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Abstract

In this paper we will prove certain Hadamard and Fejér-Hadamard inequalities for the functions
whose n!" derivatives are convex by using Caputo k-fractional derivatives. These results have some
relationship with inequalities for Caputo fractional derivatives.
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1. Introduction

Fractional calculus is the generalization of classical calculus which is mainly concerned with oper-
ations of integration and differentiation of non—integer (fractional) order. Since 19th century, the
theory of fractional calculus developed rapidly, mostly as a foundation for number of applied disci-
plines which include fractional geometry, fractional differential equations and fractional dynamics.
The applications of fractional calculus are very wide nowadays. Almost no discipline of modern engi-
neering and science remains untouched by the tools and techniques of fractional calculus. Fractional
calculus has wide applications in rheology, viscoelasticity, acoustics, optics, chemical and statistical
physics, robotics, control theory, electrical and mechanical engineering, bioengineering, etc. (see [7]
for details).

The history of fractional calculus is as old as the history of differential calculus. Fractional calculus
is a natural extension of standard mathematics. Fractional calculus also has a lot of applications in the
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fields of science counting rheology, fluid flow, diffusive transport, electrical networks, electromagnetic
theory and probability (see [3]). Fourier, Abel, Lacroix, Leibniz, Letnikov and Grunwald contributed
a lot in this subject (see [6l &, 0] and references there in). We give some preliminaries that we will use
for our results. For this we will define convex functions, Hadamard inequality for convex functions,
Fejér-Hadamard inequality for convex functions, Caputo fractional derivatives and finally Caputo
k—fractional derivatives.

Definition 1.1. A function f: I — R is convex if the following inequality

QA+ (1 =Ay) <Af(x) + (1 =N f(), (1.1)

holds for all z,y € I and A € [0,1]. If reverse of the above inequality holds, then f is said to be
concave function.

Theorem 1.2. Let f : I — R be a convex function defined on interval I of real numbers with
a,b € I and a < b. Then the following inequality holds

It is well known in the literature as the Hadamard inequality [10]. In [5], Fejér established the
following weighted generalization of the Hadamard inequality.

Definition 1.3. Let f : I — R be a convex function defined on interval I of real numbers with
a,b € I and a < b. Then the following inequality holds

f(a+b)/ dx</ f(@)g(x)dz < f(a);f(b) /abg(x)dx’ w3

a+b

where ¢g : I — R is nonnegative, integrable and symmetric to
It is well known in the literature as the Fejér—-Hadamard inequality.

Definition 1.4. Let a > 0 and o ¢ {1,2,3,...}, n = [a] + 1, f € AC"[a, ], the space of func-
tions having nth derivatives absolutely continuous. The left—sided and right-sided Caputo fractional
derivatives of order o are defined as follows:

z (n)
LN = o | et (@20 (14)

(n—a

and

S ) LR T )
€D f)(x) = ) / : at (z<b). (15)

I'n -« t — z)o—ntl

Ifa =n¢€{1,2,3,...} and usual derivative f™(z) of order n exists, then Caputo fractional derivative
(D1 f)(z) coincides with f™(z) whereas (“Dj f)(z) coincides with f(™(z) with exactness to a
constant multiplier (—1)". In particular we have

(D f)(@) = (“Dy_f)(w) = f(x), (1.6)

where n =1 and a = 0.
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For further details see [6].

Fractional integral inequalities play a very important role in establishing the uniqueness of so-
lutions for certain fractional partial differential equations. They provide bounds for the solution
of fractional boundary value problems. Due to these considerations many researchers explore cer-
tain extensions and generalizations of several kinds of inequalities by involving fractional calculus
operators (see, [1, 2 3], 4, 6] and references therein).

In this paper, in Section [2| we define Caputo k-fractional derivatives and utilize them to give the
Hadamard inequality for functions whose nth derivatives are convex. We also find the bound of a
difference of this inequality. In Section |3| we derive the Fejér-Hadamard inequality via Caputo k-
fractional derivatives and find bounds of a difference of this inequality. We also deduce some related
results.

2. Hermite Hadamard inequalities for Caputo k-fractional derivatives

First we give definition of the left sided and the right sided Caputo k-fractional derivatives.

