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Abstract

Let A be a Banach ternary algebra over a scalar field R or C and X be a ternary Banach A–module.
Let σ, τ and ξ be linear mappings on A, a linear mapping D : (A, [ ]A) → (X, [ ]X) is called a Lie
ternary (σ, τ, ξ)–derivation, if

D([a, b, c]) = [[D(a)bc]X ](σ,τ,ξ) − [[D(c)ba]X ](σ,τ,ξ)

for all a, b, c ∈ A, where [abc](σ,τ,ξ) = aτ(b)ξ(c)−σ(c)τ(b)a and [a, b, c] = [abc]A−[cba]A. In this paper,
we prove the generalized Hyers–Ulam–Rassias stability of Lie ternary (σ, τ, ξ)–derivations on Banach
ternary algebras and C∗–Lie ternary (σ, τ, ξ)–derivations on C∗–ternary algebras for the following
Euler–Lagrange type additive mapping:

n∑
i=1

f(

n∑
j=1

q(xi − xj))+ nf(

n∑
i=1

qxi) = nq

n∑
i=1

f(xi).
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1. Introduction

In the 19 th century, many mathematicians considered ternary algebraic operations and their general-
izations. A. Cayley ([4]) introduced the notion of cubic matrix. It was later generalized by Kapranov,
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Gelfand and Zelevinskii in 1990 ([11]). Below, a composition rule includes a simple example of such
non–trivial ternary operation:

{a, b, c}ijk =
∑
l,m,n

anilbljmcmkn, i, j, k, l,m, n = 1, 2, . . . , N.

There are a lot of hopes that ternary structures and their generalization will have certain possible
applications in physics. Some of these applications are (see [8], [2], [9], [12]–[6]). A ternary (asso-
ciative) algebra (A, [ ]) is a linear space A over a scalar field F = (R or C) equipped with a linear
mapping, the so-called ternary product, [ ]: A×A×A→ A such that [[abc]de] = [a[bcd]e] = [ab[cde]]
for all a, b, c, d, e ∈ A. This notion is a natural generalization of the binary case. Indeed if (A,�) is
a usual (binary) algebra then [abc] := (a� b)� c induced a ternary product making A into a ternary
algebra which will be called trivial. It is known that unital ternary algebras are trivial and finitely
generated ternary algebras are ternary subalgebras of trivial ternary algebras [3]. There are other
types of ternary algebras in which one may consider other versions of associativity. Some examples
of ternary algebras are (i) ”cubic matrices” introduced by Cayley [4] which were in turn generalized
by Kapranov, Gelfand and Zelevinskii [11]; (ii) the ternary algebra of polynomials of odd degrees in
one variable equipped with the ternary operation [p1p2p3] = p1� p2� p3, where � denotes the usual
multiplication of polynomials.
By a Banach ternary algebra we mean a ternary algebra equipped with a complete norm ‖.‖ such
that ‖[abc]‖ ≤ ‖a‖‖b‖‖c‖. If a ternary algebra (A, [ ]) has an identity, i.e. an element e such that
a = [aee] = [eae] = [eea] for all a ∈ A, then a� b := [aeb] is a binary product for which we have

(a� b)� c = [[aeb]ec] = [ae[bec]] = a� (b� c)

and
a� e = [aee] = a = [eea] = e� a

for all a, b, c ∈ A and so (A, [ ]) may be considered as a (binary) algebra. Conversely, if (A,�) is any
(binary) algebra, then [abc] := a � b � c makes A into a ternary algebra with the unit e such that
a� b = [aeb].
Let (A, [ ]A) be a Banach ternary algebra and (X, [ ]X) be a Banach space. Then X is called a ternary
Banach A–module, if module operations A× A×X → X, A×X × A → X, and X × A× A → X
are C–linear in every variable. Moreover satisfy:

