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Abstract

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the
certain condition and we show that this classification holds for the special cases semi-symmetric and
locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ)·S =
0, where S is the Ricci tensor.
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1. Introduction

The notion of almost paracontact manifolds (respectively, almost paracontact Riemannian manifolds)
as analogue of almost contact manifolds (respectively, almost contact Riemannian manifolds) was
introduced by Sato in [7, 8]. Remarkable that an almost contact manifold is always odd dimensional
but an almost paracontact manifold could be even dimensional as well. Then special classes of almost
paracontact manifolds such as para Sasakian manifolds and semi-symmetric manifolds are studied
by many authors (see [1, 2, 4]).

In [6], Perrone studied the contact Riemannian manifolds satisfying the conditions R(X, ξ).R = 0
for any X, and l = −φ2 where l = R(·, ξ)ξ and R(X, ξ) acts on R as a derivation. In this paper we
consider the paracontact Riemannian manifolds satisfying these conditions and obtain new results
for this class of manifolds. The results of this paper are the paracontact analogues of the contact
results proved in [6]. Since the semi-symmetric contact manifolds satisfying the condition l = −φ2

is a class of these manifolds, then we have the same results for this class. Also, since the notation of
semi-symmetric spaces is a direct generalization of locally symmetric, then the results of this paper
hold for the locally symmetric spaces.
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2. Paracontact metric structures

Let M be a (2m+ 1)-dimensional differentiable manifold and let φ be a (1, 1)-tensor field, ξ a vector
field and η a 1-form on M . Then (φ, ξ, η) is called an almost paracontact structure on M if

φ2 = I − η ⊗ ξ, (2.1)

η(ξ) = 1, φξ = 0,

where I denotes the identity transformation. Moreover, the tensor φ induces an almost paracomplex
structure on the distribution D = kerη, that is, the eigendistributions D+, D− corresponding to the
eigenvalues 1, −1 of φ respectively, have equal dimension n ([9],[10]).

If a 2n + 1-dimensional almost paracontact manifold M with an almost paracontact structure
(φ, ξ, η) admits a pseudo-Riemannian metric g of signature (n+ 1, n) such that

g(φX, φY ) = −g(X, Y ) + η(X)η(Y ), (2.2)

or equivalently,
g(φX, Y ) = −g(X,φY ), g(X, ξ) = η(X), (2.3)

for any X, Y ∈ TM , then we say that M is an almost paracontact metric manifold. For a (2n +
1)-dimensional manifold M with an almost paracontact metric structure (φ, ξ, η, g) one can also
construct a local orthonormal basis. Let U be coordinate neighborhood on M and X1 be a unit
vector field on U orthogonal to ξ. Then φX1 is a vector field orthogonal to both X1 and ξ, and
|φX1|2 = −1. Now choose a unit vector field X2 orthogonal to ξ, X1 and φX1. Then φX2 is also a
vector field orthogonal to ξ, X1, φX1, and X2 and |φX2|2 = −1. Proceeding in this way we obtain a
local orthonormal basis (Xi, φXi, ξ), (i = 1, . . . , n) called a φ-basis. Indicating by £ and R, the Lie
differentiation operator and the curvature tensor of M2n+1 respectively, we define

h =
1

2
£ξφ, l = R(., ξ)ξ, τ = £ξg.

The (1, 1)- type tensors h and l are symmetric and satisfy

hξ = 0, lξ = 0, hφ = −φh, (2.4)

and, we can easily calculate the following formulas for a paracontact metric manifold M2n+1:

∇Xξ = −φX + φhX, (2.5)

∇ξh = −φ+ φh2 − φl, (2.6)

l = −φlφ+ 2(h2 − φ2), (2.7)

∇ξφ = 0, (2.8)

where ∇ denotes the Riemannian connection of the Riemannian metric g.
If the Reeb vector field ξ is Killing, that is, τ = 0 or, equivalently h = 0, then the para- contact

metric manifold M2n+1 is called a K-paracontact manifold. If a paracontact metric manifold M
is normal, i.e., the tensor Nφ := [φ, φ] − 2dη ⊗ ξ vanishes identically, then M is called a para
Sasakian manifold. Equivalently, a paracontact metric manifold is para Sasakian if and only if
RXY ξ = −(η(Y )X − η(X)Y ). Any para Sasakian manifold is K-paracontact and in dimension 3 the
converse also holds (see [5] for more details).
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Lemma 2.1. Let (M2n+1, ξ, η, φ, g) be a paracontact metric manifold. Then the following equalities
hold

