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Abstract

In this paper, we discuss about existence of solution for integro-differential system and then we solve
it by using the Petrov-Galerkin method. In the Petrov-Galerkin method choosing the trial and test
space is important, so we use Alpert multi-wavelet as basis functions for these spaces. Orthonormality
is one of the properties of Alpert multi-wavelet which helps us to reduce computations in the process
of discretizing and we drive a system of algebraic equations with small dimension which it leads
to approximate solution with high accuracy. We compare the results with similar works and it
guarantees the validity and applicability of this method.
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1. Introduction and preliminaries

Construction and applications of multi-wavelet have been explained in [2] such that these bases are or-
thonormal and also in [5, 9] the Petrov-Galerkin method has been used for solving integro-differential
equations and in [4, 8] some integro-differential equations have been solved by using semiorthogonal
spline wavelet. Some integro-differential system are solved in [1, 5] such that in [5] convergence of the
Petrov-Galerkin method has been discussed with some restrictions on degrees of polynomial basis,
but these restrictions removed in [9] and convergence is held for every degree of polynomial basis.
Existence of solution for integro-differential equations or system of integro-differential equations has
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not been discussed in the previous research articles, (see [11, 12, 13]). But we introduce a process for
proof of existence of solution. In [12] the Tau method has introduced an approximate solution of
integro-differential equations. In [6], six order compact finite difference method is given for solving
second order integro-differential equation with different boundary condition, also it solved a system
of integro-differential equation. This paper by proper choosing of test and trial space, the purposed
method leads to diagonal matrices, so we obtain a final system with less dimension and computation.
For validity and applicability the above proposed method we compare our results with[12, 13].

Consider the integro-differential equations system as follows:

m∑
q=0

[αq(t)u
q
1(t) + βq(t)u

q
2(t)]−

2∑
i=1

∫ 1

0

ki(t, s)ui(s)ds = f1(t), (1.1)

m∑
q=0

[γq(t)u
q
1(t) + δq(t)u

q
2(t)]−

2∑
i=1

∫ 1

0

ki+2(t, s)ui(s)ds = f2(t),

u1(0) = α1 , u1(1) = η1,

u2(0) = α2 , u2(1) = η2,

where q is differential order and fi(t) ∈ L2[0, 1], i = 1, 2 and

ki(t, s) ∈ L2[0, 1]2, i = 1, 2, 3, 4,

are known functions and the ui(t), i = 1, 2 are unknown functions which must be determined. For
discussing about existence of solution of equations system (1.1) in conditions of the Petrov-Galerkin
method we need operator form of equations system (1.1), so we suppose that X = L2 [0, 1], and
κi : X → X for i = 1, 2, 3, 4, then integral operators form are as follows

κi(uj) =

∫ 1

o

ki(t, s)uj(s)ds , i = 1, 2, 3, 4 , j = 1, 2 (1.2)

where κi for i = 1, 2, 3, 4, are linear compact operators. Also we assume that

Di : X → X , i = 1, 2, 3, 4,

are linear compact operators such that

D1(u1) =
m∑
q=0

αq(t)u
q
1(t), D2(u2) =

m∑
q=0

βq(t)u
q
2(t),

D3(u1) =
m∑
q=0

γq(t)u
q
1(t), D4(u2) =

m∑
q=0

δq(t)u
q
2(t),

without loos of generality, we can write equations system (1.1) in the following operator system:

u1 − (κ1u1 + κ2u2 −D1u1 −D2u2) = f1, (1.3)

u2 − (κ3u1 + κ4u2 −D3u1 −D4u2) = f2.
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2. Existence of solution

By considering the above mentioned operator system, we introduce operators κ and D in the following
form

κ =

(
κ1 κ2
κ3 κ4

)
, D =

(
D1 D2

D3 D4

)
with suppose κ̂i = κi − Di, we can write κ̂ = κ − D, such that κ̂ operator can be introduced by
κ̂ : L2[0, 1]2 → L2[0, 1]2, so from (1.3) and the above explanations we have,(
u1
u2

)
− κ̂

(
u1
u2

)
=

(
f1
f2

)
.

