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Abstract

In this paper, applying hybrid projection method, a new modified Ishikawa iteration scheme is
presented for finding a common element of the solution set of an equilibrium problem and the set
of fixed points of relatively nonexpansive mappings in Banach spaces. A numerical example is given
and the numerical behaviour of the sequences generated by this algorithm is compared with several
existence results in literature to illustrate the usability of obtained results.
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1. Introduction

Let C be a nonempty closed convex subset of a real Banach space E with the dual space E∗. The
equilibrium problem in the sense of Blum and Oettli [6] for a bifunction f : C ×C → R is as follow:

“ find x ∈ E such that f(x, y) ≥ 0, (y ∈ C) ”. (1.1)

The solution set of (1.1) is defined by EP (f) = {x ∈ C : f(x, y) ≥ 0, ∀y ∈ C}.
Assume that S : C → E∗ is a mapping and let f(x, y) = 〈Sx, y − x〉 for all x, y ∈ C. Then

z ∈ EP (f) if and only if z is a solution of the variational inequality 〈Sx, y − x〉 ≥ 0 for all y ∈ C.
So, the formulation (1.1) includes variational inequalities as special cases.
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The equilibrium problem is also known as Ky Fan inequality [13]. Many well-known problems are
formulated as an equilibrium problem, such as the optimization problem, the variational inequality
problem and nonlinear complementarity problem, the saddle point problem, the generalized Nash
equilibrium problem in game theory, the fixed point problem and others; (see [22, 25]). In the other
words, numerous problems in applied sciences reduce to find a solution of an equilibrium problem.
For this reason, solving the equilibrium problem is very interesting and therefore some methods have
been proposed to solve the equilibrium problem; see for instance [6, 12, 15, 18, 21].

Recently, many iteration processes were introduced by mathematicians for finding a common
element of the set of fixed points of a nonlinear mapping and the solution set of an equilibrium
problem in the framework of Hilbert spaces and Banach spaces, respectively; see for instance, [3],
[4], [10, 11], [23]-[27], [31] and the references therein. The most useful processes are Mann [19] and
Ishikawa [16] iteration processes.

Ishikawa process is indeed more general than Mann process. In spite of this fact, research has
been done on the latter due probably to reasons that the formulation of Mann process is simpler than
that of Ishikawa process and that a convergence theorem for Mann process may lead to a convergence
theorem for Ishikawa process under appropriate conditions. On the other hand, the Mann process
may fail to converge while Ishikawa process can still converge for a Lipschitz pseudocontractive
mapping in a Hilbert space [9]. Actually, Mann and Ishikawa iteration processes have only weak
convergence, in general (see [14]).

In 2009, Takahashi and Zembayashi [28] for finding an element of EP (f)∩ F (S), introduced the
following iterative scheme for a relatively nonexpansive self mapping S of a nonempty, closed convex
subset C in a Banach space E:

u1 ∈ H chosen arbitrarily,

un ∈ C such that f(xn, y) + 1
rn
〈y − xn, Jxn − Jun〉 ≥ 0, ∀ y ∈ C,

un+1 = J−1(αnJxn + (1− αn)JSxn),

for all n ∈ N, where f : C × C → R, {αn} and {rn} satisfy appropriate conditions and F (S)
is fixed points set of S. They proved that {un} converges weakly to w ∈ F (S) ∩ EP (f), where
w = lim

n→∞
ΠF (S)∩EP (f)xn.

In this paper, motivated by Takahashi-Zembayashi [28], we modify Ishikawa iteration process for
finding a common element of the solution set of an equilibrium problem and the set of fixed points
of a relatively nonexpansive mapping by applying the hybrid projection method in Banach spaces.
We give a numerical example to illustrate the usability of our results.

2. Preliminaries

Let E be a real Banach space with the dual space E∗ and C be a nonempty closed convex subset of
E. We denote the weak convergence and the strong convergence of {xn} to x ∈ E by xn ⇀ x and
xn → x, respectively. A Banach space E is said to be strictly convex if ‖x+y

2
‖ < 1 for all x, y ∈ E

with ‖x‖ = ‖y‖ = 1 and x 6= y. It is also said to be uniformly convex if for every ε ∈ (0, 2], there
exists a δ > 0, such that ‖x+y

2
‖ < 1 − δ for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ ε.

