUM3) If d(x, z) � p and d(y, z) � p, then d(x, y) � p, for any x, y, z ∈ X , and p ∈ P ;

then d is called a vector ultrametric on X , and the triple (X , d,P) is called a vector ultrametric space.
If P is unital and normal, then (X , d,P) is called a unital-normal vector ultrametric space.

For any unital-normal vector ultrametric space (X , d,P) with a convex modular, since

d(x, y) � ρ(d(x, y))e and d(y, z) � ρ(d(y, z))e,

from (CUM3) we have
d(x, z) � max{ρ(d(x, y)), ρ(d(y, z))}e,

and therefore
ρ(d(x, z)) ≤ max{ρ(d(x, y)), ρ(d(y, z))}. (1.1)

For a unital-normal vector ultrametric space (X , d,P), if x ∈ X and p ∈ P \ {0}, the subset

B(x; p) := {y ∈ X : ρ(d(x, y)) ≤ ρ(p)},

is said to be a ball centered at x with radius p. Every point of a ball is its center and intersecting balls
with comparable radii are comparable with respect to inclusion. The unital-normal vector ultrametric
space (X , d,P) is called spherically complete if every chain of balls (with respect to inclusion) has a
nonempty intersection.
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Example 1.3. Consider the full matrix algebra Mn over complex numbers and choose a nonzero
positive definite matrix p of positive cone P consisting of all positive definite matrices.

1. For any nonempty set X , define the mapping d by

d(x, y) =

{
p x 6= y
0 x = y.

Then, d is a vector ultrametric on X .

2. Let (N , ‖ · ‖) be a normed space, (αn) a sequence of positive real numbers decreasing to zero,
and

X := {x = (xn)∞n=1 ∈ N : lim sup
n→∞

‖xn‖αn <∞}.

Now, the mapping d defined by

d(x, y) =

{
p lim supn→∞ ‖xn − yn‖αn x 6= y
0 x = y,

is a vector ultrametric on X .

3. Let A be a C∗-algebra with positive cone P (consisting of the set of all self-adjoint elements
with non-negative spectral values). If (X , d) is an ultrametric space in the usual sense and
p ∈ P \ {0}, then the mapping

(x, y)→ d(x, y)p (x, y ∈ X ),

is a vector ultrametric on X .

The next example generalizes the idea given in the previous example.

Example 1.4. Let Aρ be a complete modular space with the cone P . For usual ultra metric space
(X , d) and p ∈ P \ {0}, the mapping

(x, y)→ d(x, y)p (x, y ∈ X ),

is a vector ultrametric on X .

It is clear that the cones given in Example 1.3 are normal and the cone in 3 of the same example
is also unital (see, e.g., [2]).

Example 1.5. Consider the Euclidean space R2 with the lexicographical order� (i.e., (a, b) � (a′, b′)
if a < a′ or [a = a′ and b ≤ b′]) . Then, it is clear that P = {x ∈ R2 : x � 0} is not normal. For any
nonempty set X equipped with the mapping

d(x, y) =

{
u x 6= y
0 x = y,

where u ∈ P is a fixed element, we obtain a non-normal and unital vector ultrametric space. In fact,
(a, b) � ‖(a, b)‖(1, 1), for every (a, b) ∈ R2.
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2. Main theorem

We recall that a correspondence ϕ on a set Ω, denoted by ϕ : Ω � Ω, assigns to each w in Ω a
(nonempty) subset ϕ(w) of Ω. For any subset C of Ω and correspondence ϕ : C � Ω, an element
w ∈ C is said to be a fixed point if w ∈ ϕ(w).

By a convergent sequence (xn)∞n=1 in vector ultrametric space (X , d,P), we mean that there
exists an element x ∈ X such that ρ(d(xn, x)) → 0 as n → ∞. It is not difficult to see that for any
unital-normal vector ultrametric space (X , d,P), the vector ultrametric d is jointly continuous, i.e,
if xn → x and yn → y, then d(xn, yn)→ d(x, y).

We also say that a subset G of (X , d,P) is compact if every sequence in G has a convergent
subsequence in G. In the following by ϕ : X � c(X ) we mean that ϕ is a correspondence with
compact values.

Theorem 2.1. Let (X , d,P) be a spherically complete unital-normal vector ultrametric space and
ϕ : X � c(X ). If for every x, y ∈ X , x 6= y, and p ∈ ϕ(x) there exists q ∈ ϕ(y) such that

ρ(d(p, q)) < max{ρ(d(x, p)), ρ(d(x, y)), ρ(d(y, q))}, (2.1)

then there exists g ∈ X such that g ∈ ϕ(g).

