
Int. J. Nonlinear Anal. Appl. 9 (2018) No. 1, 117-127
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2017.11240.1549

Numerical resolution of large deflections in
cantilever beams by Bernstein spectral method and
a convolution quadrature

Mohammadkeya Khosravia,∗, Mostafa Janib

aInstitute of Applied Mechanics, Graz University of Technology, Graz, Austria
bDepartment of Mathematics, Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran

(Communicated by M. Eshaghi)

Abstract

The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear
differential equation with the mixed boundary conditions. Different numerical methods have been
implemented by various authors for such problems. In this paper, two novel numerical techniques
are investigated for the numerical simulation of the problem. The first is based on a spectral method
utilizing modal Bernstein polynomial basis. This gives a polynomial expression for the beam con-
figuration. To do so, a polynomial basis satisfying the boundary conditions is presented by using
the properties of the Bernstein polynomials. In the second approach, we first transform the problem
into an equivalent Volterra integral equation with a convolution kernel. Then, the second order
convolution quadrature method is implemented to discretize the problem along with a finite differ-
ence approximation for the Neumann boundary condition on the free end of the beam. Comparison
with the experimental data and the existing numerical and semi–analytical methods demonstrate
the accuracy and efficiency of the proposed methods. Also, the numerical experiments show the
Bernstein–spectral method has a spectral order of accuracy and the convolution quadrature methods
equipped with a finite difference discretization gives a second order of accuracy.
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1. Introduction

In some problems of science and engineering, the governing equation describing the behaviour of
the system, involves a nonlinear term. Depending on the physical features, the nonlinearity may
be replaced with a linear term, then a linear solver is used. However, linearization techniques may
fail to give a good enough approximation, especially when a Taylor based linearization is used over
a nonsmall interval. Among these problems, the large deflection of a cantilever beam modeled by
a nonlinear differential equation with the mixed boundary conditions are concerned in this work.
Displacement of a structural element like a beam is discussed by the deflection that is associated
with the slope of the beam in the current configuration, that is equal to the integral of the slope
function. In mechanical engineering, the evaluation of deflection for a cantilever beam made of
a linear-elastic isotropic material is a well-known classic problem in the strength of materials and
theory of elasticity [6, 12]. In the field of biomechanics, determination of the deflection in vertebrate
long bone as a slender cantilever beam with large deflection is also taken into account [4, 19].

In this work, the large deflection of a cantilever beam subjected to a single load at its end is
considered. The material model of the beam is linear–elastic. The dominant assumption underlying
this work is that our beam behaves as a thin plate with a large deflection that is governed by the theory
of plates and sheets. According to this theory, the behavior of the thin plates with relatively low
resistance to bending are the same as membranes. Bending of such a thin plate leads to strain in the
middle plane. In the case of large deflection for deriving the differential equations, the corresponding
stresses should be taken into account that leads to geometric nonlinearity, thus the equations of
equilibrium are formulated in the deformed state and are updated with the deformation during the
deflection. With respect to the geometric nonlinearity, the bending displacements of a deflected
cantilever beam are obtained from the classical beam theory that is a special case of Timoshenko
beam theory [14].

Following is a short description of other research studies seeking to evaluate the large deflection
of the cantilever beams. Bisshop and Druckerin [3] investigated the large deflection of the cantilever
beams for both the rectangular and round cross-sections. They used a Runge–Kutta method at the
beginning and their solution is recursively corrected with a predictor–corrector. Lee, [10] solved the
same problem for Ludwick type material and combined loading consisting of a uniformly distributed
load and one vertical concentrated load at the free end by Butcher’s fifth order Runge–Kutta method.
Applying the nonlinear shooting method, Banerjee et al. [1] converted the boundary valued problem
into an initial value problem, then with some assumptions on the curvature at the fixed point,
they applied the Runge–Kutta method to the differential equation. Considering the Ludwick type
stress–strain law, a corrected bending moment was introduced by Solano E. Carrillo [18]. It is
demonstrated that for some special cases, the differential equation of large deflection can be solved
by a semi-analytical method. More recently, Kimiaeifar et al. [9] and Maleki et al. [13] presented
homotopy semi–analytical solutions for the large deflection analysis of a cantilever beam under free
end and uniform distributed loads. Considering the critical role of laboratory testing, Beléndez et
al. [2] presented a comparison between laboratory experimental data and theoretical results. They
made a system of a steel ruler of a rectangular section that is fixed at one end and loaded at the free
end with a mass.

