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Abstract

This communication influences on magnetohydrodynamic flow of viscoelastic fluid with magnetic
field induced by oscillating plate. General solutions have been found out for velocity and shear stress
profiles using mathematical transformations (integral transforms). The governing partial differential
equations have been solved analytically under boundary conditions u(0, t) = A0H(t)sin(Ωt) and
u(0, t) = A0H(t)cos(Ωt) with t ≥ 0. For the sake of simplicity of boundary conditions are verified
on the analytical general solutions and similar solutions have been particularized under three limited
cases namely (i) Maxwell fluid without magnetic field if γ 6= 0,M = 0 (ii) Newtonian fluid with
magnetic field if γ = 0,M 6= 0 and (iii) Newtonian fluid with out magnetic field if γ = 0,M = 0.
Finally various physical parameters with variations of fluid behaviors are analyzed and depicted
graphical illustrations.
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1. Introduction

The analysis of non-Newtonian fluid flows in magnetohydrodynamics (MHD) has diverted attention
of mathematician, engineers and researchers. Because such phenomenon usually arises among various
fields for instance, nuclear fuel debris treatment, the geothermal sources investigation, metal alloys,
optimization of solidification processes of metals and many others. Newtonian fluids are subtle in
contrast with non-Newtonian fluids. Due to this fact, most of resultant governing equations arise
from non-Newtonian fluid when magnetohydrodynamics (MHD) flow is considered, these equations
becomes very complex to solve due to their appearance of nonlinearity. Magnetohydrodynamic non-
Newtonian fluid flows have been studies with various aspects which can be found in recent references
[3], [10], [11], [12], [13]. Due to several applications in engineering and science, flow of electrically
conducting (magnetohydrodynamics) viscoelastic fluids has diverted the interest of researchers. In
geophysics, magnetohydrodynamics is applicable to study and measure the velocities and positions of
frame of reference on the earth’s surface that gets rotations towards the frame of inertial along with
magnetic field. In the geophysical and astrophysical dynamics, magnetohydrodynamics is used for the
analysis of inter planetary and inter stellar matter, solar storms and flares, stellar and solar structure
and several others. MHD in engineering point of view finds its usefulness in industrial equipment
such as MHD boundary layer control of reentry vehicles, MHD generators, MHD pumps, magnetic
drug targeting, MHD bearings, ion propulsion and many others. Keeping the above motivations in
mind, many researchers are busy for sharing valuable contributions regarding magnetohydrodynamics
[1], [2], [4], [5], [6], [7], [8], [9], [14], [15], [16]. However, this article explores the influences on
magnetohydrodynamic flow of viscoelastic fluid with and without magnetic field induced by oscillating
plate. General solutions have been found out for velocity and shear stress profiles using mathematical
transformations (Integral transforms). The governing partial differential equations have been solved
analytically under boundary conditions u(0, t) = A0H(t)sin(Ωt) and u(0, t) = A0H(t)cos(Ωt) with
t ≥ 0. For the sake of simplicity of boundary conditions are verified on the analytical general solutions
and similar solutions have been particularized under three limited cases namely (i) Maxwell fluid with
out magnetic field if γ 6= 0,M = 0 (ii) Newtonian fluid with magnetic field if γ = 0,M 6= 0 and (iii)
Newtonian fluid with out magnetic field if γ = 0,M = 0. Finally various physical parameters with
variations of fluid behaviors are analyzed and depicted graphical illustrations.

