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Abstract

We introduce variational inequality problems on Hilbert C∗-modules and we prove several existence
results for variational inequalities defined on closed convex sets. Then relation between variational
inequalities, C∗-valued metric projection and fixed point theory on Hilbert C∗-modules is studied.
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1. Introduction and preliminaries

The theory of variational inequalities is an important domain of pure and applied mathematics,
introduced in early sixties, by Stampacchia and Hartman [17]. It developed rapidly because of
its applications in physics, economics and engineering sciences. A classical variational inequality
problem, is to find a vector u∗ ∈ K such that

〈v − u∗, T (u∗)〉 ≥ 0, ∀ v ∈ K

where K ⊆ Rn is nonempty, closed and convex set and T is a mapping from Rn into itself. Later,
variational inequality expanded to Hilbert and Banach spaces. In real Banach spaces, variational
inequality problem is defined similarly, but in this case T is a mapping from K to dual of a Banach
space. In complex Banach spaces case, it turns to find u∗ ∈ K such that

Re 〈v − u∗, T (u∗)〉 ≥ 0, ∀ v ∈ K.

So far, a large number of existence conditions have been established. The books [7] and [1] provide
a suitable introduction to variational inequality and its applications. For another generalizations of
variational inequalities see for example [12],[13].
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Here we study variational inequalities on Hilbert C∗-modules. Since in Hilbert C∗-modules inner
product and functionals take their values in a C∗-algebra (instead of schalers), variational inequalities
on Hilbert C∗-modules is more general and more complicated. Hilbert C∗-modules contains both
Hilbert spaces and C∗-algebras. So our definition of variational inequalities not only generalize the
old one on Hilbert spaces, but also begins a new way to define a special kind of variational inequalities
on C∗ algebras.

In section 2 of this paper, we recall some definitions and preliminaries about C∗-algebras and
Hilbert C∗-modules that we need in the sequel. In section 3 we give some existence theorems for
variational inequalities on Hilbert C∗-modules. Also relation between variational inequalities, C∗-
valued metric projection and fixed point theory is studied.

2. preliminaries

A C∗-algebra A, is an involutive Banach algebra such that for all x ∈ A ,‖ x∗x ‖A=‖ x ‖2A. An
element x in C∗-algebra A is called positive if x is selfadjoint and sp(x) ⊆ R+. We write x ≥ 0 if x
is a positive element and denote by A+ the set of all positive elements of A. By Theorem 4.2.2 [5],
A+ is a pointed, closed and convex cone i.e. A+ is closed and

(i) λA+ ⊆ A+ (λ ∈ R+),

(ii) A+ + A+ ⊆ A+,

(iii) A+
⋂

(−A+) = {0}.

So if we define ≤ on Asa ,the set of self adjoint elements of A, by:

x ≤ y ⇔ y − x ∈ A+,

then Asa is a partially ordered set.
For positive element a, there exists unique positive element b, denoted by a

1
2 , such that b2 = a.

It is well known that if a, b are positive elements of A, then the inequality a ≤ b implies that a
1
2 ≤ b

1
2

but the converse holds only in abelian C∗-algebras.
For any nonunital C∗-algebra A we set Ã the unitization of A. The map

A→ Ã, a 7−→ (a, 0)

is an embedding, and we can identify A as an ideal of Ã. For more details about C∗-algebras we refer
to [5] and [10].

Let A be a C∗-algebra. A pre-Hilbert A-module is a linear space E which is a right A-module
together with an A-valued mapping 〈·, ·〉 : E × E → A with following properties:

(i) 〈x, y + λz〉 = 〈x, y〉+ λ〈x, z〉 (x, y, z ∈ E, λ ∈ C),

(ii) 〈x, ya〉 = 〈x, y〉a (x, y ∈ E, a ∈ A),

(iii) 〈y, x〉 = 〈x, y〉∗ (x, y ∈ E),

(iv) 〈x, x〉 ≥ 0, 〈x, x〉 = 0 then x = 0.