In fluid mechanics, especially the gas dynamics, the typical problems represent singularities in
the solutions. However, for the solid mechanics, the solutions naturally represent smooth solutions.
This involves both linear and nonlinear cases. Then the solutions are continuous functions of the
parameters. Therefore by the Weierstrass theorem, the solutions for these problems may be approx-
imated by polynomials to any desired accuracy. This is the idea behind the spectral methods in
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which the basis for expanding the solution is chosen from orthogonal polynomials, commonly Jacobi
polynomials. In this paper, we choose the Bernstein polynomials with the spectral method to simu-
late the nonlinear differential equation modeling the cantilever beam. This basis is not orthogonal,
however with simple features, it provides a good tool for the approximation of differential equations.
Recently many works have used this function along with numerical methods for solving differential,
integro-differential and fractional differential equations, see for instance, [5, 8] and the references
therein.

In this paper, we present a numerical method for the simulation of a cantilever beam expressed as
a boundary value problem with mixed conditions. We first introduce a basis by Bernstein polynomials
satisfying homogeneous mixed boundary conditions. Then, a Bernstein–spectral method is presented
for the numerical simulation of the problem. Also, a convolution quadrature method combined with
a second order backward difference for the handling of the Neumann condition at the free end of
the cantilever is presented for the discretization of the problem. It is discussed that the resulting
nonlinear system has a special structure that makes it possible to be approximated by a linear system.

This paper is organized as follows. Section 2 describes the physical aspects and modeling of a
cantilever beam with regard to the static governing equations of the Euler–Bernoulli beam. Section
3 introduces a basis by Bernstein polynomials in order to use with the spectral method for the
discretization of the problem. In section 4, we we the transformation to a Volterra integral equation
and the convolution quadrature method is presented. The numerical experiments are provided in
Section 5. The paper ends with some concluding remarks.

2. Formulation of the deflection in the cantilever beam

Fig. 1 shows a deflected cantilever beam subjected to one single load and a moment at its end [16, 7].
The Bernoulli–Euler beam equation states at any arbitrary point on the beam, the relationship of
the bending moment and the curvature, κ as [6]

M = EIκ,

where E is the modulus of elasticity, I is the second moment of inertia of the cross section of the
beam with respect to axis y and κ = dθ

ds
. EI is the stiffness of the beam.

2.1. Kinematic Equations

The kinematic equations which describe the motion of every point along the beam are written as [6]

θ =
dw

ds
κ =

d2w

ds2
=
dθ

ds
,

where s is the distance between any arbitrary point and the fixed end of the cantilever beam, w(x) is
transverse displacement, θ is the rotation or slope and κ is the curvature. It is assumed that during
the deflection of the beam, the cross section remains normal to the axis of the beam Fig. 1.

With decomposition of the effect of the end force F and end moment M0 into a pair of horizontal
and a vertical components one obtains,

M(x, y) = EI
dθ

ds
= P (a− x) + nP (b− y) +M0, (2.1)

where the points a and b be the start and the end points of the deflected beam,P andnP are the
horizontal and vertical components and EI is the flexural rigidity of the beam. During deformation,
the length of the beam in initial configuration L, is considered to be constant, thus:

dx

ds
= cos θ,

dy

ds
= sin θ.
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So

x =

∫ s

0

cos θds, y =

∫ s

0

sin θds. (2.2)

Figure 1: Deflected cantilever beam subjected to one single load and a moment at its end.