[[abc]A dx]X = [a[bcd]A x]X = [ab[cdx]X ]X ,

[abc]A xd]X = [a[bcx]X d]X = [ab[cxd]X ]X ,

[[xab]X cd]X = [x[abc]A d]X = [xa[bcd]A]X ,

[[axb]X cd]X = [a[xbc]X d]X = [ax[bcd]A]X ,

[[abx]X cd]X = [a[bxc]X d]X = [ab[xcd]X ]X

for all x ∈ X and all a, b, c, d ∈ A, and

max{‖[xab]X‖, ‖[axb]X‖, ‖[abx]X‖} ≤ ‖a‖‖b‖‖x‖

for all x ∈ X and all a, b ∈ A.
Let A be a normed algebra, σ and τ two mappings on A and X be an A–bimodule. A linear mapping
L : A→ X is called a Lie (σ, τ)–derivation, if

L([a, b]) = [L(a), b]σ,τ − [L(b), a]σ,τ
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for all a, b ∈ A, where [a, b]σ,τ is aτ(b)− σ(b)a and [a, b] is the commutator ab− ba of elements a, b.
Now, Let (A, [ ]A) be a Banach ternary algebra over a scalar field R or C and (X, [ ]X) be a ternary
Banach A–module. Let σ, τ and ξ be linear mappings on A. A linear mapping D : (A, [ ]A)→ (X, [ ]X)
is called a Lie ternary (σ, τ, ξ)–derivation, if

D([a, b, c]) = [[D(a)bc]X ](σ,τ,ξ) − [[D(c)ba]X ](σ,τ,ξ) (1.1)

for all a, b, c ∈ A, where [abc](σ,τ,ξ) = aτ(b)ξ(c)−σ(c)τ(b)a and [a, b, c] is the commutator [abc]A−[cba]A
of elements a, b, c.
If a Banach ternary algebra A has an identity e such that ‖e‖ = 1, as we said above, A may
be considered as a (binary) algebra. Now let X be a ternary Banach A–module, then X may be
considered as a Banach A–module by following module product:

a.x = [aex]X x.a = [xea]X

for all a ∈ A, x ∈ X.
Let A be a unital Banach ternary algebra and X be a ternary Banach A–module. If D : A→ X is a
Lie ternary (σ, τ, ξ)–derivation such that σ, τ and ξ are linear mappings on A, additionally, τ(e) = e,
then it is easy to prove that D is a Lie (σ, ξ)–derivation.

The stability of functional equations was started in 1940 with a problem raised by S. M. Ulam
[20]. In 1941 Hyers affirmatively solved the problem of S. M. Ulam in the context of Banach spaces.
In 1950 T. Aoki [1] extended the Hyers’ theorem. in 1978, Th.M. Rassias [17] formulated and proved
the following Theorem:
Theorem A. Assume that E1 and E2 are real normed spaces with E2 complete, f : E1 → E2 is a
mapping such that for each fixed x ∈ E1 the mapping t → f(tx) is continuous on R, and let there
exist ε ≥ 0 and p ∈ [0, 1) such that ‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) for all x, y ∈ E1. Then

there exists a unique linear mapping T : E1 ∈ E2 such that ‖f(x)− T (x)‖ ≤ ε ‖x‖
p

(1−2p) for all x ∈ E1.

The equality ‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) has provided extensive influence in the
development of of what we now call Hyers–Ulam–Rassias stability of functional equations [5, 10,
6, 18, 19]. In 1994, a generalization of Rassias’ theorem was obtained by Gavruta [7], in which he
replaced the bound ε(‖x‖p + ‖y‖p) by a general control function.

2. The main results

In this section, let (X, [ ]X) be a ternary Banach (A, [ ]A)–module. Our aim is to establish the
Hyers–Ulam–Rassias stability of Lie ternary (σ, τ, ξ)–derivations.

Theorem 2.1. Suppose f : A → X is a mapping with f(0) = 0 for which there exist mappings
g, h, k : A → A with g(0) = h(0) = k(0) = 0 and a function ϕ : A × A × A × A × A → [0,∞] such
that

(i)

ϕ̃(x, y, u, v, w) =
1

2

∞∑
n=0

ϕ(2nx, 2ny, 2nu, 2nv, 2nw) <∞; (2.1)

(ii)

‖f(λx+ λy + [u, v, w])− λf(x)−λf(y)− [[f(u)vw]X ](g,h,k) + [[f(w)vu]X ](g,h,k)‖
≤ ϕ(x, y, u, v, w); (2.2)
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(iii)
‖g(λx+ λy)− λg(x)− λg(y)‖ ≤ ϕ(x, y, 0, 0, 0);