The map 〈·, ·〉 is called the A-valued inner product on E. A pre-Hilbert A-module (E , 〈·, ·〉) is

called Hilbert A-module if it is complete with respect to the norm ‖ · ‖ = ‖ 〈·, ·〉 ‖
1
2
A. We always

suppose that the linear structure of A and E are compatible.
If we define | x |= 〈x, x〉 12 , then | · | is called A-valued ”norm”. This is not actually a norm, since

for example it need not satisfies | x + y |≤| x | + | y | (see [8]). More percisly triangle inequality is
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satisfied for A-valued norms if and only if 〈E,E〉 is commutative, where 〈E,E〉 = clspan{〈x, y〉|x, y ∈
E} (see [6]). A-valued norm is very important because of its applications also it may motivate us to
study the geometry in case the triangle inequality does not hold. [11] is an example for this point of
view.

If I is a closed right ideal of C∗-algebra A, then I is a Hilbert A-module if we define

〈a, b〉 = a∗b (a, b ∈ I).

In particular any C∗-algebra is a Hilbert module over itself. On the other hand any Hilbert module
over the field of complex numbers C is a Hilbert space. Thus Hilbert C∗-modules generalize both
C∗-algebras and Hilbert spaces.

There are some similarities between Hilbert C∗-modules and Hilbert spaces, but there is a funda-
mental way in which Hilbert C∗-modules differ from Hilbert spaces. To see this it is well known that
in a Hilbert space any closed and convex set has best approximation property, but this approximation
property is not valid in Hilbert C∗-modules.

More information about Hilbert C∗-modules can be found in [8] and [18].

3. Variational inequalities on Hilbert C∗-modules

Here we give the natural generalization of variational inequality on Hilbert C∗-modules. In this paper
A denotes a C∗-algebra and E is a Hilbert A-module unless otherwise indicated.

Definition 3.1. Let K be an arbitrary nonempty subset of E and T : K 7−→ E be a mapping.
(C∗-valued) variational inequality correspond to T and K, denoted by V I(T,K), is to find x0 ∈ K
such that:

Re 〈x− x0, T (x0)〉 ≥ 0 (x ∈ K).

Note that in general A is neither unital nor commutative. Before proving existence theorems we
recall the following classical notions and prove a lemma due to Minty [9].

Definition 3.2. Let K ⊆ E be a closed convex set and T : K 7−→ E be a mapping.

(i) We say T is monotone if

Re 〈x− y, T (x)− T (y)〉 ≥ 0 (x, y ∈ K).

(ii) We say T is strictly monotone if x 6= y implies that

Re 〈x− y, T (x)− T (y)〉 > 0 (x, y ∈ K).

(iii) We say T is pseudo monotone if Re 〈x− y, T (y)〉 ≥ 0 implies
Re 〈x− y, T (x)〉 ≥ 0 (x, y ∈ K).

Lemma 3.3. Let K ⊆ E be a closed convex set and T : K 7−→ E be a continuous and pseudo
monotone. Then an element x0 ∈ K is a solution of V I(T,K) if and only if

Re 〈x− x0, T (x)〉 ≥ 0 (x ∈ K). (3.1)
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Proof . Suppose that x0 ∈ K is solution of V I(T,K). Then for any x ∈ K, we have Re〈x −
x0, T (x0)〉 ≥ 0 and the pseudo monotonicity implies that Re 〈x− x0, T (x)〉 ≥ 0.

Conversely, suppose that an element x0 ∈ K satisfies (3.1). In this case, if x ∈ K, we define xt
by

xt = (1− t)x0 + tx, t ∈ (0, 1).

Insert xt in the (3.1), we have
Re 〈xt − x0, T (xt)〉 ≥ 0,

which implies
Re 〈t(xt − x0), T (xt)〉 ≥ 0

and finally
Re 〈x− x0, T (xt)〉 ≥ 0.

Let t→ 0. Using the continuity of T we have

Re 〈x− x0, T (x0)〉 ≥ 0,

i.e. x0 is a solution of V I(T,K). �

Remark 3.4. The solution of V I(T,K) need not be unique but when T is strictly monotone the
uniqueness property holds. In fact if x, x′ ∈ K be solutions of V I(T,K) then

Re〈y − x, T (x)〉 ≥ 0 (y ∈ K),

Re〈y − x′, T (x′)〉 ≥ 0 (y ∈ K).

So, setting y = x′ in first inequality and y = x in second, we have

Re〈x− x′, T (x)− T (x′)〉 ≤ 0.

Now strictly monotonicity implies that x = x′.