By choosing U =

(
u1
u2

)
and F =

(
f1
f2

)
the operator form of Eq. (1.3) is given by Eq. (2.1),

(I − κ̂)U = F. (2.1)

In the case of one dimensional in Eq. (2.1), if κ̂ is an compact operator and it does not have 1 as an
eigenvalue, so has a unique solution u ∈ X = L2[0, 1], (see [3, 5]). But for Eq. (2.1) in the case of
two-dimensional we must prove κ̂ is a compact operator and (I − κ̂) is invertible. So we suppose

{Un}n≥1 =

{
u1,n
u2,n

}
n≥1

, is a bounded sequence in L2[0, 1]2 with a suitable norm such as

‖Un‖ = max (‖u1,n‖ , ‖u2,n‖) , ‖x(t)‖2 =

(∫ 1

0

x(t)2dt

) 1
2

, (2.2)

so, {ui,n}n≥1 for i = 1, 2 are bounded sequences, on the other hand because κi and Di for i = 1, 2, 3, 4

are assumed linear compact operator in L2[0, 1] then κ̂is for i=1,2,3,4 are linear compact operator.
So, every one of the following sequences has a convergence subsequence in L2[0, 1],

{κ̂1u1,n}n≥1 , {κ̂2u2,n}n≥1 , {κ̂3u1,n}n≥1 , {κ̂4u2,n}n≥1, {κ̂1u1,n + κ̂2u2,n} and {κ̂3u1,n + κ̂4u2,n}, then

{κ̂Un}=
{
κ̂1u1,n + κ̂2u2,n
κ̂3u1,n + κ̂4u2,n

}
n≥1

,

has a convergence subsequence in L2[0, 1]2, so κ̂ is a linear compact operator. Also I − κ̂ oper-
ator introduce as,
I − κ̂ : L2[0, 1]2 → L2[0, 1]2,

where I2×2− κ̂=

(
I1×1 − κ̂1 −κ̂2
−κ̂3 I1×1 − κ̂4

)
and I2×2 is an identity two-dimensional operator and I1×1

is an identity one-dimensional operator, so similar to one dimensional in [5] and concept of eigenval-
ues for I − κ̂ we can rewrite (I2×2 − κ̂)U=λU, so(

1− λ1 − λ −λ2
−λ3 1− λ4 − λ

)(
u1
u2

)
= 0,

where λ is an eigenvalue of I − κ̂ and λis are eigenvalues of κ̂is for i = 1, 2, 3, 4. So we have
λ2 − (2− λ1 − λ4)λ + (1− λ1) (1− λ4)− λ2λ3 = 0 thus for obtaining λ 6= 0 for (I − κ̂) and invert-
ibility of the I − κ̂ operator ,we assume there is a relation among eigenvalues of κis operators for
i = 1, 2, 3, 4 as follows:

(1− λ1) (1− λ4)− λ2λ3 6= 0, (2.3)

thus (I − κ̂) is invertible, so Eq. (2.1) and equations system (1.1) have a unique solution as u ∈
L2[0, 1]2.
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3. Multi-wavelet Bases

We have introduced the multi-wavelet bases constructed by Alpert in [2] for L2[0, 1]. The interval
[0, 1] is divided to 2m subinterval where f(x) has degree less than k in all subintervals. The set Skm
is introduced as:

Skm =

{
f |f =

{
Polynomial with degree < k, n

2m
< t < n+1

2m
, 0 ≤ n ≤ 2m − 1

0, Otherwise

}
.

It is obvious that dim(Skm) = 2mk and Sk0 ⊂ Sk1 ⊂ · · · . Assume that Rk
m is the complement of Skm in

Skm+1, then
Skm+1 = Skm ⊕Rk

m, Skm⊥Rk
m.

If we assume that h1, h2, . . . , hk : R→ R are the orthogonal basis functions for Rk
0 , then

Rk
0 ⊂ Rk

1 ⊂ · · · .

In [2] by orthonormalizing h1, h2, . . . , hk, a basis for space Rk
m is obtained as:

Rk
m = linear span

{
hnj,m| hnj,m(t) = 2

m
2 hj(2

mt− n),

j = 1, 2, . . . , k, n = 0, 1, . . . , 2m − 1
}
.