(iv)
‖h(λx+ λy)− λh(x)− λh(y)‖ ≤ ϕ(x, y, 0, 0, 0);

(v)
‖k(λx+ λy)− λk(x)− λk(y)‖ ≤ ϕ(x, y, 0, 0, 0)

for all λ ∈ T1(:= {λ ∈ C ; |λ| = 1}) and for all x, y, u, v, w ∈ A. Then there exist unique linear
mappings σ, τ and ξ from A to A satisfying

‖g(x)− σ(x)‖ ≤ ϕ̃(x, x, 0, 0, 0), (2.3)

‖h(x)− τ(x)‖ ≤ ϕ̃(x, x, 0, 0, 0), (2.4)

‖k(x)− ξ(x)‖ ≤ ϕ̃(x, x, 0, 0, 0) (2.5)

and there exist a unique Lie ternary (σ, τ, ξ)–derivation on D : A→ X such that

‖f(x)−D(x)‖ ≤ ϕ̃(x, x, 0, 0, 0) (2.6)

for all x ∈ A.

Proof . One can show that the limits

σ(x) := lim
n

1

2n
g(2nx),

τ(x) := lim
n

1

2n
h(2nx),

ξ(x) := lim
n

1

2n
k(2nx),

exist for all x ∈ A, also σ, τ and ξ are unique linear mappings which satisfy (2.3), (2.4) and (2.5),
respectively (see [18]). Put λ = 1 and u = v = w = 0 in (2.2) to obtain

‖f(x+ y)− f(x)− f(y)‖ ≤ φ(x, y, 0, 0, 0) (x, y ∈ A). (2.7)

Fix x ∈ A. Replace y by x in (2.7) to get

‖f(2x)− 2f(x)‖ ≤ ϕ(x, x, 0, 0, 0).

One can use the induction to show that∥∥∥∥f(2px)

2p
− f(2qx)

2q

∥∥∥∥ ≤ 1

2

p−1∑
k=q

ϕ(2kx, 2kx, 0, 0, 0) (2.8)

for all x ∈ A, and all p > q ≥ 0. It follows from the convergence of series (2.1) that the sequence{f(2nx)
2n

}
is Cauchy. By the completeness of X, this sequence is convergent. Set

D(x) = lim
n→∞

f(2nx)

2n
,
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for all x ∈ A. Putting u = v = w = 0 and replacing x, y by 2nx and 2ny in (2.2), respectively and
divide the both sides of the inequality by 2n we get

‖2−nf(2n(λx+ λy))− 2−nλf(2nx)− 2−nλf(2ny)‖ ≤ 1

2n
ϕ(2nx, 2nx, 0, 0, 0).

Passing to the limit as n→∞ we obtain D(λx+ λy) = λD(x) + λD(y). Put q = 0 in (2.8) to get∥∥∥∥f(2px)

2p
− f(x)

∥∥∥∥ ≤ 1

2

p−1∑
k=0

ϕ(2kx, 2kx, 0, 0, 0)

for all x ∈ A. Taking the limit as p→∞ we infer that

‖f(x)−D(x)‖ ≤ ϕ̃(x, x, 0, 0, 0)

for all x ∈ A. Next, let γ ∈ C(γ 6= 0) and let N be a positive integer number greater than |γ|. It is
shown that there exist two numbers λ1, λ2 ∈ T such that 2 γ

N
= λ1 + λ2. since D is a additive, we

have D(1
2
x) = 1

2
D(x) for all x ∈ A. Hence

D(γx) = D(
N

2
.2.

γ

N
x) = ND(

1

2
.2.

γ

N
x) =

N

2
D(2.

γ

N
x)

=
N

2
D(λ1x+ λ2x) =

N

2
(D(λ1x) +D(λ2x))

=
N

2
(λ1 + λ2)D(x) = (

N

2
.2.

