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Abstract

Let A be a Banach ternary algebra over a scalar field R or C and X be a ternary Banach A-module.
Let 0,7 and ¢ be linear mappings on A, a linear mapping D : (A,[ |4) — (X, [ ]x) is called a Lie
ternary (o, T, §)—derivation, if

D([a, b, ¢]) = [[D(a)bl]x](ore) — [[D(c)ba]x](o.re)
for all a,b, c € A, where [abc](g.r¢) = aT(b){(c)—0o(c)T(b)a and [a, b, c] = [abc] 4 — [cba] 4. In this paper,
we prove the generalized Hyers—Ulam—Rassias stability of Lie ternary (o, 7, {)—derivations on Banach

ternary algebras and C*—Lie ternary (o, 7,&)—derivations on C*—ternary algebras for the following
Euler—Lagrange type additive mapping:

Y IO alwi—ay)) +nf(d ] awm) =ng Yy f(w).
=1 7j=1 =1 i=1
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1. Introduction

In the 19 th century, many mathematicians considered ternary algebraic operations and their general-
izations. A. Cayley (J4]) introduced the notion of cubic matrix. It was later generalized by Kapranov,
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Gelfand and Zelevinskii in 1990 ([I1]). Below, a composition rule includes a simple example of such
non—trivial ternary operation:

{(l, ba C}’L]k = Z anilbljmcmk‘n> Z‘vjv kv l7m7n = 17 27 SR 7N'

l,m,n

There are a lot of hopes that ternary structures and their generalization will have certain possible
applications in physics. Some of these applications are (see [§], [2], [9], [12]-[6]). A ternary (asso-
ciative) algebra (A, [ ]) is a linear space A over a scalar field F = (R or C) equipped with a linear
mapping, the so-called ternary product, []: A x A x A — A such that [[abc]de] = [a[bcd]e] = [ab|cde]]
for all a,b,c,d,e € A. This notion is a natural generalization of the binary case. Indeed if (A4, ®) is
a usual (binary) algebra then [abc] := (a ® b) ® ¢ induced a ternary product making A into a ternary
algebra which will be called trivial. It is known that unital ternary algebras are trivial and finitely
generated ternary algebras are ternary subalgebras of trivial ternary algebras [3]. There are other
types of ternary algebras in which one may consider other versions of associativity. Some examples
of ternary algebras are (i) ”cubic matrices” introduced by Cayley [4] which were in turn generalized
by Kapranov, Gelfand and Zelevinskii [I1]; (4) the ternary algebra of polynomials of odd degrees in
one variable equipped with the ternary operation [p1paps] = p1 ® p2 ® ps, where ® denotes the usual
multiplication of polynomials.

By a Banach ternary algebra we mean a ternary algebra equipped with a complete norm ||.|| such
that [|[abc]|| < |la]|||b]lllc||- If a ternary algebra (A, []) has an identity, i.e. an element e such that
a = |aee] = [eae] = [eea for all a € A, then a ® b := [aeb] is a binary product for which we have

(a ®b) ® ¢ = [[aeblec] = [aelbec]] =a ® (b® ¢)
and
a®e=|aee] =a=[eeal =e®a

for all a,b,c € A and so (A, []) may be considered as a (binary) algebra. Conversely, if (A4, ®) is any
(binary) algebra, then [abc] := a ©® b ® ¢ makes A into a ternary algebra with the unit e such that
a® b= [aeb].

Let (A, []a) be a Banach ternary algebra and (X, [ ]x) be a Banach space. Then X is called a ternary
Banach A-module, if module operations A X A x X - X, AXx X xA— X, and X xAxA—>X
are C-linear in every variable. Moreover satisfy:

[[abc]a dx]x = [a[bcd])a x]x = [ablcdx]x]x,

for all x € X and all a,b,c,d € A, and
max{||[zab]x |, [[lazb]x [, [[[abz]x[[} < [lal[[[o][]|z|

for all z € X and all a,b € A.
Let A be a normed algebra, ¢ and 7 two mappings on A and X be an A-bimodule. A linear mapping
L:A— X is called a Lie (o, 7)—derivation, if

L([a, b)) = [L(a), b]o.r — [L(b), alo.r
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for all a,b € A, where [a, ], is aT(b) — o(b)a and [a, ] is the commutator ab — ba of elements a, b.
Now, Let (A,[]a) be a Banach ternary algebra over a scalar field R or C and (X, [ ]x) be a ternary
Banach A-module. Let o, 7 and £ be linear mappings on A. A linear mapping D : (A,[]4) — (X, []x)
is called a Lie ternary (o, 7, §)—derivation, if

D([a, b, c]) = [[D(a)be]x] (o) = [[D(c)ba]x](o.re) (1.1)

for alla,b, c € A, where [abc|(y.r¢) = aT(b)(c)—0o(c)7(b)a and [a, b, c] is the commutator [abc] 4 —[cba] 4
of elements a, b, c.