2. Formulation of Flow Equations

The electrically conducting flows of an incompressible fluid due to body forces are

∇.W = 0,∇.Q = {Wt + (W.∇)W}ρ+ σM2
0W, (2.1)

where, W is the velocity field, ∇ represents the dell operator, Q is Cauchy stress, ρ is density of
fluid, M0 is the applied magnetic field and t is the time. The assumption of Reynolds number for
small magnetic field is induced uniformly. The Cauchy stress Q in an incompressible Maxwell fluid
is given by

Q = −pI + N,N + λ(Ṅ−PN−NPT ) = µB, (2.2)

where, Q is Cauchy stress,−pI denotes the indeterminate spherical stress, N is extra-stress tensor,
γ is relaxation time, P is the velocity gradient, B = P + PT is the first Rivlin Ericksen tensor, µ is
the dynamic viscosity of the fluid, the superscript T indicates the transpose operation. Velocity is
assumed as W and having an extra-stress tensor N

W = W(y, t) = u(y, t)i,N = N(y, t). (2.3)
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If we consider the fluid is at rest up to the moment t = 0, then

W = (y, 0) = 0,N = (y, 0) = 0, (2.4)

and equations (2.2), (2.3) and (2.4) imply Nyz = Nyy = Nxz = Nzz = 0,(
γ
∂

∂t
+ 1

)
τ(y, t)− µ∂u(y, t)

∂t
= 0. (2.5)

Without body forces, the balance of linear momentum lessens to

∂p

∂x
+ σM2

0u(y, t)− ∂τ(y, t)

∂t
+ ρ

∂u(y, t)

∂t
= 0, σM2

0u(y, t) = −∂p
∂y
, σM2

0u(y, t) = −∂p
∂z
. (2.6)

Eliminating τ between equations(2.5) and (2.6), then the equation are(
γ
∂

∂t
+ 1

)
∂u(y, t)

∂t
= −

(
γ
∂

∂t
+ 1

)
1

ρ

∂p

∂x
+ ν

∂2u(y, t)

∂t2
− σM2

0

ρ

(
γ
∂

∂t
+ 1

)
u(y, t); y, t > 0. (2.7)

The governing equations corresponding to an incompressible MHD Maxwell fluid are(
γ
∂

∂t
+ 1

)
∂u(y, t)

∂y
+ ν

∂2u(y, t)

∂t2
+M

(
γ
∂

∂t
+ 1

)
u(y, t) = 0, (2.8)

(
γ
∂

∂t
+ 1

)
τ(y, t) = µ

∂u(y, t)

∂y
, (2.9)

where M =
σM2

0

ρ
.

3. Initial and Boundary Conditions of the Probelem

Let incompressible MHD Maxwell fluid possessing the space lying over an infinitely oscillating plane
which is positioned in the xz plane and perpendicular to the y-axis. Initially, the fluid is at rest
and at the moment t = 0+ the plane is impulsively brought to velocity u(0, t) = A0H(t)sin(Ωt) or
u(0, t) = A0H(t)cos(Ωt) in its own plane. Due to the shear, the fluid above the plane is gradually
moved. Its velocity is of the form (2.4) and appropriate initial and boundary conditions are as
sketched in Fig. 1.

u(y, 0) =
∂u(y, 0)

∂t
= 0, τ(y, 0) = 0, y > 0, (3.1)

u(0, t) = A0H(t)sin(Ωt), u(0, t) = A0H(t)cos(Ωt), t ≥ 0, (3.2)

naturally

u(y, t),
∂u(y, t)

∂t
→ 0, as y →∞ and t > 0, (3.3)

have to be also satisfied.
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Figure 1: Geometry of the problem under the oscillations of a plate.

4. Solution of Sine Oscillations

4.1. Velocity Field

Employing Fourier sine transform on (2.8) and taking conditions (3.1), (3.2), (3.3). We have

∂us(η, t)

∂t
+ γ

∂2us(η, t)

∂t2
= −νη2us(η, t) + νη

√
2

π
A0H(t)cos(Ωt)−M

(
γ
∂

∂t
+ 1

)
us(η, t), (4.1)

where us(η, t) is Fourier sine transform, H(t) is the Heaviside function and Fourier sine transform is
defined by

us(η, t) =

√
2

π

∫ ∞
0

sin(yη)u(y, t)dy. (4.2)

The following initial conditions are satisfied by Fourier sine transform,

us(η, 0) =
∂us(η, 0)