γ

N
)D(x) = γD(x)

for all x ∈ A. Thus D is linear. Suppose that there exists another ternary (σ, τ, ξ)-derivation D
′

:
A→ X satisfying (2.6). Since D

′
(x) = 1

2n
D
′
(2nx), we see that

‖D(x)−D′(x)‖ =
1

2n
‖D(2nx)−D′(2nx)‖

≤ 1

2n
(‖f(2nx)−D(2nx)‖+ ‖f(2nx)−D′(2nx)‖)

≤ 4θ
2p

2− 2p
2n(p−1)‖x‖p ,

which tends to zero as n → ∞ for all x ∈ A. Therefore D
′

= D as claimed. Similarly one can
use (2.3), (2.4) and (2.5) to show that there exist unique linear mappings σ, τ and ξ defined by

limn→∞
g(2nx)
2n

, limn→∞
h(2nx)

2n
and limn→∞

k(2nx)
2n

, respectively. Putting x = y = 0 and replacing u, v, w
by 2nu, 2nv and 2nw in (2.2) respectively, we obtain

‖f([23nu, v, w])− [[f(2nu)22nvw]X ](g,h,k) + [[f(2nw)22nvu]X ](g,h,k)‖ ≤ ϕ(0, 0, 2nu, 2nv, 2nw).

Then

1

23n
‖f([23nu, v, w])− [[f(2nu)22nvw]X ](g,h,k) + [[f(2nw)22nvu]X ](g,h,k)‖

≤ 1

23n
ϕ(0, 0, 2nu, 2nv, 2nw)
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for all u, v, w ∈ A,. Hence

lim
n→∞

1

23n
‖f([23nu, v, w])− [[f(2nu)22nvw]X ](g,h,k) + [[f(2nw)22nvu]X ](g,h,k)‖

≤ lim
n→∞

1

23n
ϕ(0, 0, 2nu, 2nv, 2nw) = 0,

therefore

D([u, v, w]) = lim
n→∞

f(23n[u, v, w])

23n
= lim

n→∞

f([2nu, 2nv, 2nw])

23n

= lim
n→∞

(
[[f(2nu)2nv2nw]X ](g,h,k) − [[f(2nw)2nv2nu]X ](g,h,k)

23n

)
= lim

n→∞

(
f(2nu)h(2nv)k(2nw)− g(2nw)h(2nv)f(2nu)

23n

− f(2nw)h(2nv)k(2nu)− g(2nu)h(2nv)f(2nw)
23n

)
= (D(u)τ(v)ξ(w)− σ(w)τ(v)D(u))− (D(w)τ(v)ξ(u)− σ(u)τ(v)D(w))

= [[D(u)vw]X ](σ,τ,ξ) − [[D(w)vu]X ](σ,τ,ξ)

for each u, v, w ∈ A. Hence, the linear mapping D is a Lie ternary (σ, τ, ξ)–derivation. �

Corollary 2.2. Suppose f : A → X is a mapping with f(0) = 0 for which there exist mappings
g, h, k : A→ A with g(0) = h(0) = k(0) = 0 and there exists θ ≥ 0 and p ∈ [0, 1) such that

(i)

‖f(λx+ λy + [u, v, w])− λf(x)−λf(y)− [[f(u)vw]X ](g,h,k) + [[f(w)vu]X ](g,h,k)‖
≤ θ(‖x‖p + ‖y‖p + ‖u‖p + ‖v‖p + ‖w‖p),

(ii)
‖g(λx+ λy)− λg(x)− λg(y)‖ ≤ θ(‖x‖p + ‖y‖p)

(iii)
‖h(λx+ λy)− λh(x)− λh(y)‖ ≤ θ(‖x‖p + ‖y‖p)

(iv)
‖k(λx+ λy)− λk(x)− λk(y)‖ ≤ θ(‖x‖p + ‖y‖p)

for all λ ∈ T = {λ ∈ C : |λ| = 1} and for all x, y ∈ A. Then there exist unique linear mappings σ, τ

and ξ from A to A satisfying ‖g(x) − σ(x)‖ ≤ θ‖x‖p
1−2p−1 , ‖h(x) − τ(x)‖ ≤ θ‖x‖p

1−2p−1 and ‖k(x) − ξ(x)‖ ≤
θ‖x‖p
1−2p−1 , and there exists a unique Lie ternary (σ, τ, ξ)–derivation D : A→ X such that

‖f(x)−D(x)‖ ≤ θ‖x‖p

1− 2p−1
(2.9)

for all x ∈ A.