By definition of variational inequality, x0 ∈ K is solution of V I(T,K) if and only if

Re 〈x, T (x0)〉 ≥ Re 〈x0, T (x0)〉 (x ∈ K)

or equivalently
min
x∈K

Re 〈x, T (x0)〉 = Re 〈x0, T (x0)〉.

Since every compact subset of R attains its minimum, existence of solution for ordinary V I(T,K)
is easy, but in C∗ case we have only a partial order on Asa. So if we can find a C∗-algebra A such
that every compact subset of Asa attains its minimum or Asa being totally order, then we can extend
most of the theorems in ordinary variational case to Hilbert C∗-module on these C∗-algebras without
any extra assumption. In next proposition we show that the only C∗-algebra with one of the above
properties is C, the set of complex numbers.

Proposition 3.5. The following statements are equivalent:

(i) A = C.

(ii) Asa is totally ordered set.

(iii) Asa = A+
⋃

(−A+).
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(iv) Any compact subset of Asa attains its minimum.

Proof . i⇒ ii is obvious.
ii⇒ iii if x ∈ Asa then from (ii) x ≥ 0 or x ≤ 0, because 0 ∈ Asa. Thus Asa = A+

⋃
(−A+).

iii⇒ i Let x, y ∈ Asa. Then x−y ∈ Asa. Now from (iii), x ≥ y or y ≥ x. Thus Asa is totally order.(in
special case it has lattice structure.) But Sherman [16] proved that if Asa has lattice structure then
A should be commutative. So A = C0(X) for some locally compact Housdorff X. Now if a and b be
two disjoint element of X by Orysohn’s lemma there exists f, g ∈ C0(X) such that

f(a) = 1, f(b) = 0, g(a) = 0, g(b) = 1.

We know that order in C0(X)sa is as usual

f ≤ g ⇐⇒ f(x) ≤ g(x) (x ∈ X).

Hence f and g are two element of Asa that cant be compare. Thus X has only one element and
hence A = C0(X) = C.
i⇒ iv is obvious.
iv ⇒ ii Let x, y ∈ Asa. Then by (iv) {x, y} attains its minimum. So Asa is totally ordered. �

There is two approach to the existence theorems for variational inequalities. Some of them add
some restriction on underlying set K and the others on mapping T . We consider both of them, first
study the cases that underlying set K has some extera assumption.

Solutions of variational inequality on a set that is closed under scaler multiplication is character-
ized by its orthogonal complement.

Theorem 3.6. Let K ⊆ E be nonempty and closed under scaler multiplication and T : K → E be
a mapping. Then x0 is solution to V I(T,K) if and only if T (x0) ∈ K⊥.

Proof . If x0 be a solution of V I(T,K) and x ∈ K then Re〈x − x0, T (x0)〉 ≥ 0. Now 0,−x ∈ K
implies that Re〈x, T (x0)〉 = 0. On the other hand Re〈x, T (x0)〉 = Im〈−ix, T (x0)〉. Thus 〈x, T (x0)〉 =
0. Hence T (x0) ∈ K⊥. Conversely if T (x0) ∈ K⊥ then clearly Re〈x− x0, T (x0)〉 = 0 for every x ∈ K
and the proof is complete. �

Now we define special subsets of E which are useful for our purpose.

Definition 3.7. We say K ⊆ E has minimum in A if for any x ∈ E, Re〈x,K〉 attains its minimum
in Asa. i.e. for any x ∈ E there exists k ∈ K such that Re〈x, k〉 = miny∈K Re〈x, y〉.

The next proposition consists some ways to build new sets with minimum in A, from the old.
Proof of this proposition is straightforward, just proof of (iυ) is based on the fact that a, b, c ∈ A,
a ≤ b and c ∈ A+ commutes with both a, b then ac ≤ bc.

Proposition 3.8. If K ∈ E has minimum in A then

(i) co(K) has minimum in A.

(ii) K̄ has minimum in A.

(iii) If C ⊆ R attains its minimum then CK attains its minimum in A.

(iv) If A is commutative, ϕ(K) ⊆ A+ (ϕ ∈ E ′) and C ⊆ A+ attains its minimum then KC has
minimum in A.
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Remark 3.9. (i) If x ∈ E and K ⊆ R be compact then c̄o(xK) has minimum in A.