On the other hand,
Skm = Skm−1 ⊕Rk

m−1 = Sk0 ⊕m−1p=0 Rk
p,

for example if {p1, p2, . . . , pk} are the Legendre orthonormal polynomials on [0, 1], then

Skm = span Bk

= span
{
{p1, . . . , pk}

∪{hnj,p| p = 0, 1, . . . ,m− 1, n = 0, 1, . . . , (2p − 1), j = 1, 2, . . . , k}
}

= span{bj}2
mk
j=1 .

By choosing Sk = ∪∞m=0S
k
m then Sk = L2[0, 1] and Bk is known as the multi-wavelet basis of order k

for L2[0, 1] (see [2, 9]).
Now we choose trial and test spaces by the multi-wavelet bases and introduce B matrices:

If  Xn = S2
0 = span{1,

√
3(2t− 1)},

Yn = S1
1 = span

{
1,

{
−1, 0 < t < 1

2

1, 1
2
< t < 1

}
,

then

B2×2 =

(
1 0

0
√
3
2

)
.

If 
Xn = S4

0 = span{1,
√

3(2t− 1),
√

5(6t2 − 6t+ 1),
√

7(20t3 − 30t2 + 12t− 1)},

Yn = S2
1 = span

{
1,
√

3(2t− 1),

{ √
3(−4t+ 1), 0 < t < 1

2√
3(4t− 3), 1

2
< t < 1

,

{
6t− 1, 0 < t < 1

2

6t− 5, 1
2
< t < 1

}
,
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then

B4×4 =


1 0

1 √
15
4

0
√
7
4

 .

If Xn = S6
0 and Yn = S3

1 then

B6×6 =



1 0
1

1
3
√
7

8 √
3
2

0
√
55
64


.

Xn = S2
1 = span

{
1,
√

3(2t− 1),

{ √
3(−4t+ 1), 0 < t < 1

2√
3(4t− 3), 1

2
< t < 1

,

{
6t− 1, 0 < t < 1

2

6t− 5, 1
2
< t < 1

}
,

Yn = S1
2 = span

{
1,

{
−1, 0 < t < 1

2

1, 1
2
< t < 1

,

{
−
√

2, 0 < t < 1
4√

2, 1
4
< t < 1

2

,

{
−
√

2, 1
2
< t < 3

4√
2, 3

4
< t < 1

}
,

B4×4 =


1 0 0 0

0
√
3
2

√
6
8

√
6
8

0 0 −
√
6
4

√
6
4

0 −1
2

3
√
2

8
3
√
2

8

 ,

where BT .B = D, which D is diagonal matrix with the positive elements. Thus (BT )−1 = B D−1

exists. To know how to prove this part which the matrices are n× n diagonal see [9].
Also if Xn = S4

1 and Yn = S2
2 , then the matrix B8×8 is the following form:

B8×8 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0
√
15
4

0

√
15
2

16
0

√
15
2

16
0

0 0 0
√
7
4

−5
√

21
2

32

√
7
2

32

5
√

21
2

32

√
7
2

32

0 0 − 2√
85

0
3
√

5
34

2
−7
√

3
170

4

3
√

5
34

2

7
√

3
170

4

0 0 0 − 2√
21
− 5

8
√
14

√
21
2

8
5

8
√
14

√
21
2

8

0 0

√
21
85

4
0 −3

√
105
34

16
−
√

14
85
−3
√

105
34

16

√
14
85

0 0 0
5
√

5
21

4

23
√

5
14

32

√
105
2

32
−23
√

5
14

32

√
105
2

32


.

4. Conditions of the Petrov-Galerkin Method

In the case of one dimensional integro-differential equations, conditions of the Petrov-Galerkin and
their theorems have been proved in [9], we try to expand them for a system of integro-differential
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equations. So for X = L2[0, 1] we consider an operator form of integro-differential equations as
follows

(I − κ̂)u = f. (4.1)

In this way, three conditions of the Petrov-Galerkin method are:

1. X is Banach space and κ̂ is a compact linear operator it doesn’t have 1 as an eigenvalue.

2. For n ∈ N , Xn ⊂ X, Yn ⊂ X∗, dimXn = dimYn <∞, i.e. Xn, Yn are finite dimensional subsets
of X,X∗ sequentially.

3. H-Condition: For each x ∈ X and y ∈ X∗, there exists xn ∈ Xn and yn ∈ Yn such that
‖xn − x‖ → 0 and ‖yn − y‖ → 0 as n→ +∞.