τ(X, Y ) = −2g(φX, hY ), τ(ξ, .) = 0, τ(X, Y ) = τ(Y,X),

τ(φX, Y ) = τ(X,φY ), τ(φX, φY ) = τ(X, Y ), (∇ξτ)(ξ, .) = 0,

(∇ξτ)(X, Y ) = −2g(φX, (∇ξh)Y ), (∇ξτ)(φX, φY ) = (∇ξτ)(X, Y ),

for any X, Y ∈ TM .

Proof . We only prove τ(X, Y ) = −2g(φX, hY ). Using the definition of τ(X, Y ) we have

τ(X, Y ) = £ξg(X, Y )− g(£ξX, Y )− g(X,£ξY ).

Applying ∇g = 0 and £ξ = ∇ξX −∇Xξ, the last equation reduces to

τ(X, Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ).

Setting (2.5) in the above relation we have

τ(X, Y ) = g(−φX + φhX, Y ) + g(X,−φY + φhY ).

From hφ = −φh we get the assertion. Similarity we can prove the another equalities. �

Proposition 2.2. On a paracontact metric manifold, the following conditions are equivalent

(i) ∇ξh = 0, (ii) ∇ξτ = 0, (iii) ∇ξl = 0.

Proof . (i) ⇒ (ii) Since ∇ξh = 0, then using Lemma 2.1 we deduce that (∇ξτ)(X, Y ) =
−2g(φX, (∇ξh)Y ) = 0.

(ii)⇒ (iii) Let ∇ξτ = 0. Then using Lemma 2.1 we obtain 2g(φX, (∇ξh)Y ) = 0. Replacing X
by φX in this equation we obtain g(φ2X, (∇ξh)Y ) = 0, which gives us

g(X, (∇ξh)Y )− η(X)g(ξ, (∇ξh)Y ) = 0.

But from (2.6) we derive that g(ξ, (∇ξh)Y ) = 0. Setting this in the above equation we deduce that
g(X, (∇ξh)Y ), which gives us ∇ξh = 0. Further effecting φ to (2.6) and using ηl = 0, we obtain

h2 − φ2 = l.

Differentiating the above equation with respect to ξ, we find that

∇ξl = ∇ξh
2 = ∇ξh.h+ h.∇ξh = 0.

(iii)⇒ (i) Let ∇ξl = 0, using (2.7) we get

∇ξh
2 = (∇ξh)h+ h(∇ξh) = 0.

Applying ∇ξ to the above equation we have

(∇ξ∇ξh)h+ 2(∇ξh)2 = 0.

Setting ∇ξ∇ξh = 0 in the above equation we deduce that ∇ξh = 0. �
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Proposition 2.3. Let (M2n+1, φ, ξ, η) be a paracontact Riemannian manifold. Then ∇ξτ = 0 if and
only if

K(ξ, e′)−K(ξ, e) = |e|2 − |e′|2 + |he′|2 − |he|2,

where K(ξ, .) is the sectional curvature and e , e′ tensor fields in D.

Proof . Relations (2.2), (2.4) and (2.6) yield

g(R(e, ξ)ξ, e) = g((∇ξh)e+ φe− φh2e, φe)
= g((∇ξh)e, φe) + g(φe, φe)− g(hφe, hφe)

= −1
2
(∇ξτ)(e, e)− |e|2 + |he|2.

Therefore

K(ξ, e) = g(R(e, ξ)ξ, e) = −1

2
(∇ξτ)(e, e)− |e|2 + |he|2. (2.9)

Similarly, we get

K(ξ, e′) = −1

2
(∇ξτ)(e′, e′)− |e′|2 + |he′|2. (2.10)

Now assume ∇ξτ = 0. From (2.9) and (2.10) we have

K(ξ, e′)−K(ξ, e) = |e|2 − |e′|2 + |he′|2 − |he|2.

Conversely, setting e′ = φe and using (2.10) we obtain

K(ξ, φe) =
1

2
(∇ξτ)(e, e)− |e|2 + |he|2. (2.11)

Summing (2.9) and (2.11) we deduce

(∇ξτ)(e, e) = K(ξ, φe)−K(ξ, e).