Furthermore, E is called smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

, (2.1)
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exists for all x, y ∈ BE = {x ∈ E : ‖x‖ = 1}. It is also said to be uniformly smooth if the limit (2.1)
is attained uniformly for all x, y ∈ BE. It is well known that E is uniformly convex if and only if E∗

is uniformly smooth.
We denote by J the normalized duality mapping from E into 2E∗

which is defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2},

for all x ∈ E, where 〈., .〉 denotes the generalized duality pairing between E and E∗. Some properties
of the normalized duality mapping are listed in the following:

1. For every x ∈ E, Jx is nonempty closed convex and bounded subset of E∗.

2. If E is smooth or E∗ is strictly convex, then J is single-valued.

3. If E is strictly convex, then J is one-one, i.e., if x 6= y then Jx ∩ Jy = ∅.
4. If E is reflexive, then J is onto.

5. if E is smooth and reflexive, then J is norm-to-weak continuous.

6. If E is smooth, strictly convex and reflexive and J∗ : E∗ → 2E is the normalized duality
mapping on E∗, then J−1 = J∗, JJ∗ = IE∗ and J∗J = IE, where IE and IE∗ are the identity
mapping on E and E∗, respectively.

7. If E is uniformly convex and uniformly smooth, then J is uniformly norm-to-norm continuous
on bounded sets of E and J−1 = J∗ is also uniformly norm-to-norm continuous on bounded
sets of E∗.

The duality mapping J is said to be weakly sequentially continuous if xn ⇀ x implies that Jxn ⇀ Jx
in weak∗ topology. For more details see [1].

Let E be a smooth Banach space. The function φ : E × E → R is defined as follows:

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2,

for all x, y ∈ E. It is clear from the definition of φ that for all x, y, z ∈ E,

1. (‖y‖ − ‖x‖)2 ≤ φ(x, y) ≤ (‖y‖+ ‖x‖)2,
2. φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉.

It is clear that if E is a Hilbert space, then φ(x, y) = ‖x− y‖2.
In 1996, Alber [2], defined the concept of the generalized projection mapping as sequel. Assume

that C is a nonempty, closed convex subset of a smooth, strictly convex and reflexive Banach space
E. The generalized projection ΠC : E → C is a mapping that assigns to an arbitrary point x ∈ E the
minimum point of the functional φ(y, x), i.e., ΠCx = x0, where x0 is the solution to the minimization
problem

φ(x0, x) = inf
y∈C

φ(y, x).

Existence and uniqueness of the operator ΠC follow from the properties of the functional φ(y, x)
and strict monotonicity of the mapping J .

Let S be a self-mapping of C. A point p in C is said to be an asymptotic fixed point of S [24], if
there exists a sequence {xn} in C such that xn ⇀ p and ‖xn − Sxn‖ → 0. We denote by F̂ (S) the
set of all asymptotic fixed points of S. A self-mapping S of C is said to be relatively nonexpansive
[7, 8], if the following conditions are satisfied:

1. F (S) is nonempty;

2. φ(u, Sx) ≤ φ(u, x), ∀u ∈ F (S), ∀x ∈ C;
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3. F (S) = F̂ (S).

Lemma 2.1. [20] Let C be a nonempty, closed convex subset of a smooth, strictly convex and
reflexive Banach space E and let S be a relatively nonexpansive self-mapping of C. Then F (S) is
closed and convex.

Some well-known properties of generalized metric projection are listed below. We will use them in
the proof of our main results in next section.

Lemma 2.2. [2] Let C be a nonempty, closed convex subset of a smooth, strictly convex and reflexive
Banach space E. Then

(i) φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y), for all x ∈ C and all y ∈ E.

(ii) z = ΠCx⇐⇒ 〈y − z, Jx− Jz〉 ≤ 0, for all y ∈ C.

Lemma 2.3. [30] Let E be a uniformly convex Banach space and r > 0. Then there exists a strictly
increasing, continuous and convex function g : [0, 2r]→ R such that g(0) = 0 and

‖tx+ (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1− t)g(‖x− y‖),

for all x, y ∈ Br and t ∈ [0, 1], where Br = {z ∈ E : ‖z‖ ≤ r}.

Lemma 2.4. [17] Let E be a uniformly convex Banach space and r > 0. Then there exists a strictly
increasing, continuous and convex function g : [0, 2r]→ R such that g(0) = 0 and

g(‖x− y‖) ≤ φ(x, y),

for all x, y ∈ Br.