The Petrov-Galerkin method for equation (4.1) is a numerical method for finding un ∈ Xn such that:

< un − κ̂n, yn >=< f, yn >, ∀yn ∈ Yn. (4.2)

Definition 4.1. For linear operator Pn : X → Xn, given x ∈ X, an element Pnx ∈ Xn is called a
generalized best approximation from Xn to x with respect to Yn if it satisfies the equation

< x− Pnx, yn >= 0, ∀yn ∈ Yn,

similarly, given y ∈ X∗, an element P ′ny ∈ Yn is called a generalized best approximation from Yn to
y with respect to Xn if it satisfies the equation

< xn, y − P ′ny >= 0, ∀xn ∈ Xn.

Above three conditions with Definition 4.1 illustrate that in the Petrov-Galerkin method, we are
looking for the generalized best approximation x ∈ X with respect to Yn in [5]. Also Eq. (4.2) is
equivalent to

un − Pnκ̂un = f. (4.3)

This equation indicates that the Petrov-Galerkin method is a projection method. By assuming
X = L2[0, 1]2 in the case of two-dimensional and Eq. (2.1), and by considering definition of operator
κ̂, we show three conditions of the Petrov-Galerkin are held. Condition 1 is held because we proved
κ̂ is linear and compact operator. For invertibility we construct a condition on eigenvalues of κ̂ as
follows,

(1− λp1) (1− λq4) 6= λr2λ
f
3 , (4.4)

where λi’s are eigenvalues of κ̂i operators for i = 1, 2, 3, 4 and p, q, r and f are number of eigenvalue
of κ̂1, κ̂2, κ̂3 and κ̂4 respectively.

For condition 2 we choose: X2 = L2[0, 1]2 , X2
n =

(
Skm
Skm

)
, and also X∗2 = L2[0, 1]2 (see

[7]), and Y 2
n =

(
Sk
′

m′

Sk
′

m′

)
⊂ X∗2n, where Skm, S

k′

m′ have been introduced in [9]. Of course Xn in [9] is

one dimensional but in this paper X2
n is two dimensional, also according to Skm in [9] dim X2

n =
2(2mk) =dim Y 2

n ≺ ∞, so condition 2 is satisfied. By considering X2 = L2[0, 1]2 and X∗2 = L2[0, 1]2

condition 3 holds.
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5. Solution of the Integro-Differential Equations System

Again we consider to the equations system (1.1):

we suppose u1(t), u2(t) are linear combination of a basis in X = L2[0, 1], so Un =

(
u1,n
u2,n

)
is a linear

combination of a basis in X2
n ⊆ L2[0, 1]2. Regarding to Definition (1) we can write,

Pn : X2 = L2[0, 1]2 =

 ∪∞m=0S
k
m

∪∞m=0S
k
m

 → X2
n =

(
Skm
Skm

)
,

Pn(u(t)) = Un(t) =

( ∑n
i=1 c1ibi(t)∑n
j=1 c2jbj(t)

)
, ∀u(t) ∈ X.

In other words {bi(t), bj(t)} is a base for subspace X2
n from L2[0, 1]2. Pn is an operator which

explained completely in [9]. By substituting u1(t), u2(t) in system (1.1) we have∑m
q=0

∑n
i=1 αq(t)c1ib

q
i (t) + βq(t)c2ib

q
i (t)−

∫ 1

0

[∑n
i,j=1 k1ijbi(t)bj(s)

]
[
∑n

k=1 c1kbk(s)] ds

−
∫ 1

0

[∑n
i,j=1 k2ijbi(t)bj(s)

]
[
∑n

k=1 c2kbk(s)] ds =
∑n

i=1 f1i(t)bi(t),∑m
q=0

∑n
i=1 γq(t)c1ib

q
i (t) + δq(t)c2ib

q
i (t)−

∫ 1

0

[∑n
i,j=1 k3ijbi(t)bj(s)

]
[
∑n

k=1 c1kbk(s)] ds

−
∫ 1

0

[∑n
i,j=1 k4ijbi(t)bj(s)

]
[
∑n

k=1 c2kbk(s)] ds =
∑n

i=1 f2i(t)bi(t).

