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Abstract

In this paper, we prove some coupled coincidence point theorems for mappings with the mixed
monotone property and obtain the uniqueness of this coincidence point. Then we providing useful
examples in Nash equilibrium.
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1. Introduction

The concept of cone metric space was introduced by Haung and Zhang [8], replacing the set of
real numbers by an ordered Banach space. Recently, many authors have considered fixed point
theory in cone metric spaces. Several fixed point theorems are proved for mapping satisfying in some
contractions in cone metric spaces [1, 7]. Du [5], showed that the fixed point results in the setting of
cone metric spaces in which linear contractive conditions appear, can be reduced to the respective
results in the metric setting, but recently, Du [6] and Jankovic, Kadelburg, Radenovic [9], proved
when, the cone metric spaces is non-normal, this is impossible. Altun, Damjanovic, Djoric [2] and
Shatanawi [12], proved severel fixed point and coupled coincidece fixed point theorems on partially
ordered cone metric spaces that are not necessarily normal.

First, we recall some definitions and theorems from [8, 4, 2, 10]. Then prove new theorems of
coupled coincidence point on ordered cone metric spaces and obtain several interesting corollaries.
In our theorems the cone metric space is not necessarily normal.
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Let E be a real Banach space and P be a subset of E. By θ we denote the zero element of E and
by IntP the interior of P. A subset P is called a cone if and only if:
(i) P is closed, nonempty and P 6= {θ},
(ii) a, b ∈ R, a, b > 0, x, y ∈ P =⇒ ax+ by ∈ P,
(iii) x ∈ P and −x ∈ P =⇒ x = θ.

A cone P is called solid if it contains its interior points, that is, if IntP 6= φ.
Given a cone P ⊂ E, we define a partial ordering � with respect to P by x � y if and only if

y − x ∈ P. We shall write x ≺ y if x � y and x 6= y, while x� y will stand for y − x ∈ IntP.
The cone P in a real Banach space E is called normal if there is a number K > 0 such that for

all x, y ∈ E,
θ � x � y implies ‖ x ‖� K ‖ y ‖ .

The least positive number K satisfying the above relation is called the normal constant of P. It is
clear that K ≥ 1.

In the following we always suppose that E is a Banach space, P is a cone in E with IntP 6= φ
and � is a partial ordering with respect to P.

Definition 1.1. ([8]) Let X be a nonempty set. Suppose the mapping d : X ×X −→ E. satisfies:
(i) θ ≺ d(x, y) for all x, y ∈ X with x 6= y and d(x, y) = θ if and only if x = y,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,
(iii) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 1.2. ([8]) Let (X, d) be a cone metric space. Let {xn} be a sequence in X and x ∈ X.
If for every c ∈ E with θ � c there is an N such that for all n > N, d(xn, x)� c, then {xn} is said
to be convergent to x and x is the limit of {xn}. We denote this by limn→∞ xn = x or xn −→ x as
n −→ ∞. If for every c ∈ E with θ � c there is an N such that for all n,m > N, d(xn, xm) � c,
then {xn} is called a Cauchy sequence in X. (X, d) is a complete cone metric space if every Cauchy
sequence is convergent.

Lemma 1.3. ([8]) Let (X, d) be a cone metric space, P be a normal cone and {xn} be a sequence
in X. Then:
(i) {xn} is convergent to x if and only if d(xn, x) −→ θ (n −→∞),
(ii) {xn} is a Cauchy sequence if and only if d(xn, xm) −→ θ (n,m −→∞).