To study the equilibrium problem, for the bifunction f : C × C → R, we assume that f satisfies
the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,
lim
t↓0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) for each x ∈ C, y 7→ f(x, y) is convex and lower semicontinuous.

Lemma 2.5. [6] Let C be a nonempty, closed convex subset of a smooth, strictly convex and reflexive
Banach space E, f be a bifunction from C ×C to R satisfying (A1)− (A4) and let r > 0 and x ∈ E.
Then, there exists z ∈ C such that

f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0,

for all y ∈ C.

Lemma 2.6. [28] Let C be a nonempty, closed convex subset of a smooth, strictly convex and
reflexive Banach space E, f be a bifunction from C × C to R satisfying (A1) − (A4) and let r > 0
and x ∈ E. Define a mapping Tr : E → C as follows:

Tr(x) = {z ∈ C : f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C},

for all x ∈ E. Then, the following statements hold:
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(i) Tr is single-valued;

(ii) Tr is firmly nonexpansive-type, i.e., for all x, y ∈ E,

〈Trx− Try, JTrx− JTry〉 ≤ 〈Trx− Try, Jx− Jy〉;

(iii) F (Tr) = EP (f);

(iv) EP(f) is closed and convex and Tr is relatively nonexpansive mapping.

Lemma 2.7. [28] Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E, let f be a bifunction from C×C to R satisfying (A1)− (A4) and let r > 0.
Then for x ∈ E and p ∈ F (Tr),

φ(p, Trx) + φ(Trx, x) ≤ φ(p, x).

3. Main Results

In this section, we prove some weak convergence theorems for finding an element of the solution set
of an equilibrium problem which is a fixed point of a relatively nonexpansive mapping.

Proposition 3.1. Let C be a nonempty closed convex subset of a uniformly smooth and uniformly
convex Banach space E. Assume that f is a bifunction from C×C to R satisfying (A1)−(A4) and S
is a relatively nonexpansive self-mapping of C with F (S)∩EP (f) 6= ∅. Suppose that 0 < a ≤ αn ≤ 1
and {rn} ⊂ (0,∞) and {βn} is a sequence in [0, 1] such that lim inf

n→∞
βn(1 − βn) > 0. If {xn} is a

sequence generated by u1 ∈ E and
xn ∈ C such that f(xn, y) + 1

rn
〈y − xn, Jxn − Jun〉 ≥ 0, ∀ y ∈ C,

yn = J−1((1− βn)Jxn + βnJSxn),

un+1 = J−1((1− αn)Jxn + αnJSyn),

for all n ∈ N, then {ΠF (S)∩EP (f)xn} converges strongly to w ∈ F (S) ∩ EP (f), where ΠF (S)∩EP (f) is
the generalized projection of E onto F (S) ∩ EP (f).

Proof . Suppose that u ∈ F (S) ∩ EP (f). Letting xn = Trnun for all n ∈ N, since Trn and also S
are relatively nonexpansive, we have

φ(u, yn) = φ(u, J−1(1− βn)Jxn + βnJSxn)

= ‖u‖2 − 2〈u, (1− βn)Jxn + βnJSxn〉+ ‖(1− βn)Jxn + βnJSxn‖2

≤ ‖u‖2 − 2(1− βn)〈u, Jxn〉 − 2βn〈u, JSxn〉+ (1− βn)‖xn‖2 + βn‖Sxn‖2

≤ φ(u, xn)

and therefore

φ(u, xn+1) = φ(u, Trn+1un+1)

≤ φ(u, un+1)

= φ(u, J−1((1− αn)Jxn + αnJyn)

≤ ‖u‖2 − 2(1− αn)〈u, Jxn〉 − 2αn〈u, Jun〉+ (1− αn)‖xn‖2 + αn‖Syn‖2

≤ φ(u, xn).