Definition 2.1. Let a > 0,k > 1land a ¢ {1,2,3,...}, n =[a]+ 1, f € AC"[a,b]. The right-sided
and left—sided Caputo k—fractional derivatives of order a are defined as follows:

: )
(€D ) (z) = krml_ g)/ - ft)?nﬂdt (x> a) (2.1)
L) Ja
and
e b g
DN = s [ i <) 22

where I'y(«) is the k~Gamma function defined as:

0o Lk
Fi(a) = / t* e dt,
0
also
Fi(a+ k) = alk(a).

Ifa=n € {1,2,3,...} and usual derivative f(™(z) of order n exists, then Caputo k-fractional deriva-
tive (“D. f)(z) coincides with f(x) whereas (°D,”' f)(z) coincides with f(z) with exactness
to a constant multiplier (—1)".

In particular we have

(“Day () = (CDf)(2) = f(x), (2:3)

where n,k =1 and a = 0. For k£ = 1, Caputo k—fractional derivatives give the definition of Caputo
fractional derivatives. In the following we give the Hadamard inequality for functions whose n'”
derivatives are convex via Caputo k—fractional derivatives.

Theorem 2.2. Let f : [a,b] — R be a function such that f € AC™[a,b], a < b. If f™ is convex on
la,b], then the following inequality for Caputo k—fractional derivatives holds

F0)(a) + £
AU}

(2.4)

) S St [CPED® + (D )] <
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Proof . Since f™ is convex, so

- (M) () 4 £
f<n>( ;y)gf ();rf (v) (2.5)

Let z,y € [a,b], such that o = ta + (1 — t)b,y = (1 — t)a + tb where t € [0,1]. Then from (2.5 we

have

2 fm) (a ’ b) < fO(ta+ (1= 1)B) + f™ (1 — t)a + tb). (26)

Multiplying both sides of above inequality with t"~%~! and integrating over [0, 1], we get

m (@+D g -1gs < f 1—t f (1 —t)a + tb)
2f < > )/t dt e

By change of variables, we have

m (@+D ECe(n— S +Kk) [ o ak O ok
("5 ) < e [COEEDO) + (DN @)] (2.7

Also convexity of f™ gives
F(ta+ (1= 1)) + fO((L = t)a +tb) < f™(a) + f™(b). (2.8)

Multiplying both sides of above inequality with t"~% ~! and integrating over [0, 1], we get

(n) (1— b Lo
/0 f (t?:-n—H t dt+/ f n+Cll+t )dtS [f(n)(a)+f(n)(b)]/0 tn—z—ldt.

Now by change of variables we get

70 (a) + £ )
AU}

(2.9)

krk(n_%_'_k) C no,k _1\n/C ok a
2(b—a)" (©DeE ) + (-1 (Dt )] <

From inequalities obtained in (2.7) and (2.9 we get inequality in (2.4). O

Corollary 2.3. If we take &k = 1, we get the following inequality for Caputo fractional derivatives
4]

a n—ao M) (q (n)
1 (%57) < G (2w + (-1 ) < PO,

For next result we need the following lemma.

Lemma 2.4. Let f : [a,b] — R be a function such that f € AC"[a,b], a < b. If f™+Y) is convex
on |a,b], then the following equality for Caputo k—fractional derivatives holds

f™(a) + f™((b)  kLy(n— ¢ +Fk)
2 2(b—a)" "k

= 5 / (1=t % — %) fO D (ta + (1 - )bt (2:10)

(CDEERB) + (1D ) @)
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Proof . Consider the right hand side

b—a

1
5 / (L=t % —¢" %) fO D (ta + (1 — t)b)dt
0

b—a

73

/ (1 —t)" % fOH (ta 4 (1 — t)b)dt — b ; ¢
0

1
/ "=k fOHD (kg (1 — t)b)dt.
0

Now we compute the first and the second terms of last expression as follows respectively

1

b;a/O (1= )" % f0 Dt + (1 — £)b)dt

_b—a nf%f(")(ta%—(l—t) fM(ta+ (1 —1t)b)
2 [(1—0 a—>b a—b/ (1 —¢t)x—n+t dt
Cb—a [ fMO) n—% [P (b—a\" " f ()

2 [b—a_b—o]z/Q(x—c) b—adx
_ M) kT (n— ¢+ k)

2

_1\n(C nok a
T (VDN

and
b_ @
— 2“/ "% ) (ta + (1 — t)b)dt
0
~b—a [f(")(a) n—%

: / b—a T [ a)
2 b—a b—a J, \b—= b—a
M) KTk (n— 3+ k) ook
2

C )
oo (D0

Hence the required equality can be established. []
Using the above lemma we establish the bounds of a difference of .