Theorem 1.4. ([2]) Let (X,v) be a partially ordered set and suppose that there exists a cone metric
d in X such that the cone metric space (X, d) is complete. Let f : X −→ X be a continuous and
nondecreasing mapping w.r.t v . Suppose that the following two assertions hold:
(i) There exist α, β, γ ≥ 0 with α + 2β + 2γ < 1 such that

d(fx, fy) � αd(x, y) + β[d(x, fx) + d(y, fy)] + γ[d(x, fy) + d(y, fx)],

for all x, y ∈ X with y v x,
(ii) There exists x0 ∈ X such that x0 v fx0.
Then, f has a fixed point x∗ ∈ X.
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Theorem 1.5. ([2]) Let (X,v) be a partially ordered set and suppose that there exists a metric
d in X such that the cone metric space (X, d) is complete. Let f : X −→ X be a nondecreasing
mapping w.r.t v . Suppose that the following three assertions hold:
(i) There exist α, β, γ ≥ 0 with α + 2β + 2γ < 1 such that

d(fx, fy) � αd(x, y) + β[d(x, fx) + d(y, fy)] + γ[d(x, fy) + d(y, fx)],

for all x, y ∈ X with y v x,
(ii) There exists x0 ∈ X such that x0 v fx0,
(iii) If an increasing sequence {xn} converges to x in X, then xn v x for all n.
Then, f has a fixed point x∗ ∈ X.

Definition 1.6. ([4]) Let (X,v) be a partially ordered set and F : X × X −→ X. We say that
F has the mixed monotone property if F (x, y) is monotone nondecreasing in x and is monotone
nonincreasing in y, that is, for any x, y ∈ X,

x1, x2 ∈ X, x1 v x2 =⇒ F (x1, y) v F (x2, y)

and

y1, y2 ∈ X, y1 v y2 =⇒ F (x, y1) w F (x, y1).

Definition 1.7. ([4]) We call an element (x, y) ∈ X ×X a coupled fixed point of the mapping F if

F (x, y) = x, F (y, x) = y.

Definition 1.8. ([10]) Let (X,v) be a partially ordered set and F : X×X −→ X and g : X −→ X.
We say F has the mixed g-monotone property if F is monotone-g-non-decreasing in its first argument
and is monotone-g-non-increasing in its second argument, that is, for any x, y ∈ X,

x1, x2 ∈ X, g(x1) v g(x2) implies F (x1, y) v F (x2, y)

and
y1, y2 ∈ X, g(y1) v g(y2) implies F (x, y1) w F (x, y2).

Definition 1.9. ([10]) An element (x, y) ∈ X × X is called a coupled coincidence point of the
mappings F : X ×X −→ X and g : X −→ X, if

F (x, y) = g(x), F (y, x) = g(y).

Definition 1.10. ([10]) Let X, be a non-empty set and F : X × X −→ X and g : X −→ X. We
say F and g are commutative if

g(F (x, y)) = F (g(x), g(y)),

for all x, y ∈ X.

Now, we can mention the cases of game theory that is needed.

Definition 1.11. ([13]) A strategy profile (σ1, ..., σI) is a Nash equilibrium of G if for every i, and
every si ∈ Si,

ui(σi, σi) ≥ ui(si, σi).

Proposition 1.12. ([13])Nash equilibria exist in finite games.

Now, we prove our main theorems.
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2. The main results

Let (X,v) be a partially ordered set and d be a cone metric on X. We endow the product space
X ×X with the following partial order:
for (x, y), (u, v) ∈ X ×X; (u, v) v (x, y)⇐⇒ y v v, x w u.

Theorem 2.1. Let (X,v) be a partially ordered set and suppose there exists a cone metric d in X
such that the cone metric space (X, d) is complete. Suppose F : X ×X −→ X and g : X −→ X are
such that F (X×X) ⊆ g(X) and F has the mixed g-monotone property on X w.r.t v . Assume there
is a function ϕ : [0,+∞) −→ [0,+∞) with ϕ(t) ≤ t and limr→t+ ϕ(r) < t for each t > 0. Suppose
the following four assertions hold:
(i) g is continuous and commutes with F,
(ii) There exists α ≥ 0 with α < 1

8
such that

d(F (x, y), F (u, v)) � ϕ(α[d(g(x), g(u)) + d(g(x), F (x, y))

+d(g(u), F (u, v)) + d(g(x), F (u, v)) + d(g(u), F (x, y))]

for all x, y, u, v ∈ X with g(x) v g(u), g(y) w g(v),
(iii) There exist x0, y0 ∈ X such that g(x0) v F (x0, y0) and g(y0) w F (y0, x0),
(iv) F is continuous.
Then, there exist x∗, y∗ ∈ X such that g(x∗) = F (x∗, y∗) and g(y∗) = F (y∗, x∗).

