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Abstract

We present sufficient conditions for the existence of solutions of second-order two-point boundary
value and fractional order functional differential equation problems in a space where self-distance
is not necessarily zero. For this, first we introduce a Ćirić type generalized F -contraction and F -
Suzuki contraction in a metric-like space and give relevance to fixed point results. To illustrate our
results, we give throughout the paper some examples.
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1. Introduction

Matthews [7] introduced the notion of a partial metric space as a part of the study of denotational
semantics of data flow networks. He showed that the Banach contraction mapping theorem can be
generalized to the partial metric context for applications in program verification. In partial metric
spaces, self-distance of an arbitrary point need not be equal to zero.

Recently, Amini-Harandi [1] introduced the notion of metric-like space which is a new generaliza-
tion of partial metric space. Amini-Harandi defined σ-completeness of metric-like spaces. Further,
Shukla et al. introduced in [11] the notion of 0-σ-complete metric-like space and proved some fixed
point theorems in such spaces, as improvements of Amini-Harandi’s results.

First, we recall some definitions and facts which will be used throughout the paper.
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Definition 1.1. [7] A partial metric on a nonempty set X is a function p : X ×X → R+ such that
for all x, y, z ∈ X :

(p1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

The pair (X , p) is called a partial metric space.

A basic example of a partial metric space is the pair (R+, p), where p(x, y) = max{x, y} for all
x, y ∈ R+. Other examples of partial metric spaces which are interesting from a computational point
of view may be found in [3, 7]. Obviously, one of the main features of this generalization of metric
spaces is the so-called “non-zero self-distance”. It is also a property of the following generalization.

Definition 1.2. [1] A metric-like on a nonempty set X is a function σ : X × X → R+ such that,
for all x, y, z ∈ X ,

(σ1) σ(x, y) = 0⇒ x = y;

(σ2) σ(x, y) = σ(y, x);

(σ3) σ(x, y) ≤ σ(x, z) + σ(z, y).

A metric-like space is a pair (X , σ) such that X is a nonempty set and σ is a metric-like on X .

Each metric-like σ on X generates a topology τσ on X whose base is the family of open σ-balls

Bσ(x, ε) = {y ∈ X : |σ(x, y)− σ(x, x)| < ε}, for all x ∈ X and ε > 0.

It is obvious that each metric space is a partial metric space and each partial metric space is a
metric-like space, but the converse may not be true.

Example 1.3. [1] Let X = {0, 1} and σ : X × X → R+ be defined by

σ(x, y) =

{
2, if x = y = 0,

1, otherwise.

Then (X , σ) is a metric-like space, but it is neither a metric space nor a partial metric space, since
σ(0, 0) > σ(0, 1).

Example 1.4. [10] Let X = [0, 1], then mapping σi : X ×X → R+ defined by σ1(u, v) = u+ v−uv,
is a metric-like on X .

Example 1.5. [10] Let X = R; then the mapping σi : X × X → R+(i ∈ {2, 3, 4}), defined by

σ2(u, v) = |u|+ |v|+ a, σ3(u, v) = |u− b|+ |v − b|, σ4(u, v) = (u)2 + (v)2,

are metric-like on X , where a ≥ 0 and b ∈ R.

Definition 1.6. [1, 11] Let (X , σ) be a metric-like space. Then:



Solutions of initial and boundary value problems . . . 9 (2018) No. 1, 129-145 131

1. A sequence {xn} in X converges to a point x ∈ X if limn→∞ σ(xn, x) = σ(x, x). The sequence
{xn} is said to be σ-Cauchy if limn,m→∞ σ(xn, xm) exists and is finite. The space (X , σ) is
called complete if for each σ-Cauchy sequence {xn}, there exists x ∈ X such that

lim
n→∞

σ(xn, x) = σ(x, x) = lim
n,m→∞

σ(xn, xm).