Proof . Put ϕ(x, y, u, v, w) = θ(‖x‖p + ‖y‖p + ‖u‖p + ‖v‖p + ‖w‖p) in Theorem 2.1. �

A C∗–ternary algebra is a complex Banach space A, equipped with a ternary product (x, y, z)→
[xyz] of A3 into A, which is C–linear in the outer variables, conjugate C–linear in the middle vari-
able, and associative in the sense that [xy[zwv]] = [x[wzy]v] = [[xyz]wv], and satisfies ‖[xyz]‖ ≤
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‖x‖.‖y‖.‖z‖ and ‖[xxx]‖ = ‖x‖3 (see [8], [21]). Every left Hilbert C∗–module is a C∗–ternary algebra
via the ternary product [xyz] := 〈x, y〉z.

If a C∗–ternary algebra (A, [ ]) has an identity, i.e. an element e ∈ A such that x = [xee] = [eex]
for all x ∈ A, then it is routine to verify that A, endowed with x ◦ y := [xey] and x∗ := [exe], is a
unital C∗–algebra. Conversely, if (A, ◦) is a unital C∗–algebra, then [xyz] := x ◦ y∗ ◦ z makes A into
a C∗-ternary algebra [14].

A Lie (σ, τ, ξ)–ternary derivation L : A→ A on a C∗–ternary algebra A is called a C∗–Lie ternary
(σ, τ, ξ)–derivation.

Throughout this section, assume that A is a C∗–ternary with norm ‖.‖A. Let q be a positive
rational number. For a given mapping f : A→ A and a given µ ∈ C, we define Dµf : An → A by

Dµf(x1, . . . , xn) :=
n∑
i=1

f(
n∑
j=1

qµ(xi − xj)) + nf(
n∑
i=1

qµxi)− nqµ
n∑
i=1

f(xi)

for all x1, . . . , xn ∈ A.
In this section our aim is to establish the Hyers–Ulam stability of C∗–Lie ternary (σ, τ, ξ)–derivations
in C∗–ternary algebras for the Euler–Lagrange type additive mapping.

Theorem 2.3. Assume that r > 3 if nq > 1 and that 0 < r < 1 if nq < 1. Let θ be a positive real
number, and let f : A → A be an odd mapping for which there exist mappings g, h, k : A → A with
g(0) = h(0) = k(0) = 0 satisfying

(i)

‖Dµf(x1, . . . , xn)‖ ≤ θ
n∑
j=1

‖xj‖r, (2.10)

(ii)
‖g(qµx1 + · · ·+ qµxn)− qµg(x1)− · · · − qµg(xn)‖ ≤ θ(‖x1‖r + · · ·+ ‖xn‖r), (2.11)

(iii)
‖h(qµx1 + · · ·+ qµxn)− qµh(x1)− · · · − qµh(xn)‖ ≤ θ(‖x1‖r + · · ·+ ‖xn‖r), (2.12)

(iv)
‖k(qµx1 + · · ·+ qµxn)− qµk(x1)− · · · − qµk(xn)‖ ≤ θ(‖x1‖r + · · ·+ ‖xn‖r), (2.13)

such that
‖f([x, y, z])− [f(x)yz](g,h,k) + [f(z)yx](g,h,k)‖ ≤ θ(‖x‖r + ‖y‖r + ‖z‖r) (2.14)

for all x, y, z ∈ A. Then there exist unique linear mappings σ, τ, and ξ from A to A and a unique
C∗–Lie ternary (σ, τ, ξ)–derivation L : A→ A satisfying

(i)

‖g(x)− σ(x)‖ ≤ nθ

(nq)r − nq
‖x‖r, (2.15)

(ii)

‖h(x)− τ(x)‖ ≤ nθ

(nq)r − nq
‖x‖r, (2.16)

(iii)

‖k(x)− ξ(x)‖ ≤ nθ

(nq)r − nq
‖x‖r, (2.17)
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such that

‖f(x)− L(x)‖ ≤ θ

(nq)r − nq
‖x‖r. (2.18)

