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Abstract

In this paper, vector ultrametric spaces are introduced and a fixed point theorem is given for corre-
spondences. Our main result generalizes a known theorem in ordinary ultrametric spaces.
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1. Introduction and preliminaries

An wultrametric space (X,d) is a metric space in which the triangle inequality is replaced by
d(z,y) < max{d(z,z),d(z,y)},  (v,y,2 € X).

A generalization of the notion of ultrametric space via partially ordered sets was given in [12| [13]
which led some applications to logic programming [14], computational logic [I5], and quantitative
domain theory [5].

In this paper we allow ultrametrics to take values in an arbitrary cone of a complete modular
space. The main result of this paper is a fixed point theorem for correspondences in vector ultrametric
spaces which generalizes the main theorem presented in [I1].

We first present some basic notions which will be needed in this paper.

A modular on a real linear space A is a real valued functional p on A which satisfies the condi-
tions:

1. p(z) =0 if and only if z = 0,

2. plz) = p(—a),
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3. plax + Py) < p(x) + p(y), for all z,y € Aand o, 5 >0, a+ = 1.

Then, the vector subspace A, = {z € X : p(ax) — 0 as a — 0} of A is called a modular space.
The modular p is called convex (see, e.g., [IL 8] for a more general form of convexity) if Condition
(3) is replaced with

plax + by) < ap(x) + bp(y) for all z,y € X and all a,b > 0 with a +b = 1.

A sequence (z,,)52, in A, is called p-convergent (briefly, convergent) to = € A, if p(x, — ) — 0 as
n — 00; (z,)0, is said to be a Cauchy sequence if p(x,, —x,) — 0 as m,n — oco. By a p-closed
(briefly, closed) set in A, it is meant that it contains the limit of all its convergent sequences. And,
A, is a complete modular space if every Cauchy sequence in A, is convergent to a point of A,. The
modular p is said to satisfy the As-condition if there exists k£ > 0 such that p(2z) < kp(z) for all
x € A,. The reader is referred to [0, [7] for more details in modular spaces. We also suggest the
reader see [3], 4, [, [10].

Definition 1.1. A nonempty subset P of a complete modular space A, is called a cone if
(i) P is p-closed, and P # {0};
(ii) a,b € R ,a,b >0, 2,y € P = ax + by € P;
(iii) PN (—=P) = {0}.

A partial order < can be induced on A, by every cone P C A as v < y whenever y —z € P.
A cone P is called normal (or p-normal) if there is a positive real number ¢ (normal constant) such
that
0=z=y= pl)<ecply), (z,y € A,).

When the modular p of A, satisfies A,-condition with As-constant k, it can be replaced with an
equivalent modular o satisfying As-condition for which the normal constant of P is 1 with respect
to 0. In fact, for such modular p it suffices to define

o(r) = inf p(y) + mf p(z) (v € A4,).

Yy
Then, o is a modular on A, which is equivalent to p and satisfies Ay-condition. To see this, we just

show that x = 0 if p(x) = 0 and p(ax+ Sy) < p(x)+p(y) as a, f > 0, a+ [ = 1. Let € > 0 be given.
There exist y, z € A, such that y < 2 < z and max{p(y), p(2)} < e. Since z —y = z — y, we get

x T —y

p(7) < (5 .

)+ p(%) < ol

+ (L) < ep(z) + (c+ V)p(y),

Y
) 2

2

where c is the normal constant. This implies that = 0. Now let z,u € A,. Choose y1,y2, 21, 22 € A,
such that y; 2 ¢ < z; and y5 = u <X 25 with

p(y1) +p(=1) S o(z) +e, ply2) + plz2) < o(u) +¢.

Since ay; + fys X ax + Pu X azy + Bz, we have

o(az + fu) < plays + Byz) + plaz + B22),
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and consequently
o(ax + pu) < o(x) + o(u) + 2¢.
To see the normal constant of o, let 0 < x < u. Then,
o(x) = inf p(z) < inf p(2) = o(u),
that is the desired constant is 1. Finally, o(z) < 2p(z), for each z € A,. On the other hand, if
y 2 x = z, we have

> =) +0(5) < ep(*5 )+ p(5) < (e+ 1)(p(y) + pl2):

therefore,
x
o(5) < e+ o(a).
Since o satisfies As-condition, we get
p(@) Sk(e+)o(z), (v A,).