(ii) We Know by Krein-Milman theorem that for a compact convex set K, we have K = Co(E(K)),
where E(K) is the set of extreme points of K. So above proposition implies that K has
minimum in A if E(K) is so.

The fixed point theory plays important role in variational inequalities. Most of existence theorems
for variational inequalities is based on a fixed point theorem. In fact connection of variational
inequalities with fixed point theory is an important factor in its development. Next theorem is
Fundamental existence theorem for compact convex subsets. Corresponding theorem for locally
convex space can be found in [4]. Since in Hilbert C∗-modules, inner product takes its values in a
-not necessary unital or commutative C∗-algebra - and its order is partial, it needs many adaptations
so we give the exact proof. This proof is based on Fan-Kakutani fixed point theorem which asserts
that for compact convex subset K of locally convex space X and upper semicontinuous multivalued
mapping F : K → 2K whose values are nonempty closed convex subset of K, there exists x0 ∈ K
with x0 ∈ F (x0).

Theorem 3.10. Let K be a compact convex subset of E, which has minimum in A. If T : K → E
is continuous, then V I(T,K) has a solution.

Proof . Let F : K → 2K defined by

F (x) := {z ∈ K : Re 〈z, T (x)〉 = min
y∈K

Re 〈y, T (x)〉}.

The values of F are nonempty(by our hypothesis) closed convex subset of K and fixed points of F
are exactly solutions of V I(T,K). Thus if we show that F is upper semicontinuous, Fan-Kakutani
Theorem completes the proof. Let O be an open set in K and choose y0 ∈ K such that F (y0) ⊆ O
we have to find neighborhood N of y0 such that for all y ∈ N , F (y) ⊆ O. There exists an ε0 > 0
such that x ∈ K \O implies

Re 〈x, T (y0)〉 � ε0I + min
y∈K

Re 〈y, T (y0)〉. (3.2)

Or equivalently
ε0I + min

y∈K
Re 〈y, T (y0)〉 −Re 〈x, T (y0)〉 /∈ (Ã)+,

where I is unit of Ã. For otherwise there would be a sequence {xn} ⊆ K \O such that

Re 〈xn, T (y0)〉 ≤
1

n
I + min

y∈K
Re 〈y, T (y0)〉.

Compactness of K \ O implies that {xn} has cluster point and any cluster point of this sequence
would be in K \O. If x is the cluster point of {xn} then

min
y∈K

Re 〈y, T (y0)〉 −Re 〈x, T (y0)〉 ∈ (Ã)+.

But (Ã)+
⋂
A = A+. Thus

min
y∈K

Re 〈y, T (y0)〉 −Re 〈x, T (y0)〉 ∈ A+.
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Hence T (y0) attain its minimum in x. So x should be in F (y0) and this contradicts F (y0) ⊆ O.
Let ε := ε0

3
and define

Kε := {w ∈ E : εI � Re 〈x,w − T (y0)〉 � −εI ∀x ∈ K}.

Then Kε is an open subset of E and Continuity of T implies that N = T−1(Kε) is a neighborhood
of y0. Now let y ∈ N and w = T (y) then w ∈ Kε. For all z ∈ K\O by (3.2) we have

Re 〈z, w〉 � Re 〈z, T (y0)〉 −
ε0
3
I �

2ε0
3
I + min

y∈K
Re 〈y, w〉 � ε0

3
I + min

y∈K
Re 〈y, w〉.

Thus z /∈ F (y). In other word z ∈ K\O implies z is not in F (y) and hence for all y ∈ N , F (y) ⊆ O
and this proves the theorem. �

If E is reflexive and T is pseudo monotone, compactness condition in Theorem 3.10 can be reduced
to closed and bounded sets. Proof of this theorem is similar to the corresponding theorem in Hilbert
spaces, just it need some adaptation which is similar to above theorems so we omit it. The proof is
based on above theorem, Lemma 3.3, Banach-Alaoglu theorem and finite intersection property.

Theorem 3.11. (Theorem 1.4 in [7]) Let K be a closed bounded and convex subset of E that any
finite dimension subset of K has minimum in A. Let T : K → E be pseudo monotone and continuous.
If E is reflexive (as a Banach space) then V I(T,K) has a solution.

The following result is a necessary and sufficient condition for solvability of V I(T,K).