2. A sequence {xn} in (X , σ) is called a 0-σ-Cauchy sequence if limn,m→∞ σ(xn, xm) = 0. The
space (X , σ) is said to be 0-σ-complete if every 0-σ-Cauchy sequence in X converges (in τσ) to
a point x ∈ X such that σ(x, x) = 0.

3. a mapping T : X → X is continuous, if the following limits exist (finite) and

lim
n→∞

σ(xn, x) = lim
n→∞

σ(T xn, T x).

Remark 1.7. [1] Let X = {0, 1}, let σ(x, y) = 1 for each x, y ∈ X , and let xn = 1 for each n ∈ N.
Then it is easy to see that xn → 0 and xn → 1, and so in metric-like spaces the limit of a convergent
sequence is not necessarily unique.

Lemma 1.8. [6] Let (X , σ) be a metric-like space.

(a) If x, y ∈ X then σ(x, y) = 0 implies that σ(x, x) = σ(y, y) = 0.

(b) If a sequence {xn} in X converges to some x ∈ X with σ(x, x) = 0 then limn→∞ σ(xn, y) =
σ(x, y) for all y ∈ X .

Remark 1.9. [11] If a metric-like space is σ-complete, then it is 0-σ-complete. The following exam-
ple shows that the converse assertions of these facts do not hold.

Example 1.10. [11] Let X = [0, 1) ∩Q and σ : X × X → R+ be defined by

σ(x, y) =

{
2x, if x = y,

max{x, y}, otherwise

for all x, y ∈ X . Then (X , σ) is a metric-like space. Note that (X , σ) is not a partial metric space,
as σ(1, 1) = 2 > 1 = σ(1, 0). Now, it is easy to see that (X , σ) is a 0-σ-complete metric-like space,
while it is not a σ-complete metric-like space.

In [14], Wardowski introduced a new type of contractions which he called F -contractions. Several
authors proved various variants of fixed point results using such contractions. Adapting Wardowski’s
approach to metric space, the set of functions F defined as follows:

Definition 1.11. We denote by F the family of all functions F : R+ → R with the following
properties:

(F1) F is strictly increasing, that is, for all α, β ∈ (0,∞) such that α < β, F (α) < F (β).

(F2) For each sequence {αn} of positive numbers,

lim
n→∞

αn = 0 if and only if lim
n→∞

F (αn) = −∞.

(F3) There exists k ∈ (0, 1) such that limα→0+ α
kF (α) = 0.
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Example 1.12. [14]. Let Fi : R+ → R ( i = 1, 2, 3, 4 ) be defined by F1(t) = ln t, F2(t) = ln t + t,
F3(t) = −1/

√
t, F4(t) = ln(t2 + t). Then each Fi satisfies the properties (F1)–(F3).

Definition 1.13. [14] Let (X , d) be a metric space. A self-mapping T on X is called an F -
contraction if there exist F ∈ F and τ ∈ R+ such that

τ + F (d(T x, T y)) ≤ F (d(x, y)), (1.1)

for all x, y ∈ X with d(T x, T y) > 0.

Example 1.14. [14] Let F : R+ → R be given by F (x) = lnx. It is clear that F satisfies (F1)–(F3)
for any k ∈ (0, 1). Each mapping T : X → X satisfying (1.1) is an F -contraction such that

d(T x, T y) ≤ e−τd(x, y), for all x, y ∈ X , T x 6= T y.

It is clear that for x, y ∈ X such that T x 6= T y the previous inequality also holds and hence T is a
contraction.

Many work have been done in this direction, (see, for example, [8, 9, 12, 13, 15]). In this paper,
we introduce the notion of rational Ćirić type generalized F -contraction and F - Suzuki contraction
in a metric-like space and utilize the same to establish fixed point results. In support we supply
some examples to verify the results. Finally, we use the obtained results to derive the solutions of
second-order two-point boundary value and fractional order functional differential equation problems.

2. The main results

We first introduce the notion of Ćirić type generalized F -contraction in a metric-like space.