Theorem 2.5. Let f : [a,b] — R be a function such that f € AC"[a,b], a < b. If |f"TV] is convex
on |a,b], then the following inequality for Caputo k—fractional derivatives holds

'f(”)(a) £FO0) KTy — g +E)
2

5=t [CDREN0) + ()" CDE )] '
b—a 1 -~ -
< g () e

(2.11)
Proof . Using convexity of |f"*V| and Lemma [2.4] we have
LA TR0 B BB [C0st o) + (17 CDp )
bt [ =0 212
<20 [ e e+

L= )| f" V(o) )t
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_b-a [/ [(1 =% = 8] [0 )|+ (1= L) e

2
+[ [t % = (1 =) F] [l (@) + (1 - t)lf("“)(b)l]dt] :
Now we have

/0 L= = E] SO @) 4+ (L )] 0) e

1 1
1@ | [Tt | t"‘k“dt]ﬂf("*”(b)l [ [ra-orta- | fdt]
0 0 0 0

= /() s

+ [ (b)) [

Similarly

1

("% = (L= )" ] [t f" D (@) + (L= )| fO D (0)dt

o

= 1D @) [

(n+1) _
+ ()] [(n_%+1)(n—%+2) n—¢+1

n—%+2 n—-7+1

Therefore (2.12)) becomes

’f("’(a) £ M2 ) [y

b—a 1 (=t (=t
< f"* P (a)] Z 5 - + ) s e
2 n—2+)n—-%+2) n-5+1 n—¢+2 n—-7+1
+|f(n+1)(a)| 1 _ (%)n7%+1 + |f(n+1)(b)| 1 _ <%)n7%+1 .
n—¢+2 n-—%+1 n—2+)n—-%+2) n-5+1

From which after a little computation we get the required result. [J

Corollary 2.6. If we take k£ = 1, we get the following inequality for Caputo fractional derivatives
4]

‘f(n)(a) +fM0b) Tn—a+]l) [(“D3 ) + (=1)"(“ Dy f)(a)] '

2 2(b—a)r—«
b—a 1 n+1
< oo (17 g ) (72 @1+1£0)])

3. Fejér—-Hadamard inequalities for Caputo k—fractional derivatives

In this section Fejér-Hadamard and Fejér Hadamard—type inequalities for Caputo k—fractional deriva-
tives are given.
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Lemma 3.1. For 0 < A <1 and 0 < a < b, we have
la* — b < (b—a).

In this section we use [|¢™ || = SUD,efap | g™ (z)| and the convolution f * g of functions f and g for
Caputo k—fractional derivatives as follows

(n)
Do) = s [ s (3)

and

o G A A AR ORI
(CDbff*g)(x)_F(n_a) = —Ldt (z <b). (3.2)

Here first we prove the following lemma.

Lemma 3.2. Let g: [a,b] — R be a function such that g € AC™[a,b], a < b. If g is symmetric to
“T“’, then
1

SI(CDEEg) () + (=1)"(“DyFg)(a)].

(Dt g)(b) = (=1)"(“Djg)(a) =

Proof . By definition we have

b ¢ (z)dx
OO = e | et

Substituting x by a + b — x in the above integral we have

1 b g™ (a+b—x)dr
I |

KTy (n — a T — a) —n+1

(“Datg)(b) =

By symmetricity of ¢ we have ¢/ (a + b — z) = ¢ (x), therefore

b g™ (z)dx
R e s A e =

and we have
(“Datg)(b) = (=1)"(°Dyg)(a).
Hence the required equality can be obtained. [
Using above lemma we prove the following results.