If a Banach ternary algebra A has an identity e such that |le|| = 1, as we said above, A may
be considered as a (binary) algebra. Now let X be a ternary Banach A-module, then X may be
considered as a Banach A—module by following module product:

a.x = [aex]x xr.a = [rea]x

foralla € A,z € X.

Let A be a unital Banach ternary algebra and X be a ternary Banach A-module. If D: A — X is a
Lie ternary (o, 7, {)—derivation such that o, 7 and ¢ are linear mappings on A, additionally, 7(e) = e,
then it is easy to prove that D is a Lie (o, {)-derivation.

The stability of functional equations was started in 1940 with a problem raised by S. M. Ulam

[20]. In 1941 Hyers affirmatively solved the problem of S. M. Ulam in the context of Banach spaces.
In 1950 T. Aoki [I] extended the Hyers’ theorem. in 1978, Th.M. Rassias [I7] formulated and proved
the following Theorem:
Theorem A. Assume that F; and E5 are real normed spaces with Fy complete, f : F; — FE is a
mapping such that for each fixed z € E) the mapping ¢ — f(tx) is continuous on R, and let there
exist € > 0 and p € [0,1) such that || f(z+vy) — f(z) — f(y)|| < e(||z||” + ||y]|?) for all z,y € Ey. Then
there exists a unique linear mapping 7" : E) € Es such that || f(z) — T'(x)]| < e% for all x € Ej.

The equality ||f(z +y) — f(z) — f(v)]| < e(||z|[” + ||y||P) has provided extensive influence in the
development of of what we now call Hyers—Ulam—Rassias stability of functional equations [5], 10,
0, 18, [19]. In 1994, a generalization of Rassias’ theorem was obtained by Gavruta [7], in which he

replaced the bound €(]|z||” + ||y||?) by a general control function.

2. The main results

In this section, let (X,[ |x) be a ternary Banach (A,[ |4)-module. Our aim is to establish the
Hyers—Ulam—Rassias stability of Lie ternary (o, 7, )—derivations.

Theorem 2.1. Suppose f : A — X is a mapping with f(0) = 0 for which there exist mappings
g,h,k: A — A with g(0) = h(0) = k(0) = 0 and a function ¢ : A x Ax Ax Ax A—[0,00] such
that
(1)
~ 1 - n n n n n .
go(x,y,u,v,w):§Zgo(2 x, 2"y, 2"u, 2", 2"w) < oo; (2.1)

(i)

[f(Az 4+ Ay + [u, v, w]) — Af(2)=Af(y) = [f(w)vw]x]gnr + [f(w)vu]x]gnmll
< p(z,y,u,v,w); (2.2)
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lg(Az + Ay) — Ag(x) — Ag(y)|| < ¢(=,y,0,0,0);
[k(Az + Ay) — Mk(z) — Me(y) || < ¢(z,9,0,0,0)

for all X\ € T'(:= {\ € C ;|\ = 1}) and for all x,y,u,v,w € A. Then there exist unique linear
mappings o, and & from A to A satisfying

Hg(w)—a(?ﬁ)H S@(‘TV%O’O?O)? 2.3
|h(z) —7(2)|| < @(z,2,0,0,0), 2.4
[k(z) = &(2)|| < @(x,2,0,0,0) (2.5)

and there ezist a unique Lie ternary (o, T,&)—derivation on D : A — X such that
Hf(x) —D(ZL’)H < G(ZL’,I,0,0, O) (26)
for all x € A.