Hence, by a normal cone we always assume that its normal constant is 1. We also would say that
the cone P is unital if there exists a vector e € P with modular 1 such that

r =< p(x)e (x € P).

Throughout this note, we suppose that P is a cone in complete modular space 4, where its
modular is convex and satisfies As-condition and < is the partial order induced by P.

Definition 1.2. Let X be a nonempty set. If the mapping d : X x X — A, satisfies the following
conditions:

(CUM1) d(z,y) = 0 for all z,y € X and d(x,y) = 0 if and only if z = y;
(CUM2) d(z,y) = d(y, z) for all z,y € X;
(CUMS3) If d(x, z) < p and d(y, z) < p, then d(x,y) < p, for any x,y,z € X, and p € P;

then d is called a vector ultrametric on X, and the triple (X, d, P) is called a vector ultrametric space.
If P is unital and normal, then (X', d,P) is called a unital-normal vector ultrametric space.

For any unital-normal vector ultrametric space (X, d, P) with a convex modular, since

d(z,y) = pld(z,y))e and d(y,z) =2 p(d(y, z))e,
from (CUM3) we have
d(z,z) =2 max{p(d(z,y)), p(d(y, z)) }e,
and therefore
pld(z, 2)) < max{p(d(z,y)), p(d(y, 2))}- (1.1)
For a unital-normal vector ultrametric space (X,d,P), if x € X and p € P \ {0}, the subset

B(x;p) :={y € X: p(d(z,y)) < p(p)},

is said to be a ball centered at x with radius p. Every point of a ball is its center and intersecting balls
with comparable radii are comparable with respect to inclusion. The unital-normal vector ultrametric
space (X, d,P) is called spherically complete if every chain of balls (with respect to inclusion) has a
nonempty intersection.
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Example 1.3. Consider the full matrix algebra M,, over complex numbers and choose a nonzero
positive definite matrix p of positive cone P consisting of all positive definite matrices.

1. For any nonempty set X, define the mapping d by

o) ={ b 27V

Then, d is a vector ultrametric on X.
2. Let (N, ]| -]]) be a normed space, (ay,) a sequence of positive real numbers decreasing to zero,
and
X = {x = (2,);2, € N :limsup ||z, ||*" < co}.

n—o0

Now, the mapping d defined by

plimsup, . [z, —yu[* 2z #y
d<w>={o el

is a vector ultrametric on X.

3. Let A be a C*-algebra with positive cone P (consisting of the set of all self-adjoint elements
with non-negative spectral values). If (X,d) is an ultrametric space in the usual sense and
p € P\ {0}, then the mapping

(z,y) — d(z,y)p (z,y € X),
is a vector ultrametric on X.

The next example generalizes the idea given in the previous example.

Example 1.4. Let A, be a complete modular space with the cone P. For usual ultra metric space
(X,d) and p € P\ {0}, the mapping

(z,y) — d(z,y)p (z,y € X),
is a vector ultrametric on X.

It is clear that the cones given in Example [1.3|are normal and the cone in |3 of the same example
is also unital (see, e.g., [2]).

Example 1.5. Consider the Euclidean space R? with the lexicographical order < (i.e., (a,b) =< (a’, V)
if a <a ora=a and b <V]). Then, it is clear that P = {x € R? : z = 0} is not normal. For any
nonempty set X equipped with the mapping

sty ={ o 17

where u € P is a fixed element, we obtain a non-normal and unital vector ultrametric space. In fact,
(a,b) < |(a,b)|(1,1), for every (a,b) € R2.
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2. Main theorem

We recall that a correspondence ¢ on a set {2, denoted by ¢ : 2 — (), assigns to each w in ) a
(nonempty) subset ¢(w) of Q. For any subset C' of € and correspondence ¢ : C' — €, an element
w € C is said to be a fixed point if w € p(w).

By a convergent sequence (x,)°2; in vector ultrametric space (X, d,P), we mean that there
exists an element € X such that p(d(z,,x)) — 0 as n — oo. It is not difficult to see that for any
unital-normal vector ultrametric space (X, d, P), the vector ultrametric d is jointly continuous, i.e,
if x, — x and y,, — y, then d(z,,y,) — d(z,y).