Theorem 3.3. Let f : [a,b] — R be a function such that f € AC™[a,b], a < b. Also let f™ be convex
function on [a,b] and g : [a,b] — R be such that g € AC™[a,b]. If g™ is nonnegative, integrable and
symmetric to “*b then the following inequality for Caputo k—fractional derivatives holds

1 (“57) (o + (1o

2
< (ODELfxg)(0) + (1) (DY f # g)(a)

A ; () {(c DFg)(b) + (—1>"(CD§;’“9)(@>} : (3.3)
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Proof . Since f(™ is convex multiplying both sides of inequality 1) with %W and
integrating the resulting inequality over [0, 1], we have

o [a+b g™ (th+ (1 —t)a)dt
2f( ) ( 2 )\/0\ tﬂ—n—‘rl
g/l f(”)(taJr(l—t)bg)g(" (tb+ (1 —t)a) / f™ b+ (1 —t)a)g™ (tb+ (1 — t)a )dt_
B tk_n+1

[e]3

t;—n-{-l

Putting x = tb+ (1 — t)a, we get

(b—z>" S <a+b) /ab (zf(: e
1 / f™(a+b—1)g (n)(‘”)dx+ bwdx]

S0l @oaf o 0
L[ e, / ),

e <b ~wE <x —a)F

By using Lemma[3.2) we get the first inequality of (3.3]). For the second inequality of ([3.3]) multiplying
both sides of inequality (2.8) with W and integrating the resulting inequality over [0, 1] we
get

/f (ta+ (1= 0b)g™ (b + (1~ t)a) , | /f (tb+ (1= a)g™(tb + (1 = H)a)

g—n—i-l tf—n—&—l

from which after using change of variables and a little computation we get the required result. [

Corollary 3.4. If we take k = 1 in Theorem [3.3] we get the following result for Caputo fractional
derivatives [4]

1 (“57) (€290 + (-1 Dg o))

< (“Dg(f *9))(b) + (=1)"(“Dp_(f * 9))(a)
< LU IO (e e, gya) + (-1 Dg)(@)]
Next we need the following lemma.
Lemma 3.5. Let f : [a,b] — R be a function such that f € AC"[a,b], a < b. Also let f™+D pe

convezx on [a,b] and g : [a,b] = R be a function such that g € AC™[a,b]. Then the following equality
for Caputo k-fractional derivatives holds

(n) a (n)
S );f ©) (©DxEg)B) + (-1 (Do) @) = [(CDIEF = 9)(b) + (—1)" (D f + g) ()]
(3.4)
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Proof . We note that

(3.5)

By simple calculation we get

/ab (/at (b_gg%%) FO ()t

)
) |10 Dt o) (B) - (CD‘““(f +9))(0)]

(n)
)| 552zt + (-1 D @) - Cztr g

and

([ e s) f™(a) — "1™ ()
R </ (S—G)z”“d)f W=, (t—a)**nﬂdt

L Ul (“Dfg)(0) + (1" (D5 g)(@)] — (=1)"(“Dyt f * g)(a) | -

Hence by addition (3.4)) is established. [

Theorem 3.6. Let f : [a,b] — R be a function such that f € AC"[a,b], a < b. If | f™*Y] is conver
on [a,b] and g : [a,b] — R is such that g € AC"[a,b]. If g™ is symmetric to “L2, then the following
imequality for Caputo k-fractional derivatives holds

M) (g) + £
PR IO (€ o)) + (-1 D3t0)(@)] - [CD8F# 9)8) + (-1 (CDY*f # g)(a)] ‘

(b — )£ g (-]

T (n—=$+D0k(n— ¢ +Ek) 2"

) (175D @)] + I )]

Proof . Since |f"V] is convex, so we have

t—a

O] < 0|0 @) + T2 )] (36)

where t € [a,b]. From symmetricity of g("), we have

/b g(n)(s) e — /a+bt g(n)(a + bh— S) e /a+bt g(n) (S) s
: (S - a) —n+1 " (b o S)f—n-i-l " (b o 8)%_n+1 .
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This gives

t (n) b (n)
/ T &S) ds —/ _ 9 (as) ds
“ (b _ s)E_”'H . (S o a)g—n—i-l

a+b—t (n)
[,
t (b — S)ﬁ_n—‘rl

a+b—t g™ (s) a+b
< t (b—s)%7n+1 d ) te [CL, 2 ] 3.7
- t Q(H)(S) d t a+b b ( ’ )
fa—l—b—t (b—s)%_"+1 S € [ 2 ]

By virtue of Lemma and inequalities (3.6)), (3.7)) we have
f(a) + £ (b) {
2

(CD3Eg)®) + (1" (CDyFg)@)] ~ [(CDEEf +9)®) + (1) D[ < g)(a)] | (3.8)
9™ ()