∂t
= 0, η > 0. (4.3)

Applying the Laplace transform to (4.1), we find that

ūs(η, δ) =

√
2

π

A0 ν η Ω

(δ2 + Ω2)[γδ2 + (1 + γM)δ +M + νη2]
, (4.4)

breaking (4.4) in below expression as in equivalent form

ūs(η, δ) =
A0 ν η Ω

(M + νη2)

√
2

π

[
1

(δ2 + Ω2)
− δ(1 + γδ +Mγ)

(δ2 + Ω2)[γδ2 + (1 + γM)δ +M + νη2]

]
. (4.5)

Inverting (4.5) by Fourier sine transformation, we can write ūs(η, δ)

ū(y, δ) (4.6)

= 2A0νηΩ
π

√
2
π

∫∞
0

ηsin(yη)
(M+νη2)

[
1

(δ2+Ω2)
− δ(1+γδ+Mγ)

(δ2+Ω2)[γδ2+(1+γM)δ+M+νη2]

]
. (4.7)



Influences of magnetic field in viscoelastic fluid 9 (2018) No. 1, 99-109 103

Finally we apply the inverse Laplace transform and its convolution theorem to (4.6), having the
below fact∫ ∞

0

ηsin(yη)

(q2 + η2)
=

2

π
e−qy, q > 0. (4.8)

Velocity field is expressed in multiple integral form as,

u(y, t) = A0H(t)sin(Ωt)e−
√

M
ν
y − 2A0H(t)Ων

πγ(δ1 − δ2)

∫ ∞
0

∫ t

0

ηsin(yη)

(M + νη2)
cosΩ(t− z)

×
[
(1 + γδ1)eδ1z − (1 + γδ2)eδ2z

]
dη dz +

2A0H(t)ΩνM

π(δ1 − δ2)

∫ ∞
0

∫ t

0

ηsin(yη)

(M + νη2)

×cosΩ(t− z)(eδ1t− eδ2t) dη dz, (4.9)

where, δ1, δ2 =
−(1+γM)±

√
(1+γM)2−4γ(M+νη2)

2γ
are the roots of the algebraic equation

γδ2 + (1 + γM)δ + (M + νη2) = 0.

4.2. Shear Stress

Applying Laplace transform to equation (2.9) the expression takes place as,

τ̄(y, δ) =
µ

(1 + γδ)

∂ū(y, δ)

∂y
. (4.10)

Solving (4.6) for partial differentiation, with respect to y, we get

∂ū(y, δ)

∂y

=
2A0νΩ

π

∫ ∞
0

η2cos(yη)

(M + νη2)

[
1

(δ2 + Ω2)
− δ(1 + γδ +Mγ)

(δ2 + Ω2)[γδ2 + (1 + γM)δ +M + νη2]

]
dη.

(4.11)

Substituting equation (4.11) in (4.10), we have

τ̄(y, δ) =
µ

(1 + γδ)

×
[

2A0νΩ

π

√
2

π

∫ ∞
0

η2cos(yη)

(M + νη2)

(
1

(δ2 + Ω2)
− δ(1 + γδ +Mγ)

(δ2 + Ω2)[γδ2 + (1 + γM)δ +M + νη2]

)]
dη.

(4.12)

Simplifying (4.12) for suitable expression of shear stress as

τ̄(y, δ) = − µ

(1 + γδ)

√
M

ν

A0Ω

(δ2 + Ω2)
e−
√

M
ν
y − 2A0νΩµ

π

∫ ∞
0

η2cos(yη)

(M + νη2)

δ

(δ2 + Ω2)

×
(

1

δ − δ1

− 1

δ − δ2

)
dη +

2MA0µΩν

π(δ1 − δ2)

∫ ∞
0

η2cos(yη)

(M + νη2)

δ

(δ2 + Ω2)