But according assumption we get K(ξ, φe)−K(ξ, e) = 0. Therefore ∇ξτ = 0. �

Lemma 2.4. In a paracontact Riemannian manifold M , the following conditions are equivalent

(i) l = κφ2,

(ii) ∇ξl = 0, h2 = (1 + κ)φ2,

(iii) K(ξ,X) = κ, ∀X ∈ D.

Proof . (i)⇒ (ii) Since l = κφ2, then using (2.8) we have ∇ξl = κ∇ξφ
2 = 0. Also setting l = κφ2

in (2.7) we deduce, h2 = (1 + κ)φ2.
(ii) ⇒ (iii) Let ∇ξl = 0 then according to Proposition 2.2 we have ∇ξh = 0. On the other hand,
using (2.6) we get

φl = −φ+ φh2.

Setting the last equation and h2 = (1 + k)φ2 in (2.7) we obtain l = κ. Therefore

K(X, ξ) =
g(R(X, ξ)ξ,X)

g(X,X)
=
g(lX,X)

g(X,X)
= κ.
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(iii)⇒ (i) Let K(ξ,X) = κ. Since X ∈ D, then we have, g(ξ,X) = 0. Therefore

κ = K(ξ,X) =
g(R(X, ξ)ξ,X)

g(X,X)
,

which gives us
g(R(X, ξ)ξ − κX,X) = 0.

From the above equation we get R(X, ξ)ξ = κX. Since X ∈ D, then we deduce X = φ2X. Therefore
we obtain lX = κφ2X for all X ∈ D. On the other hand we have lξ = 0 = κφ2ξ. Thus we deduce
that lX = κφ2X for all X ∈ TM . �

2.1. η-Einstein paracontact metric manifolds

Definition 2.5. A paracontact manifold M is said to be η-Einstein if its Ricci tensor S is of the
form

S(X, Y ) = ag(X, Y ) + bη(X)η(Y ), (2.12)

for any vector fields X and Y , where a, b are functions on M .

Proposition 2.6. Let (M2n+1, φ, ξ, η) be a paracontact metric manifold which satisfies the condition
η-Einstein. Then

a =
r

2n
+ 1− |τ |

2

8n
, b = − r

2n
+ (2n+ 1)(

|τ |2

8n
− 1), (2.13)

where r is the scalar curvature.

Proof . Let {ei, φei, ξ}ni=1 be a φ-basis of M . The Ricci tensor S and the scalar curvature r of M
are defined by

S(X, Y ) =
n∑
i=1

g(R(ei, X)Y, ei)−
n∑
i=1

g(R(φei, X)Y, φei) + g(R(ξ,X)Y, ξ),

where X, Y ∈ Γ(TM), and

r =
n∑
i=1

S(ei, ei)−
n∑
i=1

S(φei, φei) + S(ξ, ξ), (2.14)

respectively. Using (2.12) and g(φe, φe) = −g(e, e) in the above equation we obtain

r = 2nag(ei, ei) + ag(ξ, ξ) + bη(ξ)η(ξ) = (2n+ 1)a+ b. (2.15)

Also from (2.12) we get
S(ξ, ξ) = a+ b.

On the other hand, we have

S(ξ, ξ) = −2n+ |h|2 = −2n+
1

4
|τ |2 = 2n(

|τ |2

8n
− 1). (2.16)

Two above equations show that

a+ b = 2n(
|τ |2

8n
− 1). (2.17)

Using (2.15) and (2.17) we have the assertion. �
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Corollary 2.7. Let (M,φ, ξ, η) be a paracontact metric manifold η-Einstein of dimension three.
Then the curvature tensor has the form

R(X, Y )Z=(3(−1 +
|τ |2

8
)− r

2
)(g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ + η(Y )η(Z)X

−η(X)η(Z)Y ) + (
r

2
+ 2(1− |τ |

2

8
))(g(Y, Z)X − g(X,Z)Y ).

Proof . On a 3-dimensional pseudo-Riemannian manifold, since the conformal curvature tensor
vanishes identically, therefore the curvature tensor R takes the form

R(X, Y )Z=g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y

−r
2

((g(Y, Z)X − g(X,Z)Y )) (2.18)

where S(X, Y ) = g(QX, Y ). Using (2.12) we obtain

QX = aX + bη(X)ξ. (2.19)

Setting (2.12) and (2.19) in the relation (2.18) we deduce

R(X, Y )Z=(2a− r

2
)[g(Y, Z)X − g(X,Z)Y ] + b[g(Y, Z)η(X)ξ

−g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y ].