We assume that

g1(t) =
m∑
q=0

αq(t)b
q
i (t), g2(t) =

m∑
q=0

βq(t)b
q
i (t), (5.1)

g3(t) =
m∑
q=0

γq(t)b
q
i (t), g4(t) =

m∑
q=0

δq(t)b
q
i (t),

with substituting (5.1) in last system we have

n∑
i=1

[c1ig1i(t) + c2ig2i(t)]−

[
n∑

i,j=1

k1ijbi(t)c1j +
n∑

i,j=1

k2ijbi(t)c2j

]
=

n∑
i=1

f1ibi(t),

n∑
i=1

[c1ig3i(t) + c2ig4i(t)]−

[
n∑

i,j=1

k3ijbi(t)c1j +
n∑

i,j=1

k4ijbi(t)c2j

]
=

n∑
i=1

f2ibi(t).

Now we project gij(t) , i = 1, 2, 3, 4 on Xn , so

n∑
i,j=1

[c1ig1ijbi(t) + c2ig2ijbi(t)]−

[
n∑

i,j=1

(k1ijc1j + k2ijc2j) bi(t)

]
=

n∑
i=1

f1ibi(t),

n∑
i,j=1

[c1ig3ijbi(t) + c2ig4ijbi(t)]−

[
n∑

i,j=1

(k3ijc1j + k4ijc2j) bi(t)

]
=

n∑
i=1

f2ibi(t). (5.2)
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According to the petrov-Galerkin method we multiply both sides of Eq. (5.2) in bases elements of
Yn (Yn is a dual space of Xn ) and from orthonormality of test and trial spaces Xn, Yn we have

n∑
i,j=1

c1ig1ij < bj(t), b
∗
p(t) > +

n∑
i,j=1

c2ig2ij < bj(t), b
∗
p(t) > −[

n∑
i,j=1

(k1ijc1j + k2ijc2j) < bj(t), b
∗
p(t) >

]
=

n∑
i=1

f1i < bj(t), b
∗
p(t) >,

n∑
i,j=1

c1ig3ij < bj(t), b
∗
p(t) > +

n∑
i,j=1

c2ig4ij < bj(t), b
∗
p(t) > −[

n∑
i,j=1

(k3ijc1j + k4ijc2j) < bj(t), b
∗
p(t) >

]
=

n∑
i=1

f2i < bj(t), b
∗
p(t) >,

where < bj(t), b
∗
p(t) >, are elements of the B matrix, so the inner product equal to 1 when j = p

and it’s 0 when j 6= p. So, we can write,
n∑

i,j=1

c1ig1ip +
n∑

i,j=1

c2ig2ip −

[
n∑

i,j=1

(k1pjc1j + k2pjc2j)

]
= f1p,

n∑
i,j=1

c1ig3ip +
n∑

i,j=1

c2ig4ip −

[
n∑

i,j=1

(k3pjc1j + k4pjc2j)

]
= f2p.

By using boundary conditions we have following system and P = 1, 2, ..., n, instead of two other
equations we apply boundary conditions, so

n∑
i=1

c1i (g1pi − k1ip) +
n∑
i=1

c2i (g2pi − k2ip) = f1p, (5.3)

n∑
i=1

bi(0)c1i = α1,
n∑
i=1

bi(1)c1i = η1,

n∑
i=1

c1i (g3pi − k3ip) +
n∑
i=1

c2i (g4pi − k4ip) = f2p,

n∑
i=1

bi(0)c2i = α2,
n∑
i=1

bi(1)c2i = η2.

where in the system of (5.3) we have

k1ij =

∫ 1

0

∫ 1

0

k1(t, s)bi(t)bj(s), k2ij =

∫ 1

0

∫ 1

0

k2(t, s)bi(t)bj(s),

k3ij =

∫ 1

0

∫ 1

0

k3(t, s)bi(t)bj(s), k4ij =

∫ 1

0

∫ 1

0

k4(t, s)bi(t)bj(s),

f1p =

∫ 1

0

f1(t)bp(t)dt, f2p =

∫ 1

0

f2(t)bp(t)dt.