Corollary 3.12. Let T be as previous theorem and K be a closed convex subset of E such that
any finite dimension subset of K has minimum in A. A necessary and sufficient condition to exist
a solution to the V I(T,K) is that for a positive real number R there exists a solution xR of the
variational inequality V I(T,KR) where (KR = K

⋂
{v :‖ v ‖≤ R}), satisfies the inequality ‖

xR ‖< R.

In nonreflexive case we have the following theorem:

Theorem 3.13. Let K be a closed convex set in E that any compact subset of K attains its minimum
in A. Let T : K → E be a continuous mapping such that there exists a nonempty compact and convex
subset D in K such that, for every x ∈ K \D there exists z ∈ D such that 〈x− z, T (x)〉 > 0. Then
V I(T,K) has a solution.

Proof . For every u ∈ K Let

Du = {x ∈ D|Re〈u− x, T (x)〉 ≥ 0}.

Since T is continuous, Du is closed in D and any element of
⋂
u∈K Du is a solution of V I(T,K). Using

the finite intersection property of compact sets it is enough to prove that for arbitrary u1, ..., um ∈ K,⋂m
i=1Dui 6= ∅. So suppose that u1, ..., um ∈ K be arbitrary. Suppose that D̂ is close convex cone of

D
⋃
{u1, ..., um}. SinceD̂ is a non-empty compact and convex subset in K, it follows from 3.10 that

V I(T, D̂) has a solution, say x̂ ∈ D̂. In particular

Re〈ui − x̂, T (x̂)〉 ≥ 0, (i = 1, ...,m).
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It remains to be shown that x̂ ∈ D. But, if x̂ /∈ D, then it follows from assumption there exists
z ∈ D such that Re〈z− x̂, T (x̂)〉 ≤ 0 which is a contradiction. This contradiction proves theorem. �

Rest of this paper studies relation between variational inequalities and C∗-metric projection. As
mentioned before in any Hilbert space H, if K is a closed convex subset of H, then there exists a
unique element PK(x) of K such that

‖ x− PK(x) ‖= inf
y∈K
‖ x− y ‖ .

PK(x) is projection of x on K (or best approximation to x from K). The mapping PK : H → K is
called metric projection onto K. In Hilbert C∗-modules neither existence nor uniqueness of projection
holds.( For example see [2] for subspaces of Hilbert C(X)-module C(X)). But if we work with A-
valued norm | · |, then uniqueness condition is satisfied.

Proposition 3.14. Let K ⊆ E be a closed convex set. Let

PA
K(x) = {y0 ∈ K :| x− y0 |2= inf

y∈K
| x− y |2}.

then PA
K(x) has at most one element.

Proof . Recall that the triangle inequality does not hold in A-valued norms, but parallelogram law
satisfies. Let PA

K(x) be nonempty and y1, y2 ∈ PA
K(x). We set | x− y1 |= d. Then

0 ≤| y1 − y2 |2 =| (y1 − x) + (x− y2) |2

= 2 | y1 − x |2 +2 | x− y2 |2 −4 | x− 1

2
(y1 + y2) |2

≤ 2d2 + 2d2 − 4d2 = 0

Thus y1 = y2. �

Next proposition shows that C∗-metric projection PA
K(x) is characterized by a variational in-

equality. In fact if (E, 〈., .〉) is a Hilbert A-module, x ∈ E , K ⊆ E is closed convex and T : y 7→
y − x, (y ∈ K), then p = PA

K(x) if and only if p is the solution of V I(T,K).

Proposition 3.15. Let K be a closed convex subset of E and x ∈ E. The following statements are
equivalent:

(i) p ∈ K and Re 〈x− p , p− y〉 ≥ 0 (y ∈ K),

(ii) p = PA
K(x).

Moreover if K is closed submodule then p = PA
K(x) if and only if x− p ∈ K⊥.

Proof . (i)⇒ (ii) Let Re 〈x− p , p− y〉 ≥ 0 for all y ∈ K. Then

| x− p |2 − | x− y |2 =| x− p |2 − | (x− p) + (p− y) |2

= − | p− y |2 −2Re 〈x− p , p− y〉 ≤ 0.

Thus | x− p |2≤| x− y |2. So p = PA
K(x).