Thus according to Proposition 2.6 we have (2.18). �

Proposition 2.8. Let (M,φ, ξ, η) be a 3-dimensional paracontact Riemannian manifold, then

(∇ξτ)(X, Y )=−S(X, Y )− S(φX, φY ) + η(Y )S(X, ξ) + η(X)S(Y, ξ)

−η(X)η(Y )S(ξ, ξ), ∀X, Y ∈ Γ(TM).

Proof . Let {e, φe, ξ} is an arbitrary φ-basis. Using (2.9) and (2.11) we have

K(ξ, φe)−K(ξ, e) = (∇ξτ)(e, e).

From the above relation we get

S(φe, φe) + S(e, e) = −(∇ξτ)(e, e). (2.20)

Also we can deduce

S(φ(e+ e′), φ(e+ e′)) + S(e+ e′, e+ e′) = −(∇ξτ)(e+ e′, e+ e′),

for e and e′ in D. The above equations imply

S(φe, φe′) + S(e, e′) = −(∇ξτ)(e, e′). (2.21)

Since X, Y ∈ TM therefore φX, φY ∈ D. Putting e = φX, e′ = φY and φ2 = I − η ⊗ ξ in (2.21) we
get

S(φ2X,φ2Y ) + S(φX, φY ) = −(∇ξτ)(φX, φY ).

Setting φ2 = I − η ⊗ ξ in the above equation we get

S(X − η(X)ξ, Y − η(Y )ξ) + S(φX, φY ) = −(∇ξτ)(X, Y ).

This completes proof. �
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Proposition 2.9. In a 3-dimensional paracontact manifold M if we define the tensor S1 as S1 =
S − ag − bη ⊗ η, then the following identities hold:

|S1|2=2|σ|2 +
1

4
|∇ξτ |2, (2.22)

< S1,∇ξτ >=< S,∇ξτ >= −1

2
|∇ξτ |2, (2.23)

where σ = S(ξ, .)D and a = r
2

+ 1− |τ |
2

8
, b = − r

2
− 3 + 3

8
|τ |2.

Proof . Let {e, φe, ξ} be a φ-basis. If we put e′ = φe in (2.21), then we get

S(e, φe) = −1

2
(∇ξτ)(e, φe). (2.24)

Using (2.14) and (2.20) we have

r = S(e, e)− S(φe, φe) + S(ξ, ξ) = 2S(e, e) + S(ξ, ξ) + (∇ξτ)(e, e).

Therefore we deduce

S(e, e) =
r

2
+ 1− |τ |

2

8
− 1

2
(∇ξτ)(e, e). (2.25)

Again (2.20) and the above equation give us

S(φe, φe) = −r
2
− 1 +

|τ |2

8
− 1

2
(∇ξτ)(e, e). (2.26)

On the other hand, we can write

|S|2 = S(e, e)2 + S(φe, φe)2 + S(ξ, ξ)2 + 2S(e, φe)2 + S(ξ, e)2 + S(ξ, φe).

Setting (2.24), (2.25) and (2.26) in the above equation we have

|S|2 = 4(
|τ |2

8
− 1)2 +

1

2
(r + 2− |τ |

2

4
)2 +

1

4
|∇ξτ |2 + 2|σ|2. (2.27)

Using the formula of S1 and (2.12) it is easy to see that

|S1|2 = |S|2 − 4(
|τ |2

8
− 1)2 − 1

2
(r + 2− |τ |

2

4
)2. (2.28)

Replacing (2.27) in The last equation we get (2.22). For the proof of (2.23), we consider

< S1,∇ξτ >=< S,∇ξτ > −a < g,∇ξτ > −b < η ⊗ η,∇ξτ > .

Using (2.3) and g(φe, φe) = −g(e, e), the last equation reduces to

< S1,∇ξτ >=< S,∇ξτ > .

Applying Lemma (2.1), (2.20) and (2.24) in the above relation we get

< S,∇ξτ > =< S,∇ξτ > (e, e)+ < S,∇ξτ > (φe, e)

+ < S,∇ξτ > (e, φe)+ < S,∇ξτ > (φe, φe)

= ∇ξτ(e, e){S(e, e) + S(φe, φe)}+ 2S(e, φe)∇ξτ(e, φe)

= −1

2
< ∇ξτ,∇ξτ > .