Matric form of system (5.3) is the following form

Bn×n

(
gt1 − k1 gt2 − k2
gt3 − k3 gt4 − k4

)
Cn×1 = F.
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6. Application of proposed method

Here before solving systems we are going to show that condition (6) is held. To this end we have
chosen some kernels. By solving them it’s clear that condition (6) is held. (Other kernels are the
same.)

Example 6.1. In this example we solve

u
′′

1(t)− u′2(t)−
∫ 1

0

et+su1(s)ds−
∫ 1

0

(t+ s)u2(s)ds = 2 + et − 2et+1 − 2(
1

3
+
t

2
),

u
′

1 − u
′′

2 −
∫ 1

0

etsu1(s)ds−
∫ 1

0

(t+ s)2u2(s)ds = 1 +
et − 1

t2
+

2− 3et

t
− 2(

1

4
+

2t

3
+
t2

2
),

u1(0) = 0 , u1(1) = 1,

u2(0) = 0 , u2(1) = 2,

with exact solution of u1(t) = t, u2(t) = 2t. At first we show that condition (6) is held for these
kernels.

k1(u(s)) =

∫ 1

0

et+su(s)ds, k2(u(s)) =

∫ 1

0

(t+ s)u(s)ds,

k3(u(s)) =

∫ 1

0

etsu(s)ds, k4(u(s)) =

∫ 1

0

(t+ s)2u(s)ds,

eigenvalue for ki th kernel is kiu = λiu , 1 ≤ i ≤ 4, so for k1 kernel we have
k1u = λ1u , also∫ 1

0

et+su(s)ds = λ1u(t), (6.1)

et
∫ 1

0

esu(s)ds = λ1u(t),

by choosing a =
∫ 1

0
esu(s)ds, we have

u(t) =
a

λ1
et, (6.2)

and by substituting (6.2) in (6.1) eigenvalue for k1 is like this λ11 = e2−1
2

. Also for kernel k2 we can
write
k2u = λ2u, so∫ 1

0

(t+ s)u(s)ds = λ2u(t), (6.3)

we suppose
∫ 1

0
u(s)ds = a1,

∫ 1

0
su(s)ds = a2, so we have

a1t+ a2 = λ2u(t), (6.4)

and by substituting (6.4) in (6.3), we obtain
1
λ2

(
( t
2

+ 1
3
)a1 +

(
t+ 1

2

)
a2
)

= ta1 + a2,
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by reordering following relation and by knowing that {1, t} are independent and ais are not zero we
will reach the following system( (

1
2
− λ2

)
1

1
3

(
1
2
− λ2

) ) (
a1
a2

)
=

(
0
0

)
,

so eigenvalues for kernel κ2 are{
λ12 = 1

2
−
√
3
3
,

λ22 = 1
2

+
√
3
3
.

Also for kernel k3 we can write k3u(s) = λ3u(t). So,∫ 1

0

etsu(s)ds = λ3u(t) (6.5)

and according to following expansion

est = 1 + (st) +
(st)2

2
+ ...,

and by choosing ai=
ti−1

i-1

∫ 1

0
si−1u(s)ds, i=1, 2, 3, in Eq. (6.5) we obtain

u(t) =
a1 + ta2 + t2a3

λ3
(6.6)

by substituting (6.6) in (6.5) we have(
a1 + a2

2
+ a3

3
− a1λ3

)
+ t
(
a1
2

+ a2
3

+ a3
4
− λ3a2

)
+ t2

(
a1
6

+ a2
8

+ a3
10
− λ3a3

)
= 0.

Because {1, t, t2} are linearly independent so the last system will be (1− λ3) 1
2

1
3

1
2

(
1
3
− λ3

)
1
4

1
6

1
8

(
1
10
− λ3

)
  a1

a2
a3

 =

 0
0
0

 .

So eigenvalues for k3 will be produced as:
λ13 = 0.1.33628− i1.4803× 10−17,
λ23 = 0.0952323 + i2.36848× 10−16,
λ33 = 0.00181901− i2.36848× 10−16.