Proof . Since F (X ×X) ⊆ g(X) and x0, y0 ∈ X, there exist x1, y1 ∈ X such that F (x0, y0) = g(x1)
and F (y0, x0) = g(y1). Again there exist x2, y2 ∈ X such that F (x1, y1) = g(x2) and F (y1, x1) = g(y2).
Continuing this process we can construct sequences {xn} and {yn} in X such that

F (xn, yn) = g(xn+1) and F (yn, xn) = g(yn+1),∀n ≥ 0. (2.1)

We show that
g(xn) v g(xn+1),∀n ≥ 0 (2.2)

and
g(yn) w g(yn+1),∀n ≥ 0. (2.3)

We shall use mathematical induction. Let n = 0. Since g(x0) v F (x0, y0) and g(y0) w F (y0, x0), and
as F (x0, y0) = g(x1) and F (y0, x0) = g(y1), we have g(x0) v g(x1) and g(y0) w g(y1). Thus (2.2) and
(2.3) hold for n = 0.
Suppose now that (2.2) and (2.3), hold for some n ≥ 0. Since g(xn) v g(xn+1) and g(yn+1) w g(yn)
and as F has the mixed g-monotone property, from (2.1) we obtain

g(xn+1) = F (xn, yn) v F (xn+1, yn) and g(yn+1) = F (yn, xn) w F (yn+1, xn). (2.4)

Also

g(xn+2) = F (xn+1, yn+1) w F (xn+1, yn) and g(yn+2) = F (yn+1, xn+1) v F (yn+1, xn). (2.5)

Now, from (2.4) and (2.5) we get

g(xn+1) v g(xn+2) and g(yn+1) w g(yn+2).
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Thus by mathematical induction we conclude that (2.2) and (2.3) hold for all n ≥ 0. Therefore,

g(x0) v g(x1) v · · · v g(xn) v g(xn+1) v · · · (2.6)

and
g(y0) w g(y1) w · · · w g(yn) w g(yn+1) w · · · . (2.7)

We let
δn = d(g(xn), g(xn+1)) + d(g(yn), g(yn+1)). (2.8)

Since g(xn−1) v g(xn) and g(yn−1) w g(yn), from (ii) and (2.1) and the triangle inequality we have

d(g(xn), g(xn+1)) = d(F (xn−1, yn−1), F (xn, yn))

� ϕ(α[d(g(xn−1), g(xn)) + d(g(xn−1), F (xn−1, yn−1)) + d(g(xn), F (xn, yn))

+ d(g(xn−1), F (xn, yn)) + d(g(xn), F (xn−1, yn−1))])

= ϕ(2αd(g(xn−1), g(xn)) + αd(g(xn), g(xn+1)) + αd(g(xn−1), g(xn+1)))

≤ 2αd(g(xn−1), g(xn)) + αd(g(xn), g(xn+1)) + αd(g(xn−1), g(xn+1))

� 2αd(g(xn−1), g(xn)) + αd(g(xn), g(xn+1)) + αd(g(xn−1), g(xn)) + αd(g(xn), g(xn+1)).

So,
(1− 2α)d(g(xn), g(xn+1)) � 3αd(g(xn−1), g(xn))

i.e,

d(g(xn), g(xn+1)) � (
3α

1− 2α
)d(g(xn−1), g(xn)), ∀n ≥ 1.

Using this relation repeatedly, we get

d(g(xn), g(xn+1)) � knd(g(x0), g(x1)),

where k = 3α
1−2α <

1
2
< 1.

i.e,
d(g(xn), g(xn+1)) � knd(g(x0), F (x0, y0)). (2.9)

Similarly,

d(g(yn), g(yn+1)) = d(F (yn, xn), F (yn−1, xn−1))

� ϕ(α[d(g(yn−1), g(yn)) + d(g(yn−1), F (yn−1, xn−1)) + d(g(yn), F (yn, xn))

+ d(g(yn−1), F (yn, xn)) + d(g(yn), F (yn−1, xn−1))])

= ϕ(2αd(g(yn−1), g(yn)) + αd(g(yn), g(yn+1)) + αd(g(yn−1), g(yn+1)))

≤ 2αd(g(yn−1), g(yn)) + αd(g(yn), g(yn+1)) + αd(g(yn−1), g(yn+1))

� 2αd(g(yn−1), g(yn)) + αd(g(yn), g(yn+1)) + αd(g(yn−1), g(yn)) + αd(g(yn), g(yn+1)).