Proof . One can show that the limits

1
o(z) :=lim 2—ng(2"x),

1
7(x) := lim 2—nh(2”:c),

1
&(z) :=lim 2—nk:(2”:v),
exist for all z € A, also 0,7 and £ are unique linear mappings which satisfy (2.3)), (2.4)) and ({2.5),
respectively (see [I8]). Put A =1 and u = v = w = 0 in (2.2) to obtain

Fix x € A. Replace y by z in (2.7)) to get
||f(2.l’) - 2f(l‘)|| S gO(JZ,ZL’, O’ 07 0)
One can use the induction to show that

H f(2Pz)  f(2%)

o 24

1 — k k
<3 ;]go(Q z,2%2,0,0,0) (2.8)

for all x € A, and all p > ¢ > 0. It follows from the convergence of series (2.1)) that the sequence

M} is Cauchy. By the completeness of X, this sequence is convergent. Set

D(z) = lim J(2")

n—o00 on ’
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for all x € A. Putting u = v = w = 0 and replacing =,y by 2"z and 2"y in ([2.2)), respectively and
divide the both sides of the inequality by 2" we get

1
—(2"x,2"x,0,0,0).

1277 (2" (A + Ay)) = 27"Af(2") = 27"Af(2")] < o

Passing to the limit as n — oo we obtain D(Azx + A\y) = AD(x) + AD(y). Put ¢ =0 in (2.8) to get

~1
Z P, 2%2,0,0,0)

k=0

f(2FPz)
P

l\DI»—t

for all x € A. Taking the limit as p — oo we infer that

I (z) = D(x)|| < &(z,2,0,0,0)

for all x € A. Next, let v € C(y # 0) and let N be a positive integer number greater than |y|. It is
shown that there exist two numbers A\, A\ € T such that 2% = A1 + Ao. since D is a additive, we
have D(1z) = 1D(z) for all 2 € A. Hence

for all € A. Thus D is linear. Suppose that there exists another ternary (o, 7,)-derivation D' :
A — X satisfying (2.6)). Since D'(z) = 2inD/(Qnac), we see that

/

|1D(z) = D (2) = iHD(Q”JE) - D'(2")|

< o (@) — DE")| + | f(2"x) — D' ("))

P
n(p—1) P
492 2p2 lz||P ,

which tends to zero as n — oo for all + € A. Therefore D' = D as claimed. Similarly one can
use . ) and to show that there exist unique linear mappings 0,7 and & defined by
lim,, o Z 22 ,lim,, oo h 2n ) and lim,, o (Zn ), respectively. Putting x = y = 0 and replacing u, v, w

by 2"u, 2"v and 2"w in 1.} respectively, we obtain
Hf([23nu7 v, w]) - Hf(Qnu)22nvw]X](gyh,k) + Hf(an)22nvu]X](g,h,k)H < 90(07 0, 2", 2nva 2nw)'

Then

1

23||f([23"% v,w]) = [[f(2"u) 22" vw]x](gnm) + [[f (2"w) 22" vu] x] (g np

< 2Egp(O, 0,2"%u, 2"v, 2"w)
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for all u,v,w € A,. Hence

lim L||f ([27"u, v, w]) = [[f(2"w) 2" vwlx) g e + [[f(2"w) 2 vul x] (g0 |

n—oo 231

: 1 n n n
< lim 2ﬁcp((),O,Z u, 2", 2"w) = 0,

n—o0

therefore

Dl v.u]) = tim S 0D (2 20, 2])

n—o00 23n n—o00 23n
— lim Hf(znu)QnUan]X}(g,h,k) - Hf(znw)QnW"U]X}(g,h,k)
o n—o00 23n

_ fMw)h(2"0)k(2"u) — g(2”u)h(2”v)f(2”w)>
23n

= (D(u)7(v)(w) — o(w)r(v)D(u)) — (D(w)7(v)§(u) — o(u)7(v)D(w))
= [[D(w)vw]x](o,r¢) — [[D(w)vulx](sre)

for each u, v, w € A. Hence, the linear mapping D is a Lie ternary (o, 7, {)—derivation. [J

Corollary 2.2. Suppose f : A — X is a mapping with f(0) = 0 for which there ezxist mappings
g, h,k: A— A with g(0) = h(0) = k(0) = 0 and there exists 6 > 0 and p € [0,1) such that

(i)
1f Az + Ay + [u, v, w]) = Af(2)=Af(y) — [[f (w)vw]x]gnr + [[f (w)vulx]gnmll
<Ol + Myl + lull” + [0l + l[w][”),

lg(Az + Ay) — Ag(x) — Ag(y)|| < O(ll=(|” + [[y]I”)
[A(Az + Ay) — Ah(x) — Ah(y)]| < O(][=|” + [|ly]”)

[E(Az + Ay) — Ak(x) = k()| < O(ll]|” + l[y]1")

forall A\ € T={Ne C: |\ =1} and for all z,y € A. Then there exist unique linear mappings o, T

and & from A to A satisfying ||g(x) — o(2)]| < 2=, [A(z) — (@)l < 255 and |[k(z) — &(2)]| <
19,“;17”51 , and there ezists a unique Lie ternary (o, T,&)—derivation D : A — X such that

I£@) - D) < 2

— 9p—1

(2.9)
for all x € A.