Definition 2.1. Let (X , σ) be a metric-like space. A self-mapping T on X is called an Ćirić type
generalized F -contraction, if there exist F ∈ F and τ ∈ R+ such that

τ + F (σ(T x, T y))

≤ F

(
max

{
σ(x, y), σ(x, T x), σ(y, T y),

σ(x, T y) + σ(y, T x)

4
,
σ(x, T x)σ(y, T y)

1 + σ(x, y)

})
,

(2.1)

for all x, y ∈ X with σ(T x, T y) > 0.

If F (α) = ln(α) (α > 0) and τ = ln( 1
λ
), where λ = (0, 1), we can say that every Ćirić type

generalized contraction is also Ćirić type generalized F -contraction in metric-like space.
Our first main result is as follows:

Theorem 2.2. Let (X , σ) be a 0 − σ-complete metric-like space and T : X → X be a Ćirić type
generalized F -contraction. If T or F is continuous, then T has a unique fixed point in X .

Proof . If T x0 = x0, then the proof is completed. Suppose T x0 6= x0. Put xn = T nx0 and so
xn+1 = T xn. If there exists n0 ∈ {1, 2, . . . } such that right-hand side of (2.1) is 0 for x = xn0−1 and
y = xn0 , then it is clear that xn0−1 = xn0 = T xn0−1 and so we have finished. Now let xn+1 6= xn for
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every n ∈ {0, 1, . . .} and let %n = σ(xn+1, xn) for n ∈ {0, 1, . . .}. Then %n > 0 for all n ∈ {0, 1, . . .}.
Now using (2.1), we have

τ + F (%n) = τ + F (σ(xn+1, xn)) = τ + F (σ(T xn, T xn−1))

≤ F

(
max

{
σ(xn, xn−1), σ(xn, T xn), σ(xn−1, T xn−1),
σ(xn,T xn−1)+σ(xn−1,T xn)

4
, σ(xn,T xn)σ(xn−1,T xn−1)

1+σ(xn,xn−1)

})

= F

(
max

{
σ(xn, xn−1), σ(xn, xn+1), σ(xn−1, xn),
σ(xn,xn)+σ(xn−1,xn+1)

4
, σ(xn,xn+1)σ(xn−1,xn)

1+σ(xn,xn−1)

})
≤ F

(
max

{
σ(xn, xn−1), σ(xn, xn+1),

3σ(xn, xn+1) + σ(xn−1, xn)

4

})
≤ F

(
max {σ(xn, xn−1), σ(xn, xn+1)}

)
≤ F

(
max {%n−1, %n}

)
. (2.2)

If %n−1 ≤ %n for some n ∈ {1, 2, 3, . . .}, then from (2.2) we have τ + F (%n) ≤ F (%n), which is a
contradiction since τ > 0. Thus %n−1 > %n for all n ∈ {1, 2, 3, . . .} and so from (2.2) we have

F (%n) ≤ F (%n−1)− τ.

Therefore we derive

F (%n) ≤ F (%n−1)− τ ≤ F (%n−2)− 2τ ≤ . . . ≤ F (%0)− nτ for all n ∈ N,

that is,

F (%n) ≤ F (%0)− nτ for all n ∈ N. (2.3)

From (2.3), we get F (%n)→ −∞ as limit n→∞. Thus, from (F2), we have

lim
n→∞

%n = 0. (2.4)

Now by property (F3) there exists k ∈ (0, 1) such that

lim
n→∞

(%n)kF (%n) = 0. (2.5)

By (2.5), the following holds for all n ∈ N:

(%n)kF (%n)− (%n)kF (%0) ≤ (%n)k(−nτ) ≤ 0. (2.6)

Passing to limit as n→∞ in (2.6), using (2.4)-(2.5) we obtain

lim
n→∞

n(%n)k = 0 (2.7)