So,
(1− 2α)d(g(yn), g(yn+1)) � 3αd(g(yn−1), g(yn))

i.e,

d(g(yn), g(yn+1)) � (
3α

1− 2α
)d(g(yn−1), g(yn)), ∀n ≥ 1.
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Using this relation repeatedly,we obtain

d(g(yn), g(yn+1)) � knd(g(y0), g(y1)),

where k = 3α
1−2α <

1
2
< 1.

i.e,
d(g(yn), g(yn+1)) � knd(g(y0), F (y0, x0)). (2.10)

Let m > n; from (2.9) we have

d(g(xm), g(xn)) � d(g(xm), g(xm−1)) + d(g(xm−1), g(xm−2)) + · · ·+ d(g(xn+1), g(xn))

� (km−1 + km−2 + · · ·+ kn)d(g(x0), F (x0, y0)) = (
kn − km

1− k
)d(g(x0), F (x0, y0))

� kn

1− k
d(g(x0), F (x0, y0)).

Therefore,

d(g(xm), g(xn)) � kn

1− k
d(g(x0), F (x0, y0)). (2.11)

Now, we show that {g(xn)}n>1 is a Cauchy sequence in (X.d). Let θ � c be arbitrary. Since c ∈ IntP,
there is a neighborhood of θ :

Nδ(θ) = {y ∈ E : ‖y‖ < δ}, δ > 0,

such that c+Nδ(θ) ⊆ IntP. Choose a natural number N1 such that

‖ − kN1

1− k
d(g(x0), F (x0, y0))‖ < δ.

Then − kn

1−kd(g(x0), F (x0, y0)) ∈ Nδ(θ) for all n > N1. Hence c− kn

1−kd(g(x0), F (x0, y0)) ∈ c+Nδ(θ) ⊆
IntP. Thus we have

kn

1− k
d(g(x0), F (x0, y0))� c, ∀n > N1.

Therefore, from (2.11) we get

d(g(xm), g(xn)) � kn

1− k
d(g(x0), F (x0, y0))� c, ∀m > n > N1.

So,
d(g(xm), g(xn))� c, ∀m > n > N1.

Hence we conclude that {g(xn)}n>1 is a Cauchy sequence in (X, d). Similarly, we can verify that
{g(yn)}n>1 is also a Cauchy sequence in (X, d). Since (X, d) is a complete cone metric space, there
exist x∗, y∗ ∈ X such that g(xn) −→ x∗ as n −→ ∞ and g(ym) −→ y∗ as m −→ ∞. Now, from the
continuity of g,

lim
n→∞

g(g(xn)) = g( lim
n→∞

g(xn)) = g(x∗), lim
n→∞

g(g(yn)) = g( lim
n→∞

g(yn)) = g(y∗). (2.12)

From (2.1) and the commutativity of F and g,

g(g(xn+1)) = g(F (xn, yn)) = F (g(xn), g(yn)), (2.13)
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g(g(yn+1)) = g(F (yn, xn)) = F (g(yn), g(xn)). (2.14)

From (2.12), (2.13), (2.14), the continuity of F and g and the commutativity of F and g we have

g(x∗) = limn→∞ g(g(xn+1)) = limn→∞(F (g(xn), g(yn)))

= F ( lim
n→∞

g(xn), lim
n→∞

g(yn)) = F (x∗, y∗),

and

g(y∗) = limn→∞ g(g(yn+1)) = limn→∞(F (g(yn), g(xn)))

= F ( lim
n→∞

g(yn), lim
n→∞

g(xn)) = F (y∗, x∗).