This completes the proof. �
Two above propositions give us the following theorem:
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Theorem 2.10. Let M be a 3-dimensional paracontact Riemannian manifold. Then σ = S(ξ, ·)D =
0 if and only if the Ricci tensor is given by

S = −1

2
∇ξτ + (

r

2
+ 1− |τ |

2

8
)g + (−r

2
− 3 +

3

8
|τ |2)η ⊗ η.

From Theorem 2.10 we can conclude the following proposition.

Proposition 2.11. Let M be a 3-dimensional paracontact Riemannian manifold. If l = 0. Then
σ = 0 if and only if the Ricci tensor is given by

S =
r

2
(g − η ⊗ η). (2.29)

Proof . Let {e, φe, ξ} be an arbitrary φ-basis, and σ = 0. Thus according to Theorem 2.10 we have

S = −1

2
∇ξτ + (

r

2
+ 1− |τ |

2

8
)g + (−r

2
− 3 +

3

8
|τ |2)η ⊗ η. (2.30)

since l = 0, therefore
trl = S(ξ, ξ) = 0.

On the other hand, setting n = 1 in (2.16) we get

S(ξ, ξ) = 2(
|τ |2

8
− 1).

Two above equations gives us |τ |2 = 8. Also from l = 0 we have ∇ξl = 0. Thus according to
Proposition 2.10 we deduce ∇ξτ = 0. Replacing |τ |2 = 8 and ∇ξτ = 0 in (2.30) we obtain (2.29). �

Lemma 2.12. Let (M3, ξ, η, g) be a paracontact metric manifold with l = 0. If R(X, ξ)S = 0, then
σ = S(ξ, .)D = 0.

Proof . Let {e, φe, ξ} be a φ-basis, and σx 6= 0 in some point x. Also we suppose that e ∈ TxM be
a vector field with |e| = 1 such that σx(e) = S(ξ, e) = 0 and |σ| = σx(φ(e)) = S(ξ, φe) 6= 0. Setting
X = Z = e and y = ξ in Corollary 2.7 we get

R(e, ξ)e = S(ξ, e)e− S(e, e)ξ + η(e)Q(e)− g(e, e)Q(ξ)− r

2
(η(e)e− g(e, e)ξ).

Since g(e, e) = 1 and η(e) = 0, from the last relation we deduce

R(e, ξ)e = −S(e, e)ξ −Q(ξ) +
r

2
ξ.

On the other hand, according assumption since R(X, ξ)S = 0, thus we get

S(R(e, ξ)e, ξ) = 0.

From the last two equations we obtain

S(Q(ξ), ξ) = S(ξ, ξ){r
2
− S(e, e)}.

But, since trl = S(ξ, ξ) = 0 thus
S(Q(ξ), ξ) = 0. (2.31)
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Moreover, we have (sraeily)
Qξ = (α + β)ξ + σ(e)e+ σ(φe)φe.

Therefore
S(Qξ, ξ) = (α + β)S(ξ, ξ) + S(σ(e)e+ σ(φe)φe, ξ). (2.32)

Using (2.31), (2.32) and S(e, ξ) = 0 = S(ξ, ξ) we obtain

0 = S(|σ|φe, ξ) = |σ|2.

Therefore σ = 0. we have the assertion. �

Corollary 2.13. Let (M3, ξ, η, g) be a paracontact metric manifold satisfies in the condition l = 0
and R(X, ξ)S = 0. Then the Ricci tensor has the form

S =
r

2
(g − η ⊗ η). (2.33)

3. Semi-symmetric paracontact Riemannian manifold

A Riemannian manifold M is locally symmetric if its curvature tensor R satisfies ∇R = 0, where
∇ is Levi-Civita connection of the Riemannian metric, and a Riemannian manifold M is said to be
semi-symmetric if its curvature tensor R satisfies

R(X, Y )R = 0, ∀X, Y ∈ Γ(TM)

where R(X, Y ) acts on R as a derivation.

Proposition 3.1. Let (M2n+1, ξ, η, g) be a paracontact metric manifold with n > 1 satisfies in the
condition R(X, ξ)R = 0. If 0 6= l = κφ2, then M is para Sasakian manifold of constant curvature -1.