×
(

1

(δ − δ1)(1 + δ1γ)
− 1

(δ − δ2)(1 + δ2γ)
+

γ2(δ1 − δ2)

(1 + δ1γ)(1 + δ2γ)(1 + δγ)

)
dη. (4.13)
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Finally, applying inverse Laplace transform on equation (4.13), we get shear stress in integral
form

τ(y, t) = −A0H(t)µ

γ

√
M

ν
e−
√

M
ν
y

∫ t

0

sinΩ(t− z)e
z
γ dz − 2A0H(t)νΩµ

πγ(δ1 − δ2)

∫ ∞
0

η2cos(yη)

(M + νη2)

×cosΩ(t− z)(eδ1z − eδ2z) dη dz +
2MA0H(t)µΩν

π(δ1 − δ2)

∫ ∞
0

η2cos(yη)

(M + νη2)
cosΩ(t− z)

×
(

eδ1z

(1 + δ1γ)
− eδ2z

(1 + δ2γ)
+

γ2(δ1 − δ2)e
−z
γ

(1 + δ1γ)(1 + δ2γ)

)
dη dz. (4.14)

Solution for cosine oscillations: Solution of cosine oscillation is obtained by utilization of similar
algorithm

u(y, t) = A0H(t)cos(Ωt)e−
√

M
ν
y − 2A0H(t)Ων

πγ(δ1 − δ2)

∫ ∞
0

∫ t

0

ηsin(yη)

(M + νη2)
sinΩ(t− z)

×
[
(1 + γδ1)eδ1z − (1 + γδ2)eδ2z

]
dη dz +

2A0H(t)ΩνM

π(δ1 − δ2)

∫ ∞
0

∫ t

0

ηsin(yη)

(M + νη2)

×sinΩ(t− z)(eδ1z − eδ2z) dη dz, (4.15)

τ(y, t) = −A0H(t)µ

γ

√
M

ν
e−
√

M
ν
y

∫ t

0

cosΩ(t− z)e
z
γ dz − 2A0H(t)νΩµ

π

∫ ∞
0

ηcos(yη)

(M + νη2)

×sinΩ(t− z)

(
eδ1z − eδ2z

)
dη dz +

2MA0H(t)µΩν

π(δ1 − δ2)

∫ ∞
0

η2cos(yη)

(M + νη2)
sinΩ(t− z)

×
(

eδ1z

(1 + δ1γ)
− eδ2z

(1 + δ2γ)
+

γ2(δ1 − δ2)e
−z
γ

(1 + δ1γ)(1 + δ2γ)

)
dη dz. (4.16)

5. Particular Cases

5.1. Solutions of Maxwell Fluid M = 0 (Absence of Magnetic Field)
Solutions of Maxwell fluid are obtained when limit M → 0 into equations (4.9), (4.14), (4.15) and
(4.16)

uMS(y, t) = A0H(t)sin(Ωt)− 2A0H(t)Ων

π(δ1 − δ2)

∫ ∞
0

∫ t

0

sin(yη)

η
cosΩ(t− z)

×[(1 + γδ1)eδ1z − (1 + γδ2)eδ2z] dη dz, (5.1)

τMS(y, t) = −2A0H(t)νΩ

π(δ1 − δ2)

∫ ∞
0

∫ t

0

cos(yη)cosΩ(t− z)[eδ1z − eδ2z] dη dz, (5.2)

uMC(y, t) = A0H(t)cos(Ωt)− 2A0H(t)Ων

π(δ1 − δ2)

∫ ∞
0

∫ t

0

sin(yη)

η
sinΩ(t− z)

×[(1 + γδ1)eδ1z − (1 + γδ2)eδ2z] dη dz, (5.3)

τMC(y, t) = −2A0H(t)νΩ

π

∫ ∞
0

∫ t

0

cos(yη)

η
sinΩ(t− z)[eδ1z − eδ2z] dη dz. (5.4)
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5.2. MHD Newtonian Fluid γ = 0 (Presence of Magnetic Field)