Thus we proved that g(x∗) = F (x∗, y∗) and g(y∗) = F (y∗, x∗). �
If we use the conditions (iv), (v) instead of the condition (iv) in Theorem 2.1 we have the following

result:

Theorem 2.2. Let (X,v) be a partially ordered set and suppose there exists a cone metric d in X
such that the cone metric space (X, d) is complete. Suppose F : X ×X −→ X and g : X −→ X are
such that F (X×X) ⊆ g(X) and F has the mixed g-monotone property on X w.r.t v . Assume there
is a function ϕ : [0,+∞) −→ [0,+∞) with ϕ(t) ≤ t and limr→t+ ϕ(r) < t for each t > 0. Suppose
that the following five assertions hold:
(i) g is continuous and commutes with F,
(ii) There exists α ≥ 0 with α < 1

8
such that

d(F (x, y), F (u, v)) � ϕ(α[d(g(x), g(u)) + d(g(x), F (x, y))

+ d(g(u), F (u, v)) + d(g(x), F (u, v)) + d(g(u), F (x, y))]

for all x, y, u, v ∈ X for which g(x) v g(u), g(y) w g(v),
(iii) there exist x0, y0 ∈ X such that g(x0) v F (x0, y0) and g(y0) w F (y0, x0),
(iv) if a non-decreasing sequence {xn} −→ x, then xn v x for all n,
(v) if a non-increasing sequence {yn} −→ y, then yn w y for all n.
Then, there exist x∗, y∗ ∈ X such that g(x∗) = F (x∗, y∗) and g(y∗) = F (y∗, x∗).

Proof . Following the proof of the Theorem 2.1 we only have to show g(x∗) = F (x∗, y∗) and g(y∗) =
F (y∗, x∗). Let θ � c. Since {g(xn)}n>1 −→ x∗ and {g(yn)}n>1 −→ y∗, there exist n1 ∈ N, n2 ∈ N
such that for all n > n1 and m > n2, we have:

d(g(xn), x∗)� c

3
, d(g(ym), y∗)� c

3
.

Taking n ∈ N, n >Max{n1, n2} and using g(xn) v x∗, we get:

d(F (x∗, y∗), g(x∗)) � d(F (x∗, y∗), g(g(xn+1))) + d(g(g(xn+1)), g(x∗))

= d(F (x∗, y∗), F (g(xn), g(yn)) + d(g(g(xn+1)), g(x∗))

� ϕ(α[d(g(g(xn)), g(x∗)) + d(F (x∗, y∗), g(x∗)) + d(g(g(xn)), F (g(xn), g(yn))

+d(g(x∗), F (g(xn), g(yn)) + d(g(g(xn)), F (x∗, y∗))]) + d(g(g(xn+1)), g(x∗))

≤ α[d(g(g(xn)), g(x∗)) + d(F (x∗, y∗), g(x∗)) + d(g(g(xn)), F (g(xn), g(yn))

+d(g(x∗), F (g(xn), g(yn)) + d(g(g(xn)), F (x∗, y∗))]) + d(g(g(xn+1)), g(x∗)).
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Taking n→∞, we have

d(F (x∗, y∗), g(x∗)) � 2αd(g(x∗), F (x∗, y∗)).

By the condition (ii), we have

d(F (x∗, y∗), g(x∗)) � 1

4
d(F (x∗, y∗), g(x∗)).

Hence,
3

4
d(F (x∗, y∗), g(x∗)) � θ.

Therefore −d(F (x∗, y∗), g(x∗)) ∈ P and so, as d(F (x∗, y∗), g(x∗)) ∈ P, we have

d(F (x∗, y∗), g(x∗)) = θ.

Hence F (x∗, y∗) = g(x∗). Similarly, we can show that F (y∗, x∗) = g(y∗).
� Now we shall prove the existence and uniqueness theorem for a coupled common fixed point. Note
that if (X,v) is a partially ordered sets, then we endow the product S×S with the following partial
order:
∀(x, y), (u, v) ∈ X ×X, (x, y) v (u, v)⇐⇒ x v u, y w v.