From (2.7), there exits n1 ∈ N such that n(%n)k ≤ 1 for all n ≥ n1. So, we have, for all n ≥ n1

%n ≤
1

n
1
k

. (2.8)
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In order to show that {xn} is a 0-Cauchy sequence, consider m,n ∈ N such that m > n ≥ n1. Using
property (σ3) and (2.8), we have

σ(xn, xm) ≤ σ(xn, xn+1) + σ(xn+1, xn+2) + . . .+ σ(xm−1, xm)

= %n + %n+1 + . . .+ %m−1

= Σm−1
i=n %i ≤ Σ∞i=n%i ≤ Σ∞i=n

1

n
1
k

.

By the convergence of the series Σ∞n=1
1

n
1
k

, passing to limit n→∞, we get σ(xn, xm)→ 0 and hence

{xn} is a 0-Cauchy sequence in (X , σ). Since X is 0-complete metric-like space, there exists a v ∈ X
such that limn→+∞ xn → v; equivalently,

lim
n,m→∞

σ(xn, xm) = lim
n→∞

σ(xn, v) = σ(v, v) = 0. (2.9)

Now, if T is σ-continuous, we obtain from (2.9) that

lim
n,m→∞

σ(T xn, T v) = lim
n→∞

σ(xn+1, T v) = σ(v, T v) = 0. (2.10)

This proves that v is a fixed point of T ; that is, v = T v.
Now, suppose F is continuous. In this case, we claim that v = T v. Assume the contrary,

that is, v 6= T v. In this case, there exist an n0 ∈ N and a subsequence {xnk} of {xn} such that
σ(T xnk , T z) > 0 for all nk ≥ n0. (Otherwise, there exists n1 ∈ N such that xn = T v for all n ≥ n1,
which implies that xn → T v. This is a contradiction, since v 6= T v.) Since σ(T xnk , T z) > 0 for all
nk ≥ n0, then from (2.1), we have

τ + F (σ(xnk+1, T v))

= τ + F (σ(T xnk , T v))

≤ F

(
max

{
σ(xnk , v), σ(xnk , T xnk), σ(v, T v),

σ(xnk , T v) + σ(v, T xnk)
4

,
σ(xnk , T xnk)σ(z, T z)

1 + σ(xnk , v)

})
= F

(
max

{
σ(xnk , v), σ(xnk , xnk+1), σ(v, T v),

σ(xnk , T v) + σ(v, xnk+1)

4
,
σ(xnk , xnk+1)σ(v, T v)

1 + σ(xnk , v)

})
.

Passing to the limit k →∞ and using the continuity of F we have τ +F (σ(v, T v)) ≤ F (σ(v, T v)), a
contradiction. Therefore we claim is true, that is v = T v. The uniqueness of the fixed follows easily
from (2.1). �

If we consider the different types of function F on the condition (2.1) of Theorem 2.2, then we
obtain the variety of contractions.

Put

Θ(x, y) = max

{
σ(x, y), σ(x, T x), σ(y, T y),

σ(x, T y) + σ(y, T x)

4
,
σ(x, T x)σ(y, T y)

1 + σ(x, y)

}
,

(I) Take F (α) = lnα (α > 0 ) and τ = ln( 1
λ
) where λ ∈ (0, 1), then

σ(T x, T y) ≤ λΘ(x, y) (2.11)

for all x, y ∈ X with T x 6= T y.
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(II) Take F (α) = lnα + α (α > 0 ) and τ = ln( 1
λ
) where λ ∈ (0, 1), then

σ(T x, T y))eσ(T x,T y)−Θ(x,y) ≤ λΘ(x, y), (2.12)

for all x, y ∈ X with T x 6= T y.
(III) Take F (α) = − 1√

α
(α > 0 ) and τ = λ where λ > 0, then

σ(T x, T y)) ≤ 1

(1 + λ
√

Θ(x, y))2
Θ(x, y), (2.13)

for all x, y ∈ X with T x 6= T y.
(IV) Take F (α) = ln(α2 + α) (α > 0 ) and τ = ln( 1

λ
) where λ > 0, then

σ(T x, T y))[σ(T x, T y) + 1] ≤ λΘ(x, y)[Θ(x, y) + 1], (2.14)

for all x, y ∈ X with T x 6= T y.