2.2. Constitutive differential equation

Differentiating equation (2.2) with respect to s, it can be expressed as

EI
d2θ

ds2
= −P dx

ds
− nP dy

ds
. (2.3)

Substituting equations (2.2) and (2.3) for the second derivative of θ respect to the s we get:

d2θ

ds2
= − P

EI
(cos θ + n sin θ), (2.4)

that is a non–linear second order differential equation.

d2θ

ds2
= − P

EI
(cos θ + n sin θ). (2.5)

2.3. Boundary conditions

To solve the second order differential equation (2.5) two boundary conditions are required. For
this special case, the boundary conditions are the mixed one and the boundary value problem is
nonhomogeneous, Fig. 2:

θ(0) = 0,
dθ

ds
|s=L = β =

M0

EI
. (2.6)

Note that when the value of end moment is zero β = 0.
However, This is a typical problem with mixed boundary conditions, This type of problems can

be solved using some numerical methods that use the same idea by introducing auxiliary parameters,
writing the differential equation as an initial value problem and using RK methods [4]. Among
them the Shooting method is well–known. Finite element methods use low order polynomials as
basis functions can effectively give satisfactory solutions, specially for problems with local features.
For example in numerical simulation of car accidents, etc. On the other hand, spectral methods
approximate the solution by using high order polynomials. It is known that these methods provide
accurate results for problems with smooth solutions over the whole domain. Moreover the order of
convergence is spectral, in the sense that it behaves faster than any polynomials order O(hp) [15].
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Figure 2: Cross-sections of the beam remain plane during bending.

3. Bernstein basis polynomials

For a positive integer N , the Bernstein polynomials of degree N over the interval [a, b] are defined as

Bi,N(x) =

(
N

i

)
(x− a)i(b− x)N−i

(b− a)N
i = 0, 1 . . . , N. (3.1)

Here
(
N
i

)
is the binomial coefficient given as

(
N
i

)
= N !

i!(N−i)! and a and b represent the beginning and

end point of the beam. It is convenient to assume that Bi,N(x) ≡ 0 for i < 0 and i > N . The set of
Bernstein polynomials with degree N , i.e., {φi := Bi,N(x) : i = 0, . . . , N} forms a basis for PN , the
space of polynomials with degree less than or equal N .

3.1. Some useful properties of the Bernstein basis to use with the Cantilever beams

Based on the mixed boundary conditions (2.6), we present a basis for solving equation (2.5) that its
properties are in good accordance with the physical properties of the problem.

It can be easily seen that for the boundaries, the values of the Bernstein polynomials are given
by;

φi(a) = δi,0, φi(b) = δi,N , (3.2)

dφi
dx
|x=a =

−N
b− a

(δi,0 − δi,1),
dφi
dx
|x=a =

−N
b− a

(δi,N−1 − δi,N), (3.3)

for 0 ≤ i ≤ N , in which δ stands for the Kronecker delta given by

δi,j =

{
1, i = j,

0, i 6= j.

Based on (3.2) and (3.3) we present the following result.

Theorem 3.1. Let N ∈ N, a, b ∈ R and a < b. The set {Φi}N−1
i=1 defined by

Φi(x) =

{
φi(x), i = 1, . . . , N − 2,

φi(x) + φi+1(x), i = N − 1,
(3.4)

forms a basis for P0
N = {v ∈ PN , v(a) = 0, v′(b) = 0}.
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Proof . Based on (3.2) and (3.3) we derive that Φi ∈ P0
N for i = 1, . . . , N − 1. On the other

hand, dimPN = N + 1 so dimP0
N = N − 1. Therefore, it suffices to prove that {Φi}N−1

i=1 are linear
independent. To see this, let

∑N−1
i=1 ciΦi(x) ≡ 0. Putting x = 1, we get cN = 0. Since Bernstein

polynomials forms a basis, so Φi i = 1, . . . , N−2 are linear independence. Thus the other coefficients
must be zero. �

3.2. Variational formulation of the problem

Considering the new function
θ̄ = θ − βs, (3.5)

it is easy to see that the equation (2.5)–(2.6) is written as the following differential equation with
homogeneous boundary conditions:

d2θ̄

ds2
= − P

EI
(cos(θ̄ + βs) + n sin(θ̄ + βs)), (3.6)

θ̄(0) = 0,
dθ̄

ds
|s=L = 0. (3.7)

This simplifies the formulation of the spectral method described below.
Let a = 0 and b = L and Ω = (0, L). The deflection of the cantilever beam behaves as a continuous

phenomena. The Weierstrass theorem states that the continuous functions can be approximated by
polynomials with any desired accuracy. So we can seek the solution in the space of polynomials
satisfying the boundary conditions, P0

N . The Galerkin weak formulation of the problem (2.5)–(2.6)
is to find Θ̄ ∈ P0

N such that

(
dΘ̄

ds
,
dv

ds
) =

P

EI
(cos Θ̄ + n sin Θ̄, v) ∀v ∈ P0

N , (3.8)

in which the inner product is the standard inner product of the vector space L2(Ω), i.e., (f, g) =∫
Ω
fgds.
Based on the basis functions introduced in Theorem 3.1, let us write

Θ̄(s) =
N−1∑
j=1

ciΦi(s), (3.9)

as an approximate for θ(s), in which the coefficients ci are determined by taking v = Φi, i =
1, . . . , N − 1 and solving the resulting algebraic system. For the ease of computations, we use the
Galerkin method with numerical integration, i.e.,

<
dΘ̄

ds
,
dΦi

ds
>=

P

EI
< cos Θ̄ + n sin Θ̄,Φi >, i = 1, . . . , N − 1. (3.10)

in which < ·, · > stands for the discrete L2-product. A Gauss quadrature is used to perform the
numerical integration.

4. Second approach: convolution quadrature

In this section, we first present briefly the convolution quadrature method. Then, writing the dif-
ferential equation with mixed conditions (3.6)–(3.7) as an equivalent Volterra integral equation, it is
discretized with the second order convolution quadrature method.
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4.1. The convolution quadrature

Convolution quadrature method for approximating integrals of the convolution form, including espe-
cially the fractional derivatives and integrals, was first discovered and analyzed by Lubich [11]. For
the functions k and f , the convolution quadrature approximates the continuous convolution integral∫ s

0

k(s− t)f(t)dt s > 0, (4.1)

at nodes s = sn = mh for m = 1, 2, . . . , with a step size h > 0 with a discrete convolution given by

m∑
j=0

w̄m−jfj, m = 1, . . . ,M, (4.2)

where fj = f(jh) and the convolution quadrature weights are given as the coefficients of the gener-
ating power series

K(
δ(ξ)

h
) =

∞∑
j=0

wjξ
j, (4.3)

w̄m =
wm
2
, w̄j = wj, j 6= m,

in which K is the Laplace transform of k and δ(ξ) = (1− ξ) + (1− ξ)2/2 is the based on the second
order backward difference formula (BDF). The following theorem states the method with the second
order BDF gives a second order accuracy (see for instance [17]).

Theorem 4.1. Let K(s) is analytic and bounded as |K(s)| ≤ M̄ |s− σ|−µ for |arg(s− σ)| < φ with
φ > π

2
for some real µ > 0, M̄ and σ and let f(t) = ctγ−1, γ > 0. Then, the error of the convolution

quadrature approximation (4.2) is written as

|
∫ s

0

k(s− t)f(t)dt−
n∑
j=0

w̄n−jfj| ≤ Ctµ−2h2.