Theorem 2.3. In addition to the hypotheses of Theorems 2.1, 2.2 suppose that for every (x, y), (u, v) ∈
X×X there exists a (z1, z2) ∈ X×X such that (F (z1, z2), F (z2, z1)) is comparable to (F (x, y), F (y, x))
and (F (u, v), F (v, u)). Then F and g have a unique coupled common fixed point, that is, there exists
a unique (x∗, y∗) ∈ X ×X, such that

x∗ = g(x∗) = F (x∗, y∗), y∗ = g(y∗) = F (y∗, x∗).

Proof . From Theorems 2.1 and 2.2 the set of coupled coincidences is non-empty. We shall show that
if (x∗, y∗) and (x, y) are coupled coincidence points, then g(x) = g(x∗) and g(y) = g(y∗). By assump-
tion there is (z1, z2) ∈ X×X such that (F (z1, z2), F (z2, z1)) is comparable with (F (x∗, y∗), F (y∗, x∗))
and (F (x, y), F (y, x)). Put u0 = z1, v0 = z2, then as in the proof of the Theorem 2.1, we can induc-
tively define sequences {g(un)} and {g(vn)} such that

g(un+1) = F (un, vn), g(vn+1) = F (vn, un).

Further, set x0 = x∗, y0 = y∗, x0 = x, y0 = y and, on the same way define the sequences {g(x∗n)}, {g(y∗n)}
and {g(xn)}, {g(yn)}. Then it is easy to show that

g(x∗n) = F (x∗, y∗), g(y∗n) = F (y∗, x∗), g(xn) = F (x, y), g(yn) = F (y, x)∀n ∈ N.

Since (F (x∗, y∗), F (y∗, x∗)) = (g(x∗1), g(y∗1)) = (g(x∗), g(y∗)) and (F (z1, z2), F (z2, z1)) = (g(u1), g(v1))
are comparable, it follows that g(x∗) v g(u1) and g(y∗) w g(v1). It is easy to show that (g(x∗), g(y∗))
and (g(un), g(vn)) are comparable, that is, g(x∗) v g(un) and g(y∗) w g(vn) for all n ≥ 1. Thus, for
each n ≥ 1, we have

d(g(x∗), g(un+1)) = d(F (x∗, y∗), F (un, vn)

� ϕ(α[d(g(x∗), g(un)) + d(F (x∗, y∗), g(x∗)) + d(g(un), F (un, vn))

+ d(g(x∗), F (un, vn)) + d(g(un), F (x∗, y∗))])

≤ α[d(g(x∗), g(un)) + d(F (x∗, y∗), g(x∗)) + d(g(un), F (un, vn))

+ d(g(x∗), F (un, vn)) + d(g(un), F (x∗, y∗))]).
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Hence,
lim
n→∞

d(g(x∗), g(un+1)) ≤ lim
n→∞

3αd(g(x∗), g(un)) ≤ lim
n→∞

αd(g(x∗), g(un)).

Continuing this process, we get

lim
n→∞

d(g(x∗), g(un+1)) ≤ lim
n→∞

αnd(g(x∗), g(un)) = 0.

Thus
lim
n→∞

d(g(x∗), g(un+1)) = 0. (2.15)

Similarly,
lim
n→∞

d(g(y∗), g(vn+1)) = 0. (2.16)

Also, we can prove that

lim
n→∞

d(g(x), g(un+1)) = 0, lim
n→∞

d(g(y), g(vn+1)) = 0. (2.17)

By the triangle inequality, (2.15), (2.16) and (2.17)
d(g(x∗), g(x)) � d(g(x∗), g(un+1)) + d(g(x), g(un+1)) −→ 0 as n −→∞,
d(g(y∗), g(y)) � d(g(y∗), g(vn+1)) + d(g(y), g(vn+1)) −→ 0 as n −→∞.
Thus,

g(x) = g(x∗), g(y) = g(y∗). (2.18)

Since g(x∗) = F (x∗, y∗) and g(y∗) = F (y∗, x∗), by the commutativity of F and g we have

g(g(x∗)) = g(F (x∗, y∗)) = F (g(x∗), g(y∗)) and g(g(y∗)) = g(F (y∗, x∗)) = F (g(y∗), g(x∗)). (2.19)