Proof . Let
Γ = {B(a,p) | a ∈ X , p ∈ ϕ(a)},

where B(a,p) = B(a; d(a, p)). Consider the partial order v on Γ defined by

B(a,p) v B(b,q) iff B(b,q) ⊆ B(a,p),

where a, b ∈ X , p ∈ ϕ(a), and q ∈ ϕ(b). If Γ′ is any chain in Γ, then the spherically completeness of
X implies that the intersection Ω of elements of Γ′ is nonempty. Choose c ∈ Ω and B(a,p) ∈ Γ′. If
x ∈ B(c,q), where q ∈ ϕ(c) and satisfies (2.1) then

ρ(d(x, c)) ≤ ρ(d(c, q)) ≤ max{ρ(d(c, a)), ρ(d(a, p)), ρ(d(p, q))},

and since ρ(d(c, a)) ≤ ρ(d(a, p)) (because of c ∈ B(a,p)), we get

ρ(d(x, c)) ≤ max{ρ(d(a, p)), ρ(d(p, q))}. (2.2)

We claim that ρ(d(x, c)) ≤ ρ(d(a, p)). If ρ(d(p, q)) ≤ ρ(d(a, p)), then the inequality is clear. If,
otherwise ρ(d(p, q)) > ρ(d(a, p)), then from (2.2) we obtain

ρ(d(x, c)) ≤ ρ(d(p, q)).

From (2.1) it follows that

ρ(d(x, c)) < max{ρ(d(a, p)), ρ(d(a, c)), ρ(d(c, q))},

and hence
ρ(d(x, c)) < max{ρ(d(a, p)), ρ(d(c, q))}.

Now, if ρ(d(a, p)) < ρ(d(c, q)), then

ρ(d(c, q)) ≤ max{ρ(d(c, a), ρ(d(a, p)), ρ(d(p, q))},
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that is,
ρ(d(c, q)) ≤ ρ(d(p, q)),

and so from (2.1) we get the contradiction ρ(d(p, q)) < ρ(d(p, q)). Therefore

ρ(d(x, c)) ≤ ρ(d(a, p)),

and because B(a,p) = B(c; d(a, p)), it implies that

ρ(d(x, a)) ≤ ρ(d(a, p)).

That is, x ∈ B(a,p), and consequently B(c,q) ⊆ B(a,p). Now,

inf
q∈ϕ(c)

ρ(d(c, q)) = ρ(d(c, q̃)),

for some q̃ ∈ ϕ(c) (because of (1.1) and ∆2-condition). If ρ(d(c, q̃)) = 0, then c ∈ ϕ(c). Otherwise,
B(c,q̃) is an upper bound for the chain Γ′. Therefore, by Zorn’s lemma Γ admits a maximal element
B(g,w), where g ∈ X and w ∈ ϕ(g). We show that g ∈ ϕ(g). Suppose on the contrary that g /∈ ϕ(g).
Then, by (2.1), setting x = g and y = p = w ∈ ϕ(g), there exists s ∈ ϕ(w) such that

ρ(d(s, w)) < max{ρ(d(g, w)), ρ(d(w, s))}

and therefore
ρ(d(s, w)) < ρ(d(g, w)). (2.3)

On the other hand, from the maximality of B(g,w) and that w ∈ B(g,w), we have

B(g,w) ⊆ B(w,s) = B(g; d(w, s)),

and so
ρ(d(w, g) ≤ ρ(d(w, s)),

which contradicts (2.3). �

The following corollaries obtain immediately from preceding theorem. We suppose that (X , d,P),
γ, and ϕ are as given in the previous theorem.

Corollary 2.2. If for every x, y ∈ X , x 6= y, and p ∈ ϕ(x) there exists q ∈ ϕ(y) such that

ρ(d(p, q)) < ρ(d(x, y)),

then there exists g ∈ X such that g ∈ ϕ(g).

Corollary 2.3. If for every x, y ∈ X , x 6= y, and p ∈ ϕ(x) there exists q ∈ ϕ(y) such that

ρ(d(p, q)) < max{ρ(d(x, p)), ρ(d(x, y)), ρ(d(y, q))},

then ϕ has a fixed point.

Corollary 2.4. If for every x, y ∈ X , x 6= y, and p ∈ ϕ(x) there exists q ∈ ϕ(y) such that

ρ(d(p, q)) < ρ(d(x, y)),

then ϕ has a fixed point.

As seen, the last corollary generalizes Theorem 1 in [11].
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