(3.1)
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Then, we can conclude that lim
n→∞

φ(u, xn) exists. Therefore φ(u, xn) is bounded and so {xn} and

{yn} are bounded. On the other hand, since S is relatively nonexpansive, so {Sxn} and {Syn} are
bounded. Put zn = ΠF (S)∩EP (f)xn for all n ∈ N. Therefore from zn ∈ F (S) ∩ EP (f) and (3.1), we
get

φ(zn, xn+1) ≤ φ(zn, xn). (3.2)

Since ΠF (S)∩EP (f) is the generalized projection, from Lemma 2.2 (i), we obtain

φ(zn+1, xn+1) = φ(ΠF (S)∩EP (f)xn+1, xn+1)

≤ φ(zn, xn+1)− φ(zn,ΠF (S)∩EP (f)xn+1)

= φ(zn, xn+1)− φ(zn, zn+1)

≤ φ(zn, xn+1).

So, using (3.2) we derive that
φ(zn+1, xn+1) ≤ φ(zn, xn).

Hence, {φ(zn, xn)} is a convergent sequence. Also, from (3.2) we can conclude that

φ(zn, zn+m) ≤ φ(zn, xn),

for all n ∈ N. Utilizing Lemma 2.2 (i), we get

φ(zn, zn+m) + φ(zn+m, xn+m) ≤ φ(zn, xn+m) ≤ φ(zn, xn),

because of zn+m = ΠF (S)∩EP (f)xn+m and therefore

φ(zn, zn+m) ≤ φ(zn, xn)− φ(zn+m, xn+m).

Put r = sup
n∈N
‖zn‖ . By Lemma 2.4, there exists a continuous, strictly increasing and convex function

g : [0, 2r]→ R whit g(0) = 0 such that

g(‖x− y‖) ≤ φ(x, y),

for all x, y ∈ Br. Then, we have

g(‖zn − zn+m‖) ≤ φ(zn, zn+m) ≤ φ(zn, xn)− φ(zn+m, xn+m).

Using the convergence of {φ(zn, xn)} and the property of g, we can conclude that {zn} is a Cauchy
sequence. From closedness of F (S) ∩ EP (f), we derive that {zn} is convergent strongly to w ∈
F (S) ∩ EP (f). �

Theorem 3.2. Let C be a nonempty closed convex subset of a uniformly smooth and uniformly
convex Banach space E. Assume that f is a bifunction from C ×C to R satisfying (A1)− (A4) and
S is a relatively nonexpansive self-mapping of C with F (S)∩EP (f) 6= ∅. Assume that 0 < a ≤ αn ≤ 1
and {rn} ⊂ (0,∞) and {βn} is a sequence in [0, 1] such that lim inf

n→∞
βn(1 − βn) > 0. Suppose that

{xn} is a sequence generated by u1 ∈ E and
xn ∈ C such that f(xn, y) + 1

rn
〈y − xn, Jxn − Jun〉 ≥ 0, ∀ y ∈ C,

yn = J−1((1− βn)Jxn + βnJSxn),

un+1 = J−1((1− αn)Jxn + αnJSyn),

for all n ∈ N, where J is the duality mapping on E. If J is weakly sequentially continuous, then
{xn} converges weakly to w ∈ F (S) ∩ EP (f), where w = lim

n→∞
ΠF (S)∩EP (f)xn.
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Proof . Similar to the proof of Proposition 3.1, we can conclude that {xn} and {Sxn} are bounded.
Put r = sup

n∈N
{‖xn‖, ‖Sxn‖}. Since E is a uniformly smooth Banach space, we can conclude that E∗

is a uniformly convex Banach space. So, by Lemma 2.3, there exists a continuous, strictly increasing
and convex function g : [0, 2r]→ R whit g(0) = 0 such that for u ∈ F (S) ∩ EP (f) we have

φ(u, yn) = φ(u, J−1(1− βn)Jxn + βnJSxn)

≤ ‖u‖2 − 2(1− βn)〈u, Jxn〉 − 2βn〈u, JSxn〉+ (1− βn)‖xn‖2 + βn‖Sxn‖2

− (1− βn)βng(‖Jxn − JSxn‖)
= βnφ(u, xn) + (1− βn)φ(u, Sxn)− βn(1− βn)g(‖Jxn − JSxn‖)
≤ φ(u, xn)− βn(1− βn)g(‖Jxn − JSxn‖),

so, using last inequality and convexity of ‖.‖2, we get

φ(u, xn+1) = φ(u, Trn+1un+1)

≤ φ(u, un+1)

= φ(u, J−1((1− αn)Jxn + αnJSyn)

≤ ‖u‖2 − 2(1− αn)〈u, Jxn〉 − 2αn〈u, JSyn〉+ (1− αn)‖xn‖2 + αn‖Syn‖2

= (1− αn)φ(u, xn) + αnφ(u, Syn)

≤ (1− αn)φ(u, xn) + αnφ(u, xn)− αnβn(1− βn)g(‖Jxn − JSxn‖)
≤ φ(u, xn)− αnβn(1− βn)g(‖Jxn − JSxn‖),

(3.3)

hence
αnβn(1− βn)g(‖Jxn − JSxn‖) ≤ φ(u, xn)− φ(u, xn+1).