The following example can be used to illustrate the usage of Theorem 2.2.

Example 2.3. Let X = [0, 1] ∩Q and σ : X × X → R+ be defined by

σ(x, y) =

{
2x, if x = y;

max{x, y}, otherwise

for all x, y ∈ X . Then (X , σ) is a 0-σ-complete metric-like space which is not σ-complete ([11,
Example 5]). Let T : X → X be mapping given by T x = x

4
. Take F (α) = ln(α) + α and τ = ln 4,

where α > 0. Then for x > y,

σ(T x, T y) = σ
(x

4
,
y

4

)
=
x

4
> 0

and

max

{
σ(x, y), σ(x,

x

4
), σ(y,

y

4
),
σ(x, y

4
) + σ(y, x

4
)

4
,
σ(x, x

4
), σ(y, y

4
)

1 + σ(x, y)

}
= max

{
x, x, y,

x+ max{y, x
4
}

4
,
xy

1 + x

}
= x.

Hence,

τ + F (σ(T x, T y)) = ln 4 +
x

4
+ ln(

x

4
) ≤ x+ lnx

= F

(
max

{
σ(x, y), σ(x, T x), σ(y, T y), σ(x,T y)+σ(y,T x)

4
,

σ(x,T x)σ(y,T y)
1+σ(x,y)

})
.

Similarly, for x = y 6= 0 ( otherwise σ(T x, T y) = 0 ) one gets that

τ + F (σ(T x, T y)) = ln 4 +
x

2
+ ln(

x

2
) ≤ 2x+ ln 2x

= F

(
max

{
σ(x, y), σ(x, T x), σ(y, T y), σ(x,T y)+σ(y,T x)

4
,

σ(x,T x)σ(y,T y)
1+σ(x,y)

})
.

Thus, all the conditions of Theorem 2.2 are satisfied. Then T has a unique fixed point (which is 0).
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Following figures (Figs. 1,2) show that R.H.S. expression dominates the L.H.S expression in [0, 1]∩Q,
which validates our inequalities in the example 2.3.

FIGURE 1. Plot of Inequality, 2D view

FIGURE 2. Plot of Inequality, 3D view
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FIGURE 3. Plot showing fixed point of T

Now, we introduce the notion of F -Suzuki contraction in metric like space and prove a corre-
sponding fixed point theorem.

Definition 2.4. Let (X, σ) be a metric like space. A mapping T : X → X is said to be a F -Suzuki
contraction if there exists τ > 0 such that for all x, y ∈ X with Tx 6= Ty

1

2
σ(x, Tx) < σ(x, y)⇐⇒ τ + F (σ(Tx, Ty)) ≤ F (σ((x, y)) (2.15)

where F ∈ F.

Theorem 2.5. Let (X, σ) be a 0 − σ complete metric like space and T : X → X be a F -Suzuki
contraction. Then T has a unique fixed point in X.

Proof . Choose x0 ∈ X and define a sequence {xn}∞n=1 by

x1 = Tx0, x2 = Tx1 = T 2x0, . . . , xn+1 = Txn = T n+1x0, ∀ n ∈ N (2.16)

If there exists n ∈ N such that σ(xn, Txn) = 0, the proof is complete.
So, we assume that 0 < σ(xn, Txn) = σ(xn, xn+1) = σn, ∀ n ∈ N.
Therefore

1

2
σ(xn, Txn) < σ(xn, Txn), ∀n ∈ N (2.17)

which implies that

τ + F (σ(Txn, T
2xn)) ≤ F (σ(xn, Txn)) for any n ∈ N.
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i.e.
F (σ(Txn, T

2xn)) ≤ F (σ(xn, Txn))− τ.