Denote g(x∗) = X∗, g(y∗) = Y ∗. Then, from (2.19)

g(X∗) = F (X∗, Y ∗), g(Y ∗) = F (Y ∗, X∗). (2.20)

Thus, (X∗, Y ∗) is a coupled coincidence point. Thus from (2.18) with x = X∗ and y = Y ∗ it follows
that g(X∗) = g(x∗) and g(Y ∗) = g(y∗), that is,

X∗ = g(X∗), Y ∗ = g(Y ∗). (2.21)

From (2.20) and (2.21),

X∗ = g(X∗) = F (X∗, Y ∗), Y ∗ = g(Y ∗) = F (Y ∗, X∗).

Therefore (X∗, Y ∗) is a coupled common fixed point of F and g.
To prove the uniqueness, assume that (X∗1 , Y

∗
1 ) is another coupled fixed point. Then by (2.18), we

have
X∗1 = g(X∗1 ) = g(X∗) = X∗, Y ∗1 = g(Y ∗1 ) = g(Y ∗) = Y ∗.

�

Corollary 2.4. Let (X,v) be a partially ordered set and suppose there exists a cone metric d in
X such that the cone metric space (X, d) is complete. Suppose F : X × X −→ X is a contin-
uous mapping having the mixed monotone property on X w.r.t v . Assume there is a function
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ϕ : [0,+∞) −→ [0,+∞) with ϕ(t) ≤ t and limr→t+ ϕ(r) < t for each t > 0. Suppose that the follow-
ing two assertions hold:
(i) There exists α ≥ 0 with α < 1

8
such that

d(F (x, y), F (u, v)) � ϕ(α[d(x, u) + d(x, F (x, y)) + d(u, F (u, v)) + d(x, F (u, v)) + d(u, F (x, y))]

for all x, y, u, v ∈ X for which x v u, y w v, (i.e for all (u, v) v (x, y).)
(ii) There exist x0, y0 ∈ X such that x0 v F (x0, y0) and y0 w F (y0, x0). Then, there exist x∗, y∗ ∈ X
such that x∗ = F (x∗, y∗) and y∗ = F (y∗, x∗). Furthermore, if x0, y0 are comparable, then x∗ = y∗,
that is x∗ = F (x∗, x∗).

Proof . Following the proof of the Theorem 2.1 with g = I, (the identity mapping), we only have
to show that x = F (x∗, x∗). Let us suppose that x0 v y0. We shall show that

xn v yn,∀n ≥ 0, (2.22)

where xn = F (xn−1, yn−1), yn = F (yn−1, xn−1);n ∈ N. Suppose that (2.22) holds for some fixed n ≥ 0.
Then, by the mixed monotone property of F,

xn+1 = F (xn, yn) v F (yn, xn) = yn+1.

Thus, (2.22) holds. From (2.22) and (i) we have

d(F (xn, yn), F (yn, xn)) � ϕ(α[d(xn, yn) + d(xn, F (xn, yn)) + d(yn, F (yn, xn))

+ d(xn, F (yn, xn)) + d(yn, F (xn, yn))]

= ϕ(α[d(xn, yn) + d(xn, xn+1) + d(yn, yn+1) + d(xn, yn+1) + d(yn, xn+1)]

� α[d(xn, yn) + d(xn, xn+1) + d(yn, yn+1) + d(xn, yn+1) + d(yn, xn+1)].

Now, by the triangle inequality,

d(x∗, y∗) � d(x∗, xn+1) + d(xn+1, yn+1) + d(yn+1, y
∗)

= d(F (xn, yn), F (yn, xn)) + d(x∗, xn+1) + d(yn+1, y
∗)

� α[d(xn, yn) + d(xn, xn+1) + d(yn, yn+1) + d(xn, yn+1) + d(yn, xn+1)]

+ d(x∗, xn+1) + d(yn+1, y
∗).

Since limn→∞ xn = x∗ and limn→∞ yn = y∗, we get by taking the limit as n→∞,

d(x∗, y∗) � 3αd(x∗, y∗) � 3

8
d(x∗, y∗).

i.e,
5

8
d(x∗, y∗) � θ.