Since 0 < a ≤ αn ≤ 1, it is easy to see that

aβn(1− βn)g(‖Jxn − JSxn‖) ≤ φ(u, xn)− φ(u, xn+1). (3.4)

Since {φ(u, xn)} is convergent and lim inf
n→∞

βn(1− βn) > 0, it follows from (3.4) that

lim
n→∞

g(‖Jxn − JSxn‖) = 0.

Hence, from property of g, we get

lim
n→∞

‖JSxn − Jxn‖ = 0. (3.5)

Utilizing uniformly norm-to-norm continuity of J−1 on bounded sets, we conclude that

lim
n→∞

‖xn − Sxn‖ = 0. (3.6)

Also, boundedness of {xn} implies that the existence of a subsequence {xnk
} of {xn} such that

xnk
⇀ x̂ ∈ C. Since S is relatively nonexpansive, we can conclude from (3.6) that x̂ ∈ F̂ (S) = F (S).
Now, We prove that x̂ ∈ EP (f). Put s = sup

n∈N
{‖xn‖, ‖un‖} . Utilizing Lemma 2.4, there exists a

continuous, strictly increasing and convex function g1 : [0, 2r]→ R whit g1(0) = 0 such that

g1(‖x− y‖) ≤ φ(x, y),
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for all x, y ∈ Bs. Letting xn = Trnun it follows from Lemma 2.7 and (3.3) that for u ∈ F (S)∩EP (f),

g1(‖x− y‖) ≤ φ(xn, un) ≤ φ(u, un)− φ(u, xn) ≤ φ(u, xn−1)− φ(u, xn).

The convergence of {φ(u, xn)} implies that

lim
n→∞

g1(‖xn − un‖) = 0.

Using the property of g1, we derive that

lim
n→∞

‖xn − un‖ = 0.

Utilizing uniformly norm-to-norm continuity of J on bounded sets, we obtain

lim
n→∞

‖Jxn − Jun‖ = 0.

Since lim inf
n→∞

rn > 0, we get

lim
n→∞

‖Jxn − Jun‖
rn

= 0. (3.7)

From xn = Trnun, we have

f(xn, y) +
1

rn
〈y − xn, Jxn − Jun〉 ≥ 0, (3.8)

for all y ∈ C. Substituting n by nk in (3.8) and using condition (A2), we obtain

1

rnk

〈y − xnk
, Jxnk

− Junk
〉 ≥ −f(xnk

, y) ≥ f(y, xnk
),

for all y ∈ C. Letting k →∞ in last inequality, it follows from (3.7) and condition (A4) that

0 ≥ f(y, x̂),

for all y ∈ C. Suppose that t ∈ (0, 1], y ∈ C and yt = ty+(1−t)x̂. Therefore, yt ∈ C and f(yt, x̂) ≤ 0.
Hence

0 = f(yt, yt) ≤ tf(yt, y) + (1− t)f(yt, x̂) ≤ tf(yt, y),

so, f(yt, y) ≥ 0, for all y ∈ E. Taking the limit as t ↓ 0 and using (A3), we get x̂ ∈ EP (f). Then,

x̂ ∈ F (S) ∩ EP (f). (3.9)

Put zn = ΠF (S)∩EP (f)xn. From Lemma 2.2 (ii) and (3.9), we have

〈znk
− x̂, Jxnk

− Jznk
〉 ≥ 0.

Taking the limit as k →∞ in last inequality, from Proposition 3.1 we conclude that

〈w − x̂, Jx̂− Jw〉 ≥ 0,

since zn → w ∈ F (S) ∩EP (f) and J is weakly sequentially continuous. On the other hand, since J
is monotone, we get

〈w − x̂, Jx̂− Jw〉 ≤ 0.

Therefore
〈w − x̂, Jx̂− Jw〉 = 0.