Proof . Put ¢(z,y,u,v,w) = 0(||z||” + [[yll” + [lull” + [[v][” + [[w]?) in Theorem 2.1 O

A C*—ternary algebra is a complex Banach space A, equipped with a ternary product (x,y, z) —
[zyz] of A3 into A, which is C-linear in the outer variables, conjugate C-linear in the middle vari-
able, and associative in the sense that [zy[zwv]] = [z[wzy|v] = [[ryz]wy], and satisfies ||[zyz]]] <
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lz||.Jy|l-]|z]| and [|[zzz]|| = ||=||* (see [8], [21]). Every left Hilbert C*~module is a C*~ternary algebra
via the ternary product [zyz] := (z,y)z.

If a C*—ternary algebra (A, []) has an identity, i.e. an element e € A such that x = [ree] = [eex]
for all x € A, then it is routine to verify that A, endowed with z o y := [zey] and z* := [exe], is a
unital C*—algebra. Conversely, if (A, o) is a unital C*—algebra, then [ryz] := z o y* o z makes A into
a C*-ternary algebra [14].

A Lie (0, 1, &)—ternary derivation L : A — A on a C*~ternary algebra A is called a C*~Lie ternary
(o, T, &)—derivation.

Throughout this section, assume that A is a C*~ternary with norm ||.||4. Let ¢ be a positive
rational number. For a given mapping f: A — A and a given u € C, we define D, f : A" — A by

Dyf (e, ewn) = 3 f(Y anles = 25)) +nf (3 apus) = napy | f(w:)

for all z1,...,2z, € A.
In this section our aim is to establish the Hyers—Ulam stability of C*~Lie ternary (o, 7, £)—derivations
in C*—ternary algebras for the Euler-Lagrange type additive mapping.

Theorem 2.3. Assume that r > 3 if ng > 1 and that 0 < r <1 if ng < 1. Let 0 be a positive real
number, and let f : A — A be an odd mapping for which there exist mappings g,h,k : A — A with
9(0) = h(0) = k(0) = 0 satisfying

(i)

[ Duf (@1, 2)| < GZ [EZal (2.10)

(ii)
lg(qury + - + quan) — qug(r1) — -+ — qug(@a) || < 0@ ]|" + - + [lza]"), (2.11)

(iii)
|Alquay + - + qua,) — quh(zy) — - — quh(z,)[] < O(l|z]|” + - -+ [[2a]]"), (2.12)

(iv)
[k(quar + -+ + quan) — quk(z1) — -+ — quk(@,)|| < 02"+ + |lzal"), (2.13)

such that

1f ([, y, 2]) — [f(@)y2]gnp + L (2)yx]gnmll < 02"+ lyll” + [1z]") (2.14)

for all z,y,z € A. Then there exist unique linear mappings o, 7, and & from A to A and a unique
C*—Lie ternary (o, ,&)—derivation L : A — A satisfying

(i)

no ,
lo() = 0@ < s lel” (2.15)
(if) )
(o) = 7@ < s lel (2.16)
(iii) )
k(@) — (@) < ——— ||, (2.17)
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such that
If(z) = L(x)]| < na = ) || I". (2.18)
Proof . Lettingu=1and z; =--- =2z, =z in , we get
Inf(ngz) —nqf (2)|| < nfllz"
for all x € A. So p
1f (= )—an( )H < (nquﬂ?H’"
for all x € A. So
Ina) 7 (o )l> = (1) ()| (2.19)
l+m—1
< Z (g () = ) ()] (2.20)
+m— nq ] :
< oy Z (nay7 1 2

for all nonnegative integers m and [ with z € A. It follows from (2.19) that the sequence {(ng)™ f (

is a Cauchy sequence for all z € A. Since A is complete, the sequence {(ng)™f(—-%~
So one can define the mapping L : A — A by