Therefore −d(x∗, y∗) ∈ P and so, as d(x∗, y∗) ∈ P, we have d(x∗, y∗) = θ. Hence x∗ = y∗, that is
x∗ = F (x∗, y∗). �

Remark 2.5. If we use the conditions (iv), (v) from the Theorem 2.2 instead of the continuity of F
in Corollary 2.4 then we obtain the results of Corollary 2.4.
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Corollary 2.6. Let (X,v) be a partially ordered set and suppose there exists a cone metric d in X
such that the cone metric space (X, d) is complete. Suppose F : X ×X −→ X and g : X −→ X are
such that F (X ×X) ⊆ g(X) and F has the mixed g-monotone property on X w.r.t v . Suppose that
the following four assertions hold:
(i) g is continuous and commutes with F,
(ii) There exists α ≥ 0 with α < 1

8
such that

d(F (x, y), F (u, v)) � α[d(g(x), g(u)) + d(g(x), F (x, y)) + d(g(u), F (u, v))

+ d(g(x), F (u, v)) + d(g(u), F (x, y))]

for all x, y, u, v ∈ X with g(x) v g(u), g(y) w g(v),
(iii) There exist x0, y0 ∈ X such that g(x0) v F (x0, y0) and g(y0) w F (y0, x0),
(iv) F is continuous.
Then, there exist x∗, y∗ ∈ X such that g(x∗) = F (x∗, y∗) and g(y∗) = F (y∗, x∗). Furthermore, if the
conditions of the Theorem 2.3 is satisfied, then F and g have a unique coupled common fixed point,
that is, there exists a unique (x∗, y∗) ∈ X ×X, such that

x∗ = g(x∗) = F (x∗, y∗), y∗ = g(y∗) = F (y∗, x∗).

Proof . Taking ϕ(t) = t in Theorems 2.1 and 2.3, we obtain Corollary 2.6. �

Remark 2.7. If we use the conditions (iv), (v) from Theorem 2.2 instead of the condition (iv) in
Corollary 2.6 then we have the conclusious of Corollary 2.6.

Corollary 2.8. Let (X,v) be a partially ordered set and suppose there exists a cone metric d in
X such that the cone metric space (X, d) is complete. Suppose F : X × X −→ X be a continuous
mapping having the mixed monotone property on X w.r.t v . Suppose that the following two assertions
hold:
(i) There exists α ≥ 0 with α < 1

8
such that

d(F (x, y), F (u, v)) � α[d(x, u) + d(x, F (x, y)) + d(u, F (u, v)) + d(x, F (u, v)) + d(u, F (x, y))]

for all x, y, u, v ∈ X for which x v u, y w v,
(ii) There exist x0, y0 ∈ X such that x0 v F (x0, y0) and y0 w F (y0, x0).
Then, there exist x∗, y∗ ∈ X such that x∗ = F (x∗, y∗) and y∗ = F (y∗, x∗). Furthermore, if x0, y0 are
comparable, then x∗ = y∗, that is x∗ = F (x∗, x∗).

Proof . Taking ϕ(t) = t in Corollary 2.4, the result follows. �

Remark 2.9. If we use the conditions (iv), (v) from Theorem 2.2 instead of the continuity of F in
Corollary 2.8 then we obtain the results of Corollary 2.8.

Now, we give two examples in game theory.

Example 2.10. This game has three Nash equilibria (U,L), (D,R) and (
1

2
U +

1

2
D,

1

2
L+

1

2
R) with

payoffs (5, 1), (1, 5) and (
5

2
,
5

2
).

L R
U 5,1 0,0
D 4,4 1,5

In fact, these Nash equilibrias are three fixed points of function and the number of fixed point are
not unique.
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Example 2.11. Bernheim in [3] shows that this game is a unique Nash equilibrium (F,B).
A B C D

E 0,7 2,5 7,0 0,1
F 5,2 3,3 5,2 0,1
G 7,0 2,5 0,7 0,1
H 0,0 0,-2 0,0 10,-1

In fact this Nash equilibrium is the unique fixed point of function.
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