Using strictly convexity of E, we derive that w = x̂. Hence, xn ⇀ x̂ ∈ F (S) ∩ EP (f), where
x̂ = lim

n→∞
ΠF (S)∩EP (f)xn. �
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Corollary 3.3. Let C be a nonempty closed convex subset of a uniformly smooth and uniformly
convex Banach space E. Suppose that S is a relatively nonexpansive self-mapping of C with F (S) 6=
∅. Assume that 0 < a ≤ αn ≤ 1 and {rn} ⊂ (0,∞) and {βn} is a sequence in [0, 1] such that
lim inf
n→∞

βn(1− βn) > 0. Suppose that {xn} is a sequence generated by u1 ∈ E and
xn ∈ C such that 〈y − xn, Jxn − Jun〉 ≥ 0, ∀ y ∈ C,
yn = J−1((1− βn)Jxn + βnJSxn),

un+1 = J−1((1− αn)Jxn + αnJSyn),

for all n ∈ N, where J is the duality mapping on E. Suppose that J is weakly sequentially continuous,
then, {xn} converges weakly to w ∈ F (S), where w = lim

n→∞
ΠF (S)xn.

Proof . Letting f(x, y) = 0 for all x, y ∈ C and rn = 1 for all n ∈ N in Theorem 3.2, we get the
desired result. �

Corollary 3.4. Let C be a nonempty closed convex subset of a uniformly smooth and uniformly
convex Banach space E. Suppose that f is a bifunction from C ×C to R satisfying (A1)− (A4) and
S is a relatively nonexpansive self-mapping of C with F (S)∩EP (f) 6= ∅. Assume that {rn} ⊂ (0,∞)
and {βn} is a sequence in [0, 1] such that lim inf

n→∞
βn(1 − βn) > 0. Suppose that {xn} is a sequence

generated by u1 ∈ E and
xn ∈ C such that f(xn, y) + 1

rn
〈y − xn, Jxn − Jun〉 ≥ 0, ∀ y ∈ C,

yn = J−1((1− βn)Jxn + βnJSxn),

un+1 = Syn,

for all n ∈ N, where J is the duality mapping on E. If J is weakly sequentially continuous, then,
{xn} converges weakly to w ∈ F (S) ∩ EP (f), where w = lim

n→∞
ΠF (S)∩EP (f)xn.

Proof . Letting αn = 1 for all n ∈ N in Theorem 3.2, we get the desired result. �

4. Numerical example

In this section, we present a numerical example to illustrate our algorithm which is given in Theorem
3.2. Also, we compare the numerical behaviour of the sequences generated by our algorithm with
several existence results in literature to demonstrate the usability of our results.

Example 4.1. Let E = R and C = [−3, 3]. Define f(x, y) := −4x2 + 3xy + y2, so the conditions
(A1)− (A4) are satisfied as follows:

(A1) f(x, x) = −4x2 + 3x2 + x2 = 0 for all x ∈ [−3, 3],

(A2) f(x, y) + f(y, x) = −3(x− y)2 ≤ 0 for all x, y ∈ [−3, 3], i.e., f is monotone,

(A3) for each x, y, z ∈ [−3, 3],

lim
t↓0

f(tz + (1− t)x, y) = lim
t↓0

(−4(tz + (1− t)x)4 + 3(tz + (1− t)x)y + y2)

= −4x2 + 3xy + y2

= f(x, y),
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(A4) It is easily seen that for each x ∈ [−3, 3], y → (−4x2 + 3xy + y2) is convex and lower semicon-
tinuous.

Moreover,
1

r
〈y − x, x− u〉 =

1

r
(y − u)(x− u) =

1

r
(yx− uy − x2 + ux).

It follows from condition (i) of Lemma 2.6 that Tr is Single-valued. Let u = Trx, for any y ∈ [−3, 3]
and r > 0, we have

f(x, y) +
1

r
〈y − u, x− u〉 ≥ 0.

Thus
−4rx2 + 3rxy + ry2 + yx− uy − x2 + ux

= ry2 + (3rx+ x− u)y − 4ru2 − x2 + ux

≥ 0.