1 ath a+b—t bt o
— _J \7) Y v e(n+1) L% p(n+)
= kLk(n — %) [/a </t (b—s)& "t ds) (b—a'f o)l + b—a‘f " (b)|> di
b t w <b_t (n+1) t_ia (n+1) )
+/<“2rb </a+b—t (b— s)%_”ﬂds b— a’f (a)l + h— a|f (b)] ) dt
[ARI
= klg(n — % +k)(b—a) [/a

+[ (( S 13:n>((b_t>|f<"“><a>\+<t—a>|f("*”<b>’)dt

a+b

2 <(b 1 - : a_n> ((b—t)lf(”“)(a)l+(t—a)yf("+1>(b)|) dt

—0)F " (t—a)k

app \(t—a)e ™" (b—t)
We have
oo b
[ (e g omode= [ () - aa
a G-t (t—a)r" app \(t—a)F"  (b—t)F ™
C(—a)E? fn— %41 1
Con—9%+1 \n %+2_2"_%+1 (3.9)
and
ath b
2 1 1 1 1
a - a t_ dt: I - Y b_tdt
[ (e aages) o /a;b(u—aw i) 6
(b—a)" 52 1 1
= —— . 1
n—¢+1 \n—-¢+2 2t (3.10)

Using (3.9) and (3.10)) in (3.8), we get the required result. [J

Corollary 3.7. In Theorem if we put £k = 1, we get the following result for Caputo fractional
derivatives [4]

(FH L0 (g gy + (11 Dg el

—(“Dgf % g)(0) + (=1)"(“Di_f * g)(a)]|

et g | ntl
< (n(i « 4? 1)F(an— a“+ 1) (1 - 2"%) [1F" D @)+ 1 )(b)H '
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Theorem 3.8. Let f : [a,b] — R be a function such that f € AC™*'[a,b], a < b. Also let |f("T1)]e,

q > 1 be convez on [a,b] and g : [a,b] — R be such that g € AC"[a,b]. If g™ is symmetric to £,

then the following inequality for Caputo k—fractional derivatives holds
f(n) a)+ f(n) (b « n a, a n «
W =IO (€ Dgtg)b) + (—17 (D) (@)] - [(CDEEf # 9)(B) + (<1 (DR + 9)(@)]

2
(3.11)

2(b— a)" g™ (1_ 1 )(|f<"+1><a>|q+|f<n+1><b>|q)3
T (n— ¢+ DETh(n— 2+ k)(b—a)s 2"k 2 '

Proof . By Using Lemma |3.5] power mean inequality, inequality (| . and convexity of |f"+1|e
respectively we have

) (p
‘f +f ( ) [(CDZcfg)(b) + (—1)H(CD?L]€9)(G)] _ [(CDakf*g)( ) ( 1)”(CD?lkf*g)(a)

1
1 - b | patb—t (n) 1-g b| patb—t (n)
s [ o] ([
krk(n_ ) LS a t (b_5>k nr a t (b—S)k mt

Q=

‘f(n+1 ‘th:|

=IQ

1
q

B a+b
= e |ds ) dt 95 Nis )t
a krkz(n - %) _/a (/t (b — s)z*n+1 5) + /a2+b (/wat (b — S)Efrﬁl S)
a+b g(n)(s) g(")(s) 3

i) 17 )!th]

LU sJueroras [ (L [750=

<ty (e (- 520))

(Gt EY el C0CET i iy ))] |

(== g+ (b0 7t
From which after a little computation we have the required result. [

Theorem 3.9. Let f : [a,b] — R be a function such that f € AC"*[a,b], a < b. Also let |f("T1)]9,
q > 1 be convex on [a,b] and g : [a,b] — R be such that g € AC"[a,b]. If g™ is symmetric to *$2,
then the following inequalities for Caputo k—fractional derivatives hold

(g (n) k C ok C Mok n(C nHok
0[RS [ ptgym) + (11 C Do) - (€D« 0)0) + (-1 D v o)

25 (b— a)" £l .o (-, )i(|f<n+1><a>|q+|f<"+1><b>|q)3

(np—%’%—l)%kf‘k(n—%—l—k) 2" 2

f™(a) + f (b

(b—s)knt!