4.2. Application to the deflection of the cantilever beam

Consider the problem (3.6) with mixed boundary conditions (3.7). Let dθ̄
ds
|s=0 = z0. Integrating (3.6)

from 0 to s gives
dθ̄

ds
= z0 −

P

EI

∫ s

0

(cos(θ̄ + βv) + n sin(θ̄ + βv))dv. (4.4)

Integrating again from 0 to s, with changing the order of integration, we get

θ̄(s) = z0s−
P

EI

∫ s

0

(s− v)
(
cos(θ̄(v) + βv) + n sin(θ̄(v) + βv)

)
dv. (4.5)

This is the convolution integral (4.1) with the kernel k(t) = t. Considering (4.5) at s = sm = mh,m =
1, . . . ,M with h = L/M and applying the discrete approximation (4.2), we have the following system
of algebraic equations

θ̄m = z0sm −
P

EI

(
m∑
j=0

w̄m−j
(
cos(θ̄j + βsj) + n sin(θ̄j + βsj)

))
m = 1, . . . ,M.
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Now by (3.5), we get M equations with M + 1 unknowns, z0 and θm,m = 1, . . . ,M as

θm = z0sm + βsm −
P

EI

(
m∑
j=0

w̄m−j (cos θj + n sin θj)

)
m = 1, . . . ,M. (4.6)

We impose an extra equation by using a second order difference approximation to (3.7) as

θ̄M − 4θ̄M−1 + θ̄M−2

2h
= 0.

Equivalently, by (3.5), we get

θM − 4θM−1 + θM−2 + β(sM − 4sM−1 + sM−2) = 0. (4.7)

Since for the convolution integral (4.5), K(s) = 1
s2
, based on Theorem 4.1, the method has a second

order convergence rate as it is verified by the numerical examples in the following section. When
θm,m = 1, . . . ,M are obtained by solving (4.6)-(4.7), then by (2.2), x and y are obtained for instance
by Legendre quadrature.

Note that (4.6) can be written as

θm + λ0 (cos θm + n sin θm)− z0sm = βsm −
P

EI

m−1∑
j=0

w̄m−j (cos θj + n sin θj) ,

for m = 1, . . . ,M, λ0 = − P
EI
w̄0. This is a Now by (4.3), we have w̄0 = K( δ(0)

h
) = 2h2

3
→ 0 as h → 0

with O(h2), so the nonlinear system can be explicitly solved by removing the second term in the
LHS of the above system. Otherwise, it may be solved by using an iterative solver such as successive
iteration method.

5. Numerical results

In this section, we present some numerical experiments based on both Bernstein–spectral method
and the convolution quadrature method for varying parameters.

In Table 1, the numerical results obtained by both collocation and Galerkin Bernstein methods
are reported and compared with the elliptic integral solutions and the Adomian method [1] at s̄ = 1.
It is seen that both the collocation and Galerkin methods give a better accuracy.

[!htb]

Table 1: Comparison of the numerical results for different schemes at s̄ = 1

Loads
Elliptic solution Shooting [1] Bernstein Collocation Bernstein Galerkin
x̄ ȳ ȳ max(ex̄, eȳ) ȳ max(ex̄, eȳ) ȳ max(ex̄, eȳ)

α = 1, κ = 0, n = 1 0.879 0.4292 0.4295 3.20E-04 0.4292 5.73E-05 0.4292 8.48E-06
α = 1, κ = 0.2, n = 1 0.817 0.5139 0.5142 3.90E-04 0.5139 6.16E-05 0.5139 8.46E-06
α = 1, κ = −0.6, n = 1 0.997 0.0456 0.4560 4.10E-01 0.0456 3.12E-05 0.0456 2.00E-06

α = 0.2, κ = −0.6, n = 0.5 0.958 -0.2418 -0.2421 2.50E-04 -0.2418 8.96E-06 -0.2418 8.70E-06

Table 2 presents the errors max(|x − x̄|, |y − ȳ|) for α = 1.4, κ = 0.0 and n = 1 at s̄ = 1 for the
collocation and Galerkin methods. In this table, N represents the number of basis functions used in
the spectral method and the degree of the Adomian polynomials, respectively.
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Table 2: The convergence of the collocation and Galerkin methods and comparison with the Adomian method.