Proof . Letting µ = 1 and x1 = · · · = xn = x in (2.10), we get

‖nf(nqx)− n2qf(x)‖ ≤ nθ‖x‖r

for all x ∈ A. So

‖f(x)− nqf(
x

nq
)‖ ≤ θ

(nq)r
‖x‖r

for all x ∈ A. So

‖(nq)lf(
x

(nq)l
)− (nq)l+mf(

x

(nq)l+m
)‖ (2.19)

≤
l+m−1∑
j=l

‖(nq)jf(
x

(nq)j
)− (nq)j+1f(

x

(nq)j+1
)‖ (2.20)

≤ θ

(nq)r

l+m−1∑
j=l

(nq)j

(nq)rj
‖x‖r (2.21)

for all nonnegative integersm and l with x ∈ A. It follows from (2.19) that the sequence {(nq)mf( x
(nq)m

)}
is a Cauchy sequence for all x ∈ A. Since A is complete, the sequence {(nq)mf( x

(nq)m
)} converges.

So one can define the mapping L : A→ A by

L(x) := lim
m→∞

(nq)mf(
x

(nq)m
)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m→∞ in (2.19), we get

‖f(x)− L(x)‖ ≤ θ

(nq)r

m−1∑
j=0

(nq)j

(nq)rj
‖x‖r

for all x ∈ A. So (2.18) holds for all x ∈ A. It follows from (2.10) that

‖D1L(x1, . . . , xn)‖ = lim
m→∞

(nq)m‖D1f(
x1

(nq)m
, . . . ,

xn
(nq)m

)‖

≤ lim
m→∞

(nq)mθ

(nq)mr

n∑
j=1

‖xj‖r

for all x1, . . . , xn ∈ A. Thus
D1L(x1, . . . , xn) = 0

for all x1, . . . , xn ∈ A. By Lemma 3.1 of [15], the mapping L : A → A is Cauchy additive. By the
same reasoning as in the proof of Theorem 2.1 of [14], the mapping L : A→ A is linear. Also letting
µ = 1 and x1 = · · · = xn = x in (2.11), we get

‖g(qnx)− qng(x)‖ ≤ nθ‖x‖r
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for all x ∈ A. So

‖g(x)− qng(
x

nq
)‖ ≤ nθ

(nq)r
‖x‖r

for all x ∈ A. We easily prove that by induction that

‖(nq)lg(
x

(nq)l
)− (nq)l+mg(

x

(nq)l+m
)‖ (2.22)

≤
l+m−1∑
j=l

‖(nq)jg(
x

(nq)j
)− (nq)j+1g(

x

(nq)j+1
)‖ (2.23)

≤ nθ

(nq)r

l+m−1∑
j=l

(nq)j

(nq)rj
‖x‖r (2.24)

for all nonnegative integersm and l with x ∈ A. It follows from (2.22) that the sequence {(nq)mg( x
(nq)m

)}
is a Cauchy sequence for all x ∈ A. Since A is complete, the sequence {(nq)mg( x

(nq)m
)} converges.

So one can define the mapping σ : A→ A by

σ(x) := lim
m→∞

(nq)mg(
x

(nq)m
)

for all x ∈ A. we easily prove that by (2.11) that σ(µx + µy) = µσ(x) + µσ(y) and by letting l = 0
and taking the limit m→∞ in (2.9), we get

‖g(x)− σ(x)‖ ≤ nθ

(nq)r

m−1∑
j=0

(nq)j

(nq)rj
‖x‖r

for all x ∈ A. So (2.15) holds for all x ∈ A. similarly, there exist linear mapping τ and ξ on A such
that (2.16) and (2.17) hold for all x ∈ A. It follows from (2.14) that

‖L([x, y, z])− [L(x)yz](σ,τ,ξ) + [L(z)yx](σ,τ,ξ)‖

= lim
m→∞

(nq)3m
∥∥∥∥f ( [x, y, z]

(nq)3m

)
− [f

(
x

(nq)m

)
y

(nq)m
z

(nq)m
](g,h,k)

+ [f

(
z

(nq)m

)
y

(nq)m
x

(nq)m
](g,h,k)