Continuing this process, we get

F (σ(xn, Txn)) ≤ F (σ(xn−1, Txn−1))− τ
≤ F (σ(xn−2, Txn−2))− 2τ
...

≤ F (σ(x0, Tx0))− nτ. (2.18)

From (2.18), we get σn = F (σ(xn, Txn))→ −∞ as limit n→∞.
Thus, from (F2), we have lim

n→∞
σn = lim

n→∞
σ(xn, Txn) = 0

Now, by property (F3) there exists k ∈ (0, 1) such that

lim
n→∞

(σn)kF (σn) = 0. (2.19)

By (2.19), the following holds for all n ∈ N :

(σn)kF (σn)− (σn)kF (σ0) ≤ (σn)k(−nτ) ≤ 0 (2.20)

passing to limit as n→∞ in (2.19), using (2.18) and (2.17), we obtain

lim
n→∞

n(σn)k = 0 (2.21)

From, (2.21) there exists n1 ∈ N such that n(σn)k ≤ 1 for all n ≥ n1. So, we have, for all n ≥ n1

σn ≤
1

n1/k
. (2.22)

Now, using property (σ3) and (2.22), we have for m > n ≥ n1

σ(xn, xm) ≤ σ(xn, xn+1) + σ(xn+1, xn+2) + . . .+ σ(xm−1, xm)

= %n + %n+1 + . . .+ %m−1

= Σm−1
i=n %i ≤ Σ∞i=n%i ≤ Σ∞i=n

1

n
1
k

.

By the convergence of the series Σ∞n=1
1

n
1
k

, passing to limit n→∞, we get σ(xn, xm)→ 0 and hence

{xn} is a 0-Cauchy sequence in (X , σ). Since X is 0-complete metric-like space, there exists a u ∈ X
such that limn→+∞ xn → u; equivalently,

lim
n,m→∞

σ(xn, xm) = lim
n→∞

σ(xn, u) = σ(u, u) = 0. (2.23)

Now, we claim that there exists a subsequence {xnk} of {xn} such that

1

2
σ(xnk , Txn) < σ(xnk , u) or

1

2
σ(Txnk , T

2xnk) < σ(Txnk , u), ∀k ∈ N. (2.24)

Suppose contrary that there exists k ∈ N such that

1

2
σ(xnk , Txnk) ≥ σ(xnk , u) and

1

2
σ(Txnk , T

2xnk) ≥ σ(Txnk , u). (2.25)
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Therefore,
2σ(xnk , u) ≤ σ(xnk , Txnk) ≤ σ(xnk , u) + σ(u, Txnk)

which implies that
σ(xnk , u) ≤ σ(u, Txnk). (2.26)

It follows from (2.24) and (2.26) that

σ(xnk , u) ≤ σ(u, Txnk) ≤
1

2
σ(Txnk , T

2xnk)

Since 1
2
σ(xnk , Txnk) < σ(xnk , Txnk), then by 2.15, we have

τ + F (σ(Txnk , T
2(xnk))) ≤ F (σ(xnk , Txnk)).

Since τ > 0, this imply that

F (σ(Txnk , T
2xnk)) < F (σ(xnk , Txnk)).

So, from (F1), we get
σ(Txnk , T

2xnk) < σ(xnk , Txnk) (2.27)

It follows from (2.24), (2.26) and (2.27) that

σ(Txnk , T
2xnk) < σ(xnk , Txnk) ≤ σ(xnk , u) + σ(u, Txnk)

≤ 1

2
σ(Txnk , T

2xnk) +
1

2
σ(Txnk , T

2xnk)

= σ(Txnk , T
2xnk).