(ii)⇒ (i) For any (t ∈ (0, 1])

0 ≥| x− p |2 − | x− (ty − (1− t)p) |2

=| x− p |2 − | x− p− t(y − p) |2 −2tRe 〈x− p , p− y〉 − t2 | y − p |2 .
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Thus
2Re 〈x− p , p− y〉+ t | p |2≥ 0.

Now if t→ 0 then
Re 〈x− p , p− y〉 ≥ 0.

For the second pert of proof, let x ∈ E and y ∈ K. By first part of proof it is clear that left
hand side implies right hand. Conversely if p = PA

K(x) then Re〈x− p, p− y〉 ≥ 0. On the other hand
2p− y ∈ K so Re〈x− p, p− y〉 = −Re〈x− p, p− (2p− y)〉 ≤ 0. Thus Re〈x− p, p− y〉 = 0.

Re〈x− p, y〉 = Re〈x− p, y − p〉+Re〈x− p, p〉 = 0.

Also we have Im〈x− p, y〉 = −Re〈x− p, iy〉 = 0. which completes the proof. �

Next two propositions present equivalent statements for solvability of variational inequalities.

Proposition 3.16. Let K ⊆ E be closed convex and T : K → E be a mapping. Then x0 is a
solution of V I(T,K) if and only if x0 is a fixed point of the map PA

K(I − ρT ) : K → K.That is
x0 = PA

K(x0 − ρT (x0)), where ρ > 0 is constant.

Proof . Let x ∈ K and x0 be a solution of V I(T,K). Thus Re 〈x− x0, ρT (x0)〉 ≥ 0 or equvalentaly
Re 〈x− x0, x0 + ρT (x0)− x0〉 ≥ 0. Now above lemma implies that x0 = PA

K(x0 − ρT (x0)).
Conversely, if x0 = PA

K(x0 − ρT (x0)) then Re 〈x0 − x, x0 + ρT (x0) − x0〉 ≥ 0. Hence Re 〈x0 −
x, T (x0)〉 ≥ 0. That is x0 is a solution of V I(T,K). �

Let K be a closed convex subset of E. The operator TK : E → E defined by TK(z) = T (PA
K(z))+

z − PA
K(z) (z ∈ E) is called the normal operator associated with T and K (see [14]).

Proposition 3.17. An element x0 ∈ E is a solution to the equation TK(x0) = 0 if and only if
p = PA

K(x0) is a solution to the V I(T,K).

Proof . If TK(x0) = 0 then we have T (p) + x0 − p = 0. On the other hand by Proposition 3.15,

Re 〈x0 − p , p− x〉 ≥ 0 (x ∈ K).

So we have Re 〈x− p , T (p)〉 ≥ 0.
Conversely, if x ∈ K, x0 = p − T (p) and Re 〈x − p, T (p)〉 ≥ 0, we have T (p) = p − x0. So
Re 〈x − p, p − x0〉 ≥ 0. Which implies that p = PA

K(x0). Therefore we have TK(x0) = 0. and this
completes the proof. �

Next proposition shows that PA
K is strongly monotone and nonexpansive.

Proposition 3.18. If K is closed and convex subset of Hilbert C∗-module E then PA
K satisfies the

following properties:

(i) Re〈PA
K(x) − PA

K(x′), x− x′〉 ≥| PA
K(x)− PA

K(x′) |2 (x, x′ ∈ E).

(ii) ‖ PA
K(x)− PA

K(x′) ‖≤‖ x− x′ ‖ (x, x′ ∈ E).

Proof . Let x, x′ ∈ E and p = PA
K(x), p′ = PA

K(x′). Then by Proposition 3.15

Re〈p, y − p〉 ≥ Re〈x, y − p〉 (y ∈ K),

Re〈p′, y − p′〉 ≥ Rex′, y − p′〉 (y ∈ K).
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Now if we set y = p′ in first and y = p in second inequality and adding two inequalities we have

Re〈p− p′, p− p′〉 ≤ Re〈x′ − x, p′ − p〉.

So

|p− p′|2 = 〈p− p′, p− p′〉 = Re〈p− p′, p− p′〉
≤ Re〈x′ − x, p− p′〉 ≤ |〈x′ − x, p− p′〉|
≤ ‖x′ − x‖|y − y′|.

Thus
‖p− p′‖2 ≤ ‖x′ − x‖‖p− p′‖.