Also for kernel k4 we can write k4u(s)=λ4u(t). So,∫ 1

0
(t+ s)2u(s)ds=λ4u(t),∫ 1

0
u(s)ds+ t

∫ 1

0
su(s)ds+ t2

∫ 1

0
s2

2
u(s)ds = λ4u(t),

by choosing ai=
ti−1

i-1

∫ 1

0
si−1u(s)ds, i=1, 2, 3, we can write u(t)=a3+ta2+t2a1

λ4
, so

t2
(
1
3
a1 + 1

2
a2 + a3 − λ4a1

)
+ t
(
1
2
a1 + 2

3
a2 + a3 − λ4a2

)
+
(
1
3
a1 + 1

4
a2 + 1

3
a3 − λ4a3

)
= 0.

According to previous, eigenvalues for k4 are
λ14=1.433664 + i9.86865× 10−18,
λ24=1.106375 + i1.75898× 10−16,
λ34=0.00607153− i1.57898× 10−16.
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Table1. Numerical results for Example 6.1
error of u1(t) error of u2(t)

Xn = S4
0 Yn = S2

1 Xn = S4
0 Yn = S2

1

0 1.26276×10−17

0 1.66533×10−16

0 0
4.44089×10−16 0

0 0
0 0
0 0
0 0
0 0
0 2.22045×10−16

0 0

condition (6) is held for kernels ki, 1 ≤ i ≤ 4. By using system (5.3) for solving Example 6.1, the
absolute errors in some different points are shown in Table 1.

Example 6.2. In this example we solve and compare our method with system of integro-differential
equations which was solved in [12, 13]. Results are shown in Table 2. (also this example is solved
by the Tau method in [12] and Yousufouglu solved the same example with another method in [13].
Differences are in Table 3. Of course condition (6) is held as before.

u
′′

1(t) + u
′

2(t)−
∫ 1

0

−2tsu1(s)ds−
∫ 1

0

6tsu2(s)ds = 3t2 +
3t

10
+ 8,

u
′

1(t) + u
′′

2(t)− 3

∫ 1

0

(−2t− s2)u1(s)ds− 6

∫ 1

0

(2t+ s2)u2(s)ds = 21t+
4

5
,

u1(0) = 1 , u1(1) = 4, u2(0) = −1 , u2(1) = 2,

exact solutions are u1(t) = 3t2 + 1, u2(t) = t3 + 2t− 1. The absolute errors in some different points
are shown in Table 3.

Table 2. Numerical results for Example 6.2 by proposed method
error of u1(t) error of u2(t)

Xn = S4
0 , Yn = S2

1 Xn = S4
0 , Yn = S2

1

N = 4 N = 4
1.11022×10−16 1.11022×10−16

4.44089×10−16 2.22045×10−16

4.44089×10−16 2.22045×10−16

2.22045×10−16 0
4.44089×10−16 0
2.22045×10−16 0
4.44089×10−16 0

0 1.11022×10−16

4.44089×10−16 0
0 2.22045×10−16

0 0
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Table 3. Numerical results for Example 6.2 by [12, 13]
Eu1(t) Eu2(t) Eu1(t) Eu2(t)
in [12] in [12] in [13] in [13]
N = 10 N = 10

1.38237×10−13 8.41984×10−14 0 1.0000014305
1.12493×10−13 6.90537×10−14 0.0768043995 0.9970476627
9.05143×10−14 5.68951×10−14 0.2955164909 0.9553389549
7.75923×10−14 4.71163×10−14 0.6031990051 0.7975912094
6.75932×10−14 3.91115×10−14 0.8844869137 0.4665645361
4.65236×10−14 3.22747×10−14 0.9999994636 0.0000001788

0.884486439 0.4665646553
0.6031984091 0.7975909710
0.2955157161 0.9553378820
0.768044963 0.9970461726

0 1.0000000000

7. Conclusion

In this paper, we proved existence of solution for integro-differential system and also we used
Alpert multi-wavelet bases to solve system of integro-differential equations. Suitable choices of test
and trial space is very important. These orthogonal bases reduce the computations. So final systems
have small dimension and enough accuracy. Of course there is not restriction on degrees of chosen
polynomial basis.
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