Solutions of MHD Newtonian fluid are obtained when limit γ = 0 into equations (4.9),(4.14),(4.15)
and (4.16) along with usage of following facts

limγ→0 δ1 = −(M + νη2), limγ→0 δ2 =∞, limγ→0 γ(δ1 − δ2) = 1

uMNS(y, t)

= A0H(t)sin(Ωt)e−
√

M
ν
y − 2A0H(t)Ων

π

∫ ∞
0

∫ t

0

ηsin(yη)

(M + νη2)
cosΩ(t− z)e−(M+νη2)z dη dz,

τMNS(y, t) = −µA0H(t)

√
M

ν
sin(Ωt) e−

√
M
ν
y − 2A0H(t)νΩµ

π

∫ ∞
0

∫ t

0

η2cos(yη)

(M + νη2)

× cosΩ(t− z)e−(M+νη2)z dη dz,

uMNC(y, t)

= A0H(t)cos(Ωt)e−
√

M
ν
y − 2A0H(t)Ων

π

∫ ∞
0

∫ t

0

ηsin(yη)

(M + νη2)
sinΩ(t− z)e−(M+νη2)z dη dz,

τMNC(y, t) =
2A0H(t)νΩµ

π

∫ ∞
0

∫ t

0

ηcos(yη)

(M + νη2)
sinΩ(t− z)e−(M+νη2)z dη dz.

5.3. Newtonian Fluid γ = 0 and M = 0 (Absence of Magnetic Field)

Solutions of Newtonian fluid are obtained when limit γ = 0 and M = 0 into equations (4.9), (4.14),
(4.15) and (4.16)

uNS(y, t) = A0H(t)sin(Ωt)− 2A0H(t)Ω

π

∫ ∞
0

∫ t

0

sin(yη)

η
cosΩ(t− z)e−νη

2z dη dz,

τNS(y, t) = −2A0H(t)νΩµ

π

∫ ∞
0

∫ t

0

cos(yη)cosΩ(t− z)e−νη
2z dη dz,

uNC(y, t) = A0H(t)cos(Ωt)− 2A0H(t)Ω

π

∫ ∞
0

∫ t

0

sin(yη)

η
sinΩ(t− z)e−νη

2z dη dz,

τNC(y, t) = −2A0H(t)Ωµ

π

∫ ∞
0

∫ t

0

cos(yη)cosΩ(t− z)e−νη
2z dη dz.

It is also worth noted that when γ = 0 then solutions can be recovered for second grade fluid
investigated by [1]. In continuation, When γ = 0 and M = 0 then solutions can also be reduced for
Newtonian fluid traced out by [1] (see equations 40-43).
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6. Conclusion

In this portion, the characteristics of magnetohydrodynamic flow of viscoelastic fluid with and with-
out magnetic field induced by oscillating plate are shown. General solutions have been found out
for velocity and shear stress profiles using mathematical transformations (Integral transforms) under
the sine and cosine boundary conditions u(0, t) = A0H(t)sin(Ωt) and u(0, t) = A0H(t)cos(Ωt) with
t ≥ 0. For the sake of simplicity of boundary conditions are verified on the analytical general solu-
tions and similar solutions have been particularized under three limited cases namely (i). Maxwell
fluid with out magnetic field if γ 6= 0 and M = 0 (ii). Newtonian fluid with magnetic field if γ = 0
and M 6= 0 and (iii). Newtonian fluid with out magnetic field if γ = 0 and M = 0. The bunch
of graphs has been prepared with typical values at different situations for rheological parameters to
reveal some relevant physical aspects. Finally various outcomes are discussed below:
The influence on fluid motion is displayed in Fig. 2 for the sine and cosine oscillations. It is noticed
that by increasing various values of time t = 2.0, 2.2, 2.4, 2.6 the velocity of fluid is increasing on
the entire boundary region which indicates that as time progresses fluid velocity is monotonically
enhanced.