7))

R =)} converges

D) = Jim )" S (o

)

for all x € A. Moreover, letting [ = 0 and passing the limit m — oo in (2.19)), we get

m—1

1) - LI < e 3 0

Jj=0

for all z € A. So (2.18) holds for all z € A. It follows from (2.10]) that

Ty Tn
(ng)m™’ "7 (ng)™

IDi L, )| = n}igloo(nq)mllle(

- m—)oo

for all z1,...,z, € A. Thus
DlL(xl,...,$n> =0

for all x1,...,2, € A. By Lemma 3.1 of [15], the mapping L : A — A is Cauchy additive. By the
same reasoning as in the proof of Theorem 2.1 of [14], the mapping L : A — A is linear. Also letting
p=1land 1 =--- =z, =2 in (2.11]), we get

lg(gnz) — gng(z)| < nb||z|"
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forallz € A. So

nod
lg(z )—qng( )II < Tngy

for all x € A. We easily prove that by induction that

H(HQ) g<(nq)l) — (nq) +mg( (nq)H_m)H (2'22)
I+m—1
< ]z:; ||(7ZQ)].9((nq)j) — (nq)H- Q(W)” (2‘23)
o i 1( q)’
= Tnay 2 (nq)m“ o (2.24)

J=i

for all nonnegative integers m and [ with x € A. It follows from ({2.22)) that the sequence {(nq)"g(—5=)}

(ng)™
=)} converges.

is a Cauchy sequence for all z € A. Since A is complete, the sequence {(ng)"g(—=

(ng)™
So one can define the mapping o : A — A by

o) = lim (na)"g( o5

for all z € A. we easily prove that by (2.11)) that o(ux + py) = po(z) + po(y) and by letting I = 0
and taking the limit m — oo in (2.9)), we get

n9 m—1
<
lg(x) = o (2] pppcL ST

(ng)" <=

for all x € A. So ([2.15]) holds for all x € A. similarly, there exist linear mapping 7 and £ on A such
that (2.16)) and (2.17)) hold for all = € A. It follows from ([2.14) that

IL([,y, 2]) = [L(2)yz]ore) + [L(2)y)orell
[ ) ] o X y z
(<nq>3m) () e taglons

( ? ) g o

(n e O el + ol + 1217 =

m—)oo (

= lim (ng)*™

m—o0

for all z,y,z € A. So
L([z,y, 2]) = [L(2)y2)(o,re) — [L(2)y](0,rg)
for all x,y,2z € A. Now, let L' : A — A be another Euler-Lagrange type additive mapping satisfying

(2.18]). Then we have

T

I260) = L@ = ()" |5 - D)
< " |6 = 1|+ | )~ |
2(nq)™m0

= [y —nange 1
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which tends to zero as m — oo for all z € A. So we can conclude that L(z) = L'(x) for all z € A.
This prove the uniqueness of L. Thus the mapping L : A — A is a unique C*~Lie ternary (o, 7,§)—
derivation satisfying and similarly, we can prove that o, 7 and £ are unique on A and the proof
of the theorem is complete. [

Theorem 2.4. Assume that 0 < r <1 ifng > 1 and that r > 3 if nqg < 1. Let 0 be a positive real
number, and let f : A — A be an odd mapping for which there exist mappings g, h,k : A — A with
9(0) = h(0) = k(0) = 0 satisfying (2.10)~([2.14). Then there exist unique linear mappings o, 7, and &
from A to A and a unique C*—Lie ternary (o, T,&)—derivation L : A — A satisfying

(i)

ne
r)—o(x)|| < ——||z||", 2.25
lg(z) —o(z)|| < nq—(nq)r” | (2.25)
(i)
ne
h(z) —1(x)|| < ————||z||", 2.26
(@) = (@)l < sl (226)
(iii)
ne
k(z) —&(x)|| < ———||z||", 2.27
[k(z) = &(2)]| < nq—(nq)’"” | (2.27)
such that 9
r)— Lx)|| < ———||z]||". 2.28
@)~ L@ < o eled (225)
Proof . Letting u=1and x; =--- =z, = z in (2.10), we get

Inf(ngzr) —n’qf ()| < nf|z||"

forallz € A. So . o
_ < T
1) = = floae)] < -

forallz € A. So

1 S SR

I £(0)a) = o () )] 2
[+m—1 1 } 1 "