∥∥∥∥
≤ lim

m→∞

(nq)3mθ

(nq)mr
(‖x‖r + ‖y‖r + ‖z‖r) = 0

for all x, y, z ∈ A. So
L([x, y, z]) = [L(x)yz](σ,τ,ξ) − [L(z)yx](σ,τ,ξ)

for all x, y, z ∈ A. Now, let L′ : A→ A be another Euler–Lagrange type additive mapping satisfying
(2.18). Then we have

‖L(x)− L′(x)‖ = (nq)m
∥∥∥∥L(

x

(nq)m
)− L′( x

(nq)m
)

∥∥∥∥
≤ (nq)m

∥∥∥∥L(
x

(nq)m
)− f(

x

(nq)m
)

∥∥∥∥+

∥∥∥∥L′( x

(nq)m
)− f(

x

(nq)m
)

∥∥∥∥
≤ 2(nq)mθ

((nq)r − nq)(nq)mr
‖x‖r,
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which tends to zero as m → ∞ for all x ∈ A. So we can conclude that L(x) = L′(x) for all x ∈ A.
This prove the uniqueness of L. Thus the mapping L : A→ A is a unique C∗–Lie ternary (σ, τ, ξ)–
derivation satisfying (2.18) and similarly, we can prove that σ, τ and ξ are unique on A and the proof
of the theorem is complete. �

Theorem 2.4. Assume that 0 < r < 1 if nq > 1 and that r > 3 if nq < 1. Let θ be a positive real
number, and let f : A → A be an odd mapping for which there exist mappings g, h, k : A → A with
g(0) = h(0) = k(0) = 0 satisfying (2.10)–(2.14). Then there exist unique linear mappings σ, τ, and ξ
from A to A and a unique C∗–Lie ternary (σ, τ, ξ)–derivation L : A→ A satisfying

(i)

‖g(x)− σ(x)‖ ≤ nθ

nq − (nq)r
‖x‖r, (2.25)

(ii)

‖h(x)− τ(x)‖ ≤ nθ

nq − (nq)r
‖x‖r, (2.26)

(iii)

‖k(x)− ξ(x)‖ ≤ nθ

nq − (nq)r
‖x‖r, (2.27)

such that

‖f(x)− L(x)‖ ≤ θ

nq − (nq)r
‖x‖r. (2.28)

Proof . Letting µ = 1 and x1 = · · · = xn = x in (2.10), we get

‖nf(nqx)− n2qf(x)‖ ≤ nθ‖x‖r

for all x ∈ A. So

‖f(x)− 1

nq
f(nqx)‖ ≤ θ

nq
‖x‖r

for all x ∈ A. So

‖ 1

(nq)l
f((nq)lx)− 1

(nq)l+m
f((nq)l+mx)‖ (2.29)

≤
l+m−1∑
j=l

‖ 1

(nq)j
f((nq)jx)− 1

(nq)j+1
f((nq)j+1x)‖ (2.30)

≤ θ

nq

l+m−1∑
j=l

(nq)rj

(nq)j
‖x‖r (2.31)

for all nonnegative integersm and l with x ∈ A. It follows from (2.29) that the sequence { 1
(nq)m

f((nq)mx)}
is a Cauchy sequence for all x ∈ A. Since A is complete, the sequence { 1

(nq)m
f((nq)mx)} converges.

So one can define the mapping L : A→ A by

L(x) := lim
m→∞

1

(nq)m
f((nq)mx)
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for all x ∈ A. Moreover, letting l = 0 and passing the limit m→∞ in (2.29), we get

‖f(x)− L(x)‖ ≤ θ

nq

m−1∑
j=0

(nq)rj

(nq)j
‖x‖r

for all x ∈ A. So (2.28) holds for all x ∈ A. The rest of the proof is similar to the proof of Theorem
2.3. �

Theorem 2.5. Assume that r > 1 if nq > 1 and that 0 < r < 1 if nq < 1. Let θ be a positive real
number, and let f : A → A be an odd mapping for which there exist mappings g, h, k : A → A with
g(0) = h(0) = k(0) = 0 satisfying (2.11)–(2.13) and

‖Dµf(x1, . . . , xn)‖ ≤ θ
n∏
j=1

‖xj‖r, (2.32)

such that
‖f([x, y, z])− [f(x)yz](g,h,k) − [f(z)yx](g,h,k)‖ ≤ θ‖x‖r‖y‖r‖z‖r (2.33)

for all x, y, z ∈ A. Then there exist unique linear mappings σ, τ, and ξ from A to A and a unique
C∗–Lie ternary (σ, τ, ξ)–derivation L : A→ A satisfying (2.15)-(2.17) such that

‖f(x)− L(x)‖ ≤ θ

n((nq)nr − nq)
‖x‖nr.