We also say that a subset G' of (X,d,P) is compact if every sequence in G has a convergent
subsequence in G. In the following by ¢ : X — ¢(X) we mean that ¢ is a correspondence with
compact values.

Theorem 2.1. Let (X,d,P) be a spherically complete unital-normal vector ultrametric space and
©: X = c(X). If for every x,y € X, v £y, and p € p(x) there exists q € p(y) such that

p(d(p, q)) < max{p(d(z,p)), p(d(z,y)), p(d(y,q))}, (2.1)

then there exists g € X such that g € v(g).

Proof . Let
I'= {B(a,p) | ac X? YRS 90<a>}a
where B(, ) = B(a;d(a,p)). Consider the partial order Con I' defined by

Blap) E Bg M Bg S Blap):

where a,b € X, p € p(a), and q € ¢(b). If I is any chain in I', then the spherically completeness of
X implies that the intersection €2 of elements of I'" is nonempty. Choose ¢ € Q and B, ,) € I'. If
& € B.q), where ¢ € ¢(c) and satisfies (2.1)) then

pld(x,c)) < p(d(c,q)) < max{p(d(c, a)), p(d(a, p)), p(d(p, q))},
and since p(d(c,a)) < p(d(a,p)) (because of ¢ € B, ,)), we get
pld(z, c)) < max{p(d(a,p)), p(d(p, )} (2:2)

We claim that p(d(z,c)) < p(d(a,p)). If p(d(p,q)) < p(d(a,p)), then the inequality is clear. If,
otherwise p(d(p,q)) > p(d(a,p)), then from ([2.2]) we obtain

p(d(x,c)) < p(d(p, q)).
From it follows that
p(d(z, c)) < max{p(d(a,p)), p(d(a,c)), p(d(c,q))},

and hence
pld(x,c)) < max{p(d(a,p)), p(d(c,q))}-
Now, if p(d(a,p)) < p(d(c, q)), then

p(d(c, q)) < max{p(d(c,a), p(d(a,p)), p(d(p,q))},
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that is,
pld(c,q)) < p(d(p, q)),

and so from (2.1]) we get the contradiction p(d(p, q)) < p(d(p,q)). Therefore
pld(z,c)) < p(d(a,p)),

and because B(,,) = B(c;d(a,p)), it implies that
p(d(z,a)) < p(d(a,p)).

That is, z € B(,), and consequently B.q) € B(qyp). Now,

inf p(d(c,q)) = p(d(c,q)),

qep(c)

for some ¢ € ¢(c) (because of and As-condition). If p(d(c,q)) = 0, then ¢ € p(c). Otherwise,
By, is an upper bound for the chain I". Therefore, by Zorn’s lemma I' admits a maximal element
Bg.w), where g € X and w € ¢(g). We show that g € ¢(g). Suppose on the contrary that g ¢ ¢(g).
Then, by (2.1)), setting z = g and y = p = w € ¢(g), there exists s € p(w) such that

p(d(s, w)) <max{p(d(g, w)), p(d(w, s))}
and therefore
pld(s,w)) < p(d(g,w)). (2.3)
On the other hand, from the maximality of By .) and that w € By, we have

Byw) € Buw,s) = B(g; d(w, 5)),

and so

pld(w,g) < pld(w, s)),
which contradicts ([2.3]). O

The following corollaries obtain immediately from preceding theorem. We suppose that (X, d, P),
v, and ¢ are as given in the previous theorem.

Corollary 2.2. If for every z,y € X,  # y, and p € ¢(x) there exists ¢ € p(y) such that
pld(p, q)) < pld(z,y)),

then there exists g € X such that g € p(g).

Corollary 2.3. If for every z,y € X, z # y, and p € p(z) there exists ¢ € p(y) such that

p(d(p, q)) < max{p(d(z,p)), p(d(z,y)), p(d(y,q))},

then ¢ has a fixed point.

Corollary 2.4. If for every =,y € X,  # y, and p € ¢(x) there exists ¢ € ¢(y) such that
pld(p,q)) < pld(z,y)),

then ¢ has a fixed point.

As seen, the last corollary generalizes Theorem 1 in [I1].
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