Proof . From R(X, Y )R = 0 we have

R(X, ξ)R(Y, Z)V −R(R(X, ξ)Y, Z)V −R(Y,R(X, ξ)Z)V

−R(Y, Z)R(X, ξ)V = 0, ∀Y, Z, V ∈ Γ(TM). (3.1)

Replacing Z = V = ξ in the above equation, we deduce

R(X, ξ)lY − lR(X, ξ)Y −R(Y, lX)ξ −R(Y, ξ)lX = 0. (3.2)

On the other hand, from (2.1) we get

lX = κφ2X = κ(X − η(X)ξ). (3.3)

Setting (3.3) in (3.2) gives us

R(X, Y )ξ +R(ξ, Y )X = κ{η(Y )X − 2η(X)Y + g(X, Y )ξ}.

Using the first Bianchi identity and then altering X and Y , we have

2R(Y,X)ξ +R(ξ, Y )X = κ{η(X)Y − 2η(Y )X + g(X, Y )ξ}.

Substracting two last equation we derive

R(X, Y )ξ = κ(η(Y )X − η(X)Y ).

Applying V = ξ in (3.1) and using the above relation we obtain

R(Y, Z)X = κ(g(X,Z)Y − g(X, Y )Z).

Since κ 6= 0 therefore we can deduce κ = const = −1. i.e M is para Sasakian. �
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Proposition 3.2. Let (M3, ξ, η, g) be a paracontact metric manifold with R(X, ξ)R = 0. If l = κφ2,
then M is either flat or of constant sectional curvature −1.

Proof . Let l = 0, thus setting Y = ξ in (2.18) we get

Q(X) = −r
2
η(X)ξ + η(X)Q(ξ) +

r

2
X. (3.4)

Replacing (2.33) and (3.4) in (2.18) we obtain

R(X, ξ)Z = −g(X, Y )Q(ξ) + η(X)η(Z)Q(ξ) = g(φX, φZ). (3.5)

Similarly we can obtain
R(ξ, Z)X = −g(φX, φZ). (3.6)

On the other hand, from the first identity of Bianchi, we have

R(X, ξ)Z +R(ξ, Z)X +R(Z,X)ξ = 0. (3.7)

From (3.5), (3.6) and (3.7) we get
R(Z,X)ξ = 0.

Therefore locally M3 is the product of a flat 2-dimensional manifold and 1-dimensional manifold of
negative constant curvature equal −4.
Now, if l 6= 0 then similar to the proof of Theorem 3.1 we can deduce M has constant curvature −1.
�

Definition 3.3. A para Sasakian manifold is said to be Einstein-para Sasakian if the Ricci tensor
S is of the form S(X, Y ) = λg(X, Y ), where λ is a constant.

Theorem 3.4. Let M be a (2n+ 1)-dimension paracontact Riemanniann manifold satisfying

R(X, ξ).S = 0 (n ≥ 2).

If
R(X, Y )ξ = κ{η(Y )X − η(X)Y }, (3.8)

then either M is locally as the product of a flat (n + 1)-dimensional manifold and n-dimensional
manifold of negative constant curvature -4 or M is a Einstein manifold.

Proof . If k = 0, then we have R(X, Y )ξ. Thus from Theorem 3.3 of [10] the first part of the
theorem is proved. Now let k 6= 0. The condition R(X, ξ).S = 0 gives us

S(R(X, ξ)Y, Z) = −S(Y,R(X, ξ)Z), ∀X, Y, Z ∈ Γ(TM).

Replacing Z = ξ in the above relation we get

S(R(X, ξ)Y, ξ) = −S(Y, lX). (3.9)

On the other hand, Since M is para Sasakian manifold thus we have

R(X, Y )ξ=−{η(Y )X − η(X)Y }, (3.10)
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Applying (3.10) we deduce

S(X, ξ) =
2n+1∑
i=1

g(R(ei, X)ξ, ei) = −2nη(X). (3.11)

From (3.9) and (3.11) we have
S(lX, Y ) = −2nη(R(X, ξ)Y ).

that is,
S(lX, Y ) = 2ng(lX, Y ).

Setting Y = ξ in (3.10) we get
lX = −X + η(X)ξ.

Two above equations give us
S(X, Y ) = −2ng(X, Y ).

Therefore S = −2ng. �
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