Which implies that ‖p− p′‖ ≤ ‖x′ − x‖. �

Remark 3.19. By proof of above proposition if 〈E,E〉 is commutative then

|PA
K(x)− PA

K(x′)| ≤ |x− x′| (x, x′ ∈ E).

We closed this paper with a theorem which is based on Above remark and Banach fixed point
theorem.

Theorem 3.20. Let 〈E,E〉 be commutative, K be a nonempty closed convex subset of E which
PA
K(x) is nonempty for all x ∈ E, and T : K → E an operator satisfying

Re〈T (u)− T (v), u− v〉 ≥ m|u− v|2 (u, v ∈ K),

|T (u)− T (v)| ≤M |u− v| (u, v ∈ K)

Where m and M are positive constants. Then there exists a unique solution for V I(T,K).

Proof . We show that if the number ρ is chosen properly U = PA
K(I − ρT ) is a contraction mapping

then Proposition 3.16 will proves the theorem

|U(u)− U(v)|2 ≤ |(I − ρT )(u)− (I − ρT )(v)|2

= 〈u− ρT (u)− v + ρT (v), u− ρT (u)− v + ρT (v)〉
= |u− v|2 − 2ρRe〈T (u)− T (v), u− v〉+ ρ2|T (u)− T (v)|2

≤ (1− 2ρm+ ρ2M2)|u− v|2.

Thus
‖ U(u)− U(v) ‖2≤ |1− 2ρm+ ρ2M2| ‖ u− v ‖2 .

Now if we suppose that 0 < ρ < 2m
M2 then U will be a contraction. Since we can always choose ρ so,

U can always be constructed so. Hence there exists a unique solution to the V I(T,K). �

More ever, proof of above theorem shows that, the solution of V I(T,K) can be obtained as the
limit of the sequence generated by the classical iterative process

un+1 = U(un+1) = PA
K(un − ρT (un))

whenever 0 < ρ < 2m
M2 .



Variational inequalities on Hilbert C∗-modules 7 (2016) No. 1, 155-165 165

References

[1] C. Baiocchi and A. capello, Variational and quasi-variational inequalities. Applications to free boundary problems,
J. wily and sons, New york, 1984.

[2] E.W. Cheney and D.E. Wulbert, The existence and unicity of best approximations, Math. scand. 24 (1969)
113–140.

[3] K. Fan, Some properties of convex sets to fixed point theorem, Math. Ann. 266 (1984) 519–537.
[4] R.B. Holmes, Geometric Functional Analysis and its Applications, Springer-Verlag, New york, 1975.
[5] R.Y. Kadison and J.R. Ringrose, Fundamental of Theory of Operator Algebras, Academic Press, 1983.
[6] R. Jiang, A note on the triangle inequality for the C∗-valued norm on a Hilbert C∗-module, MIA, Math. Inequal.

Appl. 16 (2013) 16–56.
[7] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalites and Their Applications, Academic

press, New york, 1980.
[8] E.C. Lance, Hilbert C∗-modules - a toolkit for operator algebraists, London Mathematical society Lecture Notes

series. V. 210, Cambridge university press, england, 1995.
[9] G.J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. 29 (1964) 341–346.
[10] G.J. Murphy, C∗-Algebras and Operator Theory, Academic Press,San Diego, 1983.
[11] A. Niknam and S. Shadkam, Chebyshev centers and approximation in pre-Hilbert C∗-modules, Bull. Iran. Math.

Soc. 36 (2010) 209–216.
[12] M.A. Noor, Generel variational inequalities, Appl. Math. lett. 1 (1988) 119–121.
[13] M.A. Noor, Extended general variational inequalities, Appl. Math. lett. 22 (2009) 182–186.
[14] S.M. Robinson, Nonsingularity and symmetry for linear normal maps, Math. Programming 62 (1993) 415–425.
[15] W. Rudin, Functional Analysis, second edition, McGraw-Hill, 1991.
[16] S. Sherman, Order in operator algebras, Amer. J. Math. 73 (1951) 227–232.
[17] Ph. Hartman and G. Stampacchia, On some nonlinear elliptic differentional functional equations, Acta math.

115 (1966) 271–310.
[18] N.E. Wegge-olsen, K-Theory and C∗-Algebras, Oxford Univ. Press, 1993.


	 Introduction and preliminaries
	 preliminaries
	 Variational inequalities on Hilbert C*-modules