< 2 gy - gm0l (2.30)
6% (g7

= nq Z (nq)? I (2.31)

j=I

for all nonnegative integers m and [ with x € A. It follows from (2.29)) that the sequence {W f((ng)™z)}

is a Cauchy sequence for all € A. Since A is complete, the sequence {W f((ng)™z)} converges.
So one can define the mapping L : A — A by

L(z) :== lim
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for all z € A. Moreover, letting [ = 0 and passing the limit m — oo in (2.29)), we get

3

—
—~

nq)"
(ng)’

I7(x) ~ L)l <

x||"
. ||l

Il
o

J
for all x € A. So ([2.28)) holds for all x € A. The rest of the proof is similar to the proof of Theorem
23 O

Theorem 2.5. Assume that r > 1 if ng > 1 and that 0 < r < 1 if ng < 1. Let 6 be a positive real
number, and let f : A — A be an odd mapping for which there exist mappings g, h,k : A — A with

9(0) = h(0) = k(0) = 0 satisfying (2.11)~(2.13) and

||Duf<$1,...,l‘n)|| < 9H||x]||r’ (2'32)
j=1
such that
1/ ([z,y,2]) = [f(@)yz]gnm — [F(2yzlgnmll < Ol [yl]"[|=]]" (2.33)

for all x,y,z € A. Then there exist unique linear mappings o, 7, and & from A to A and a unique

C*—Lie ternary (o, 1,&)—derwation L : A — A satisfying (2.15))-(2.17) such that

0

Proof . Let the mapping L : A — A be defined by

L(z) :== lim (ng)™ f(

]|

T

),
for all x € A. It follows from ([2.33)) that

12,9, 2) = L@yl ome) + [Lpaloro |
f(%%%)‘pQﬁw)mﬁwéwme

+PQ£W)@$W$AmW

. (nQ)Sme T T T
< lim )W(Hxll yll"Nl=]") =0

m—o0 (nq

S 3m
= Jim (ng)

for all x € A. So
L([z,y, 2]) = [L(x)y2|0,re) — [L(2)y](o,re)
for all z,y, z € A and the proof of the theorem is complete. [

Theorem 2.6. Assume that r > 1 if ng < 1 and that 0 < r < 1 if ng > 1. Let 6 be a positive real
number, and let f : A — A be an odd mapping for which there exist mappings g,h,k : A — A with
9(0) = h(0) = k(0) = 0 satisfying [2.11)~([2.13)), (2.32) and ([2.33). Then there exist unique linear
mappings o, T, and & from A to A and a unique C*—ternary (o, 7,&)—derivation D : A — A satisfying

(2.25) ~(2.27)) such that

0

1) = Do < s

[|]|™" (2.34)
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Proof . Letting p=1and x; =--- =z, = x in (2.32), we get

Inf(ngz) — n’qf ()| < Of|z||™"
forallz € A. So . o
1) =~ f(ng2)] < ool

forallz € A. So

1 Iy 1 n H—mm
<H§fl|| L f((ngVe) - —— F((ng) )| (2.36)
= g gy |
0 )
< Z el (2.37)

for all nonnegative integers m and [ with x € A. It follows from (2.35)) that the sequence {W f((ng)™z)}
is a Cauchy sequence for all z € A. Since A is complete, the sequence {ﬁ f((ng)™x)} converges.

So one can define the mapping L : A — A by

Ho)= I gy

f((ng)™x)

for all x € A. Moreover, letting [ = 0 and passing the limit m — oo in (2.35]), we get ([2.34]).
Uniqueness L is similar to the proof of Theorem 3.1. Also there exist unique linear mappings o, 7
and ¢ on A similar to the proof of Theorem 2.3 It follows from (2.33) that

L[, y, 2]) = [L(2)yz](0.re) + [L(2)y2] .m0l

= lim_ ﬁﬂf ((ng)*™ [z, y, 2]) — [f((ng)™z)(ng)™y(ng)™ =) g nr)
+ [f((ng)™2)(ng)"y(ng)" ] (g.nx)ll
(ng)*"6

< lim —F—— "yl 1z]|") =0
< Jim Sl el el

for all z,y,z € A. So
L([z,y,2]) = [L(2)y2](0.re) — [L(2)y2](o,rme)
for all z,y, z € A and the proof of the theorem is complete. [
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