N
Collocation Galerkin Adomian [1]

x̄ ȳ max(ex̄, eȳ) x̄ ȳ max(ex̄, eȳ) x̄ ȳ max(ex̄, eȳ)
2 0.75493 0.58849 9.80E-03 0.76417 0.57924 5.54E-04 0.78308 0.55860 2.01E-02
3 0.75743 0.58545 6.76E-03 0.76393 0.57868 9.35E-05 0.76760 0.57387 4.82E-03
4 0.75743 0.58545 6.76E-03 0.76384 0.57868 6.98E-06 0.75247 0.58839 1.14E-02
5 0.76728 0.57554 3.44E-03 0.76383 0.57869 1.11E-06 0.77050 0.57118 7.50E-03
6 0.76308 0.57940 7.48E-04 0.76383 0.57869 1.19E-06 0.76326 0.57820 5.72E-04
7 0.76375 0.57876 7.96E-05 0.76383 0.57869 1.19E-06 0.76471 0.57681 1.87E-03
8 0.76389 0.57863 5.81E-05 0.76383 0.57869 1.19E-06 0.76454 0.57611 2.57E-03
9 0.76382 0.57870 1.23E-05 0.76383 0.57869 1.19E-06 0.76461 0.57691 1.77E-03

Figure 3: Comparison of the convergence of the collocation and Galerkin method with Adomian, second order and
fourth order methods.

Fig. 3 shows the spectral methods converges faster than the Adomian method, and methods with
polynomial order of convergence O(h2) and O(h4) in general.
In Fig. 4 the deformed configuration of the contilever beam under free–end load and moment beam
configuration obtained by the collocation method is shown for α = 0.8 and α = 1.7.
Table 3 provides the numerical results obtained from the convolution quadrature method (4.6)–(4.7)
with two different configuration. The exact solution is considered with a very fine mesh, h = 0.005.
It is seen that the scheme preserves the second order of accuracy for both cases as it is expected from
Theorem 4.1.

Table 3: Errors with convolution quadrature method at s = 1.
n = 1, κ = 0.4, α = 1 n = 0.5, κ = −0.4, α = 0.2

M x̄ ȳ ex̄ rate eȳ rate x̄ ȳ ex̄ rate eȳ rate
5 0.98710 0.11793 1.79E-03 1.51E-02 0.87273 -0.41989 2.11E-03 3.88E-03
10 0.98848 0.10693 4.06E-04 2.14 4.13E-03 1.87 0.87116 -0.42270 5.48E-04 1.95 1.07E-03 1.86
20 0.98879 0.10387 9.60E-05 2.08 1.08E-03 1.94 0.87075 -0.42349 1.36E-04 2.01 2.78E-04 1.95
40 0.98887 0.10307 2.29E-05 2.07 2.67E-04 2.01 0.87064 -0.42370 3.29E-05 2.05 6.87E-05 2.01
80 0.98888 0.10286 4.97E-06 2.20 5.93E-05 2.17 0.87062 -0.42376 7.17E-06 2.20 1.52E-05 2.18
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Figure 4: Beam configuration

6. Conclusion

We considered the model of a cantilever beam made of a linear–elastic isotropic material, fixed at
one end subjected to a concentrated load at free end. The corresponding mixed nonlinear boundary
value problem was solved using Bernstein polynomials method. For this case the main idea was to
set a basis satisfying the prescribed mixed boundary conditions. Another approach was proposed
based on the convolution quadrature method implemented to an equivalent form of the equation in
terms of a Volterra integral equation. Numerical experiments are carried out for both approaches
and the accuracy of the methods were compared with the elliptic integral solutions and the Adomian
decomposition method. The results show the first approach has a spectral order of accuracy while the
second approach converges with a second order rate. The methods may be used to design cantilever
beams with desired configurations.
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