Now, let a = r, b = 3rx+ x− u and c = −4ru2− x2 + ux. Hence, we should have ∆ = b2− 4ac ≤ 0,
i.e.,

∆ = ((3r + 1)x− u)2 − 4rx(4rx− x+ u)

= 25r2x2 + 10rx2 + x2 + u2 − 10rxu− 2xu

= ((5r + 1)x− u)2

≤ 0.

So, it follows that x = u
5r+1

and Tru = u
5r+1

. This implies that in Theorem 3.2, xn = Trnun = un

5rn+1
.

Since F (Trn) = 0, from condition (iii) of Lemma 2.6, we get EP (f) = {0}.
Now, define S : C → C by Sx = 1

4
x for all x ∈ C, then F (S) = {0} and

φ(0, Sx) = φ(0,
1

4
x) =

∣∣∣∣0− 1

4
x

∣∣∣∣2 ≤ |x|2 = φ(0, x),

for all x ∈ C. Let xn ⇀ p such that lim
n→∞

|Sxn − xn| = 0, this yields that F̂ (S) = {0}. Hence,

F̂ (S) = F (S), i.e., S is a relatively nonexpansive mapping.

Figure 1: The convegence behavior of the sequence {un} with starting point u1 = 0.5.

Define αn = 1
3
− 1

5n
, βn = 1

4
+ 1

3n
and rn = 1

5
, then {αn}, {βn} and {rn} satisfy in the conditions

of Theorem 3.2. Since in a Hilbert space the mapping J is identity and xn = 1
2
un, we get

yn =
1

2

(
3

4
− 1

3n

)
un +

1

8

(
1

4
+

1

3n

)
un =

(
13

32
− 1

8n

)
un,
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Figure 2: The convegence behavior of the sequence {un} with starting point u2 = −2.

Table1 Numerical Results for u1 = 0.5 and u2 = −2

n un n un

1 0.5 1 −2
2 0.20169 2 −0.80677
3 0.07886 3 −0.31542
4 0.03035 4 −0.12141
5 0.01157 5 −0.04629
...

...
...

...
18 3.20783× 10−8 18 −1.28313× 10−7

19 1.18963× 10−8 19 −4.75851× 10−8

20 4.40955× 10−9 20 −1.76382× 10−8

...
...

...
...

48 3.40246× 10−21 48 −1.36098× 10−20

49 1.25416× 10−21 49 −5.01663× 10−21

50 4.62252× 10−22 50 −1.84901× 10−21

Table 1: Numerical results for the sequence {un} with two different starting points: u1 = 0.5 and u2 = −2.

also

un+1 =(1− αn)xn +
1

4
αnyn

=
1

2

(
2

3
+

1

5n

)
un +

1

4

(
1

3
− 1

5n

)(
13

32
− 1

8n

)
un

=

(
141

384
+

133

1920n
+

1

160n2

)
un.

(4.1)

Therefore PF (S)∩EP (f)(xn) = 0 for all n ≥ 1, because of F (S) ∩ EP (f) = {0}. Taking the limit
as n → ∞ in (4.1), we obtain lim

k→∞
un = 0. Since xn = 1

2
un , so lim

k→∞
xn = 0. See Figure 1 and

Figure 2 for investigation of the convergence behavior of the sequence {un} and also, see Table1 for
the values of this sequence with starting points u1 = 0.5 and u2 = −2. The computations associated
with example were performed using Maple software.

Now, we compare the numerical behavior of our algorithm with the methods introduced by
Alizadeh and Moradlou [[5], Theorem 3.1] and by Tada and Takahashi [[26], Theorem 4.1]. We
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Comparing Results for {un}
n A1 A2 A3

2 0.20169 0.41250 0.39792
3 0.07886 0.33000 0.30507
4 0.03035 0.25988 0.22944
5 0.01157 0.20270 0.17055
6 0.00438 0.15709 0.12578
...

...
...

...
STOP 10 33 28

Table 2: Comparing results for the sequence {un} generated by the algorithms A1, A2 and A3 with starting point
u1 = 0.5.

assume that αn, βn and rn are defined as Example 4.1. We denote our algorithm by A1 and Alizadeh
and Moradlou’s algorithm by A2. Similarly, Tada and Takahashi’s algorithm is denoted by A3.

In Table 2, the numerical results of this comparison are reported for the sequence {un} with
starting point u1 = 0.5 and stopping criterion |un| < 10−4. It is easy to see that, convergence of the
iterates which have been generated by our algorithm is faster than two other ones.
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