Fig. 3 represents the relaxation γ phenomenon of fluid between 1 ≤ γ ≤ 4, both velocity field as
well as shear stress have strong effects on decreasing fluid behavior as expected.

The viscous effects ν are shown in Fig. 4 in which velocity field is thickening and shear stress
is scattering when viscosity? increases, such phenomenon is termed as shear thinning and shear
thickening.

Impacts of magnetic field M on fluid motion are displayed in Fig. 5 in which velocity field and
shear stress decreases when magnetic parameter increases. As we expected in MHD flow, wall regions
will be balanced if fluid velocity decreases.

Fig. 6 is prepared to analyze the impact of oscillations, It is noted that increase in fluid oscillations
Ω approaches to zero and decays away from the oscillating plate. Meanwhile, Fig. 7 show the behavior
of plate in terms of helical oscillations.

Figs. 8 and 9 are depicted for comparison of four kinds of models i-e Maxwell fluid in presence of
magnetic field, Maxwell fluid in absence of magnetic field, Newtonian fluid in presence of magnetic
field and Newtonian fluid in absence of magnetic field, the motion of fluid flow is contrasting, i-e
velocity field is increasing and shear stress is scattering with respect to different increasing effects of
time parameter t.

Figure 2: Profiles of the velocity field u(y, t) and the shear stress τ(y, t) for MHD Maxwell fluid given by equations
(4.8) and (4.13), for A0 = 1, ν = 0.63, µ = 1.52, γ = 2, M = 0.5, Ω = 1 and different values of t.
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Figure 3: Profiles of the velocity field u(y, t) and the shear stress τ(y, t) for MHD Maxwell fluid given by equations
(4.8) and (4.13), for A0 = 1, ν = 0.63, µ = 1.52, t = 2s, M = 0.5, Ω = 1 and different values of γ.

Figure 4: Profiles of the velocity field u(y, t) and the shear stress τ(y, t) for MHD Maxwell fluid given by equations
(4.8) and (4.13), for A0 = 1, ρ = 2.41, µ = 1.52, γ = 2, M = 0.5, Ω = 1 and different values of ν.

Figure 5: Profiles of the velocity field u(y, t) and the shear stress τ(y, t) for MHD Maxwell fluid given by equations
(4.8) and (4.13), for A0 = 1, ν = 0.63, µ = 1.52, γ = 2, t = 2s, Ω = 1 and different values of ν.

Figure 6: Profiles of the velocity field u(y, t) and the shear stress τ(y, t) for MHD Maxwell fluid given by equations
(4.8) and (4.13), for A0 = 1, ν = 0.63, µ = 1.52, γ = 2, t = 2s, t = 2s and different values of Ω.
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Figure 7: Profiles of the velocity field u(y, t) and the shear stress τ(y, t) for MHD Maxwell fluid given by equations
(4.8) and (4.13), for A0 = 1, ν = 0.63, µ = 1.52, γ = 2, M = 0.5,Ω = 1, and different values of y.

Figure 8: Profiles of the velocity field u(y, t) and the shear stress τ(y, t) for MHD Maxwell fluid, Maxwell fluid, MHD
Newtonian fluid and Newtonian fluid given by equations (4.8), (4.13), (5.1), (5.2), (5.5), (5.6), (5.9) and (5.10) for
A0 = 1, ν = 0.63, µ = 1.52, γ = 2, M = 0.5,Ω = 1, and fixed value for t = 2.5s.

Figure 9: Profiles of the velocity field u(y, t) and the shear stress τ(y, t) for MHD Maxwell fluid, Maxwell fluid, MHD
Newtonian fluid and Newtonian fluid given by equations (4.8), (4.13), (5.1), (5.2), (5.5), (5.6), (5.9) and (5.10) for
A0 = 1, ν = 0.63, µ = 1.52, γ = 2, M = 0.5,Ω = 1, and fixed value for t = 4.0s.
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