Q

iy | PRI (€ g ) + (-1 (C D g) )] — [CDEEF * 9)0) + (-1 (DR  )(0)
6oy il (17 |f<n+1><b>|q>le
_(np—— )ka(n——+k) 2 7

with 0 < a <1, where;—i—%:l.
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Proof . (i) By Using Lemma , Holder’s inequality, inequality (3.7) and convexity of | f"V|?, we
have

‘f(")(a) + ™ (b) [
2

(CDitg)(b) + <—1>”<CD§;’“g><a>] (CDEEf #g)(b) + (=1 (C D3~ % g)()]

Smub /twbt(b—s)g)"*lds dt) ([ 'th)
T s s [ (L

by 4 a
<[ (s =) a

3=

9" (s)
(b—s)snt!

e

1
(n) a+b . . n—a\ P b . n—< . n—%\ P P
< lg Hooa / ((b f)a (¢ a)a ’“) dt+/ ((t a)a FoO t)a k) ”
KL = %) [Ja n—3 n—3 CTANI n—%

bb—t t— 7
| [ (Goarem @i+ s m) d

Now
(A—B)<AT—BY A>DB>0,
gives
[(b— t)’;*% (= a)’;%]p - (b— t)”j*% (- a)fz’*% (3.13)
n—=% n=% (n =% (n =%
for ¢ € [a, “tt] and
(t—a) % (G-t ]" - (t—a)™= %  (b—t)" % (3.14)
n_ﬂ n_g n_ﬁ)p (n—%)p
for ¢ € [%42,b]. Using (3.13) and (3.14) in inequality (3.12) and then solving, we get inequality (i).

(17) Here one can use inequality (3.12)) and Lemma |3.1] 1 3.1 in order to prove inequality (ii). O

Corollary 3.10. If we take £ = 1 in above theorem, we get the following result for Caputo fractional
derivatives [4]

™ (a) + O
= );f D (©D2.9)0) + (-1 Dgg)(a)] ~ (D% £ 9)b) + (-1 D f % g)(a)]

25 (b — a)" g (-5 )i(\f<n+1><a>|q+|f<n+1><b>|q>le

(np—ap+1)rT(n —a+1) 2npap 2

(7)
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(i)

() (g) + F)
PR T0) (€D, g)o) + (-1 (D )ol@)] — (D5 f * 9)6) + (-1 DG f #)(@)

(b — @)™+ ||, (|f<n+1><a>|q + If("“)(b)lq) :
(np—ozp—i—l)if(n—oz—i—l) 2 ’

With0<a§1,where%+%:1.

Acknowledgments

This research work is supported by the Higher Education Commission of Pakistan under NRPU

2016.
References
[1] G.A. Anastassiou, Advances on fractional inequalities, World Scientific, Springer New York Dordrecht Heidelberg
London, 2011.
[2] G.A. Anastassiou, Advanced inequalities, World Scientific, Singapore, 2011.
[3] M. Dalir and M. Bashour, Applications of fractional calculus, Appl. Math. Sci., 4 (2010) 1021-1032.
[4] G. Farid, S. Naqvi and A. Javed, Hadamard and Fejér—Hadamard inequalities and related results via Caputo
fractional derivatives, Bull. Math. Anal. Appl., 9 (2017) 16-30.
[5] L. Fejér, die Fourierreihen, IT, Math. Naturwiss. Anz Ungar. Akad., Wiss, 24 (1906) 369-390. (In Hungarian)
[6] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations, North—
Holland Math. Stud. 204, Elsevier, New York—London, 2006.
[7] M. Lazarevié, Advanced topics on applications of fractional calculus on control problems, System stability and
modeling, WSEAS Press, Belgrade, Serbia, 2012.
[8] K.S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, John
Wiley and Sons, Inc., New York, 1993.
[9] K. Oldham and J. Spanier, The fractional calculus theory and applications of differentiation and integration to
arbitrary order, Academic Press, New York—London 1974.
[10] J. Pecarié, F. Proschan and Y.L. Tong, Convex functions, partial orderings and statistical applications, Academic

Press, New York, 1992.



	Introduction
	Hermite Hadamard inequalities for Caputo k-fractional derivatives
	Fejér–Hadamard inequalities for Caputo k–fractional derivatives