Proof . Let the mapping L : A→ A be defined by

L(x) := lim
m→∞

(nq)mf(
x

(nq)m
),

for all x ∈ A. It follows from (2.33) that

‖L([x, y, z])− [L(x)yz](σ,τ,ξ) + [L(z)yx](σ,τ,ξ)‖

= lim
m→∞

(nq)3m
∥∥∥∥f ( [x, y, z]

(nq)3m

)
−
[
f

(
x

(nq)m

)
y

(nq)m
z

(nq)m

]
(g,h,k)

+

[
f

(
z

(nq)m

)
y

(nq)m
x

(nq)m

]
(g,h,k)

∥∥∥∥
≤ lim

m→∞

(nq)3mθ

(nq)3mr
(‖x‖r.‖y‖r.‖z‖r) = 0

for all x ∈ A. So
L([x, y, z]) = [L(x)yz](σ,τ,ξ) − [L(z)yx](σ,τ,ξ)

for all x, y, z ∈ A and the proof of the theorem is complete. �

Theorem 2.6. Assume that r > 1 if nq < 1 and that 0 < r < 1 if nq > 1. Let θ be a positive real
number, and let f : A → A be an odd mapping for which there exist mappings g, h, k : A → A with
g(0) = h(0) = k(0) = 0 satisfying (2.11)–(2.13), (2.32) and (2.33). Then there exist unique linear
mappings σ, τ, and ξ from A to A and a unique C∗–ternary (σ, τ, ξ)–derivation D : A→ A satisfying
(2.25)–(2.27) such that

‖f(x)− L(x)‖ ≤ θ

n(nq − (nq)nr)
‖x‖nr. (2.34)
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Proof . Letting µ = 1 and x1 = · · · = xn = x in (2.32), we get

‖nf(nqx)− n2qf(x)‖ ≤ θ‖x‖nr

for all x ∈ A. So

‖f(x)− 1

nq
f(nqx)‖ ≤ θ

n2q
‖x‖nr

for all x ∈ A. So

‖ 1

(nq)l
f((nq)lx)− 1

(nq)l+m
f((nq)l+mx)‖ (2.35)

≤
l+m−1∑
j=l

‖ 1

(nq)j
f((nq)jx)− 1

(nq)j+1
f((nq)j+1x)‖ (2.36)

≤ θ

n2q

l+m−1∑
j=l

(nq)nrj

(nq)j
‖x‖nr (2.37)

for all nonnegative integersm and l with x ∈ A. It follows from (2.35) that the sequence { 1
(nq)m

f((nq)mx)}
is a Cauchy sequence for all x ∈ A. Since A is complete, the sequence { 1

(nq)m
f((nq)mx)} converges.

So one can define the mapping L : A→ A by

L(x) := lim
m→∞

1

(nq)m
f((nq)mx)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (2.35), we get (2.34).
Uniqueness L is similar to the proof of Theorem 3.1. Also there exist unique linear mappings σ, τ
and ξ on A similar to the proof of Theorem 2.3. It follows from (2.33) that

‖L([x, y, z])− [L(x)yz](σ,τ,ξ) + [L(z)yx](σ,τ,ξ)‖

= lim
m→∞

1

(nq)3m
‖f((nq)3m[x, y, z])− [f((nq)mx)(nq)my(nq)mz](g,h,k)

+ [f((nq)mz)(nq)my(nq)mx](g,h,k)‖

≤ lim
m→∞

(nq)3mrθ

(nq)3m
(‖x‖r.‖y‖r.‖z‖r) = 0

for all x, y, z ∈ A. So
L([x, y, z]) = [L(x)yz](σ,τ,ξ) − [L(z)yx](σ,τ,ξ)

for all x, y, z ∈ A and the proof of the theorem is complete. �
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