This is a contradiction. Hence (2.24) holds for every k ∈ N, i.e. either τ + F (σ(Txnk , Tu)) ≤
F (σ(xnk , u)) is true for every k ∈ N or τ + F (σ(T 2xnk , Tu)) ≤ F (σ(Txnk , u)) = F (σ(xnk+1, u)) is
true for every k ∈ N.
In first case from (2.23) and (F2), we obtain

lim
n→∞

σ(Txnk , Tu) = 0.

Therefore d(u, Tu) = lim
n→∞

σ(xnk+1, Tu) = lim
n→∞

σ(Txnk , Tu) = 0.

Also in the second case using (2.23) and (F2), we get

lim
n→∞

σ(T 2xnk , Tu) = 0.

Therefore, d(u, Tu) = lim
n→∞

σ(xnk+2, Tu) = lim
n→∞

σ(T 2xnk , Tu) = 0.

Hence u is a fixed point of T . The uniqueness of fixed point follows from (2.15). �

From (F1) and (2.15), we get the following corollary:

Corollary 2.6. Let (X, σ) be a 0−σ complete metric like space and T : X → X be a mapping such
that

1

2
σ(x, Tx) < σ(x, y)⇐⇒ σ(Tx, Ty)) < σ(x, y) (2.28)

Then T has a unique fixed point in X.

Example 2.7. Let X and σ be as in Example (2.3). Define T : X → X as follows:

T (x) =

{
1
2
, if x = 1,

0, otherwise.

It can be easily verify that T satisfies all the conditions of Corollary 2.6 and hence it has a unique
fixed point (which is 0).
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3. An application to second order differential equations

Consider the boundary value problem for second order differential equation of the form{
x′′(t) = −f(t, x(t)), t ∈ I
x(0) = x(1) = 0.

(3.1)

where I = [0, 1], f ∈ C(I × R,R).
In this section we are going to apply Theorem 2.2 to the study of existence and uniqueness of

solutions for a type of second order differential equations. Our approach is inspired by Section 5 of
[2].

It is known, and easy to check, that the problem (3.1) is equivalent to the integral equation

x(t) =

∫ 1

0

G(t, s)f(s, x(s)) ds, for t ∈ I, (3.2)

where G is the Green function defined by

G(t, s) =

{
(1− t)s if 0 ≤ s ≤ t ≤ 1,

(1− s)t if 0 ≤ t ≤ s ≤ 1.

That is, if x ∈ C2(I,R), then x is a solution of problem (3.1) if and only if it is a solution of the
integral equation (3.2).

Let X = C(I) be the space of all continuous functions defined on I and ‖u‖∞ = maxt∈I |u(t)| for
each u ∈ X . Consider the metric-like σ on X given by

σ(x, y) = ‖x− y‖∞ + ‖x‖∞ + ‖y‖∞ for all x, y ∈ X.

Note that σ is also a partial metric on X and that

dσ(x, y) := 2σ(x, y)− σ(x, x)− σ(y, y) = 2‖x− y‖∞.

Hence, (X , σ) is complete as the metric space (X , ‖ · ‖∞) is complete.

Theorem 3.1. Assume the following conditions:

1. there exist continuous functions α : I → R+ and β : I → R+ such that

|f(s, a)− f(s, b)| ≤ 8α(s)|a− b|, for s ∈ I and a, b ∈ R,

|f(s, a)| ≤ 8β(s)|a|, for s ∈ I and a ∈ R;

2. maxs∈I α(s) = λ1 <
1
3

and maxs∈I β(s) = λ2 <
1
3
.

Then the problem (3.1) has a unique solution u ∈ X = C(I,R).

Proof . Define the self-map T : X → X by

T x(t) =

∫ 1

0

G(t, s)f(s, x(s)) ds,
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for all x ∈ X and t ∈ I. Then, the problem (3.1) is equivalent to finding a fixed point u of T in X .
Let x, y ∈ X . We have

|T x(t)− T y(t)| =
∣∣∣∣∫ 1

0

G(t, s)f(s, x(s)) ds−
∫ 1

0

G(t, s)f(s, y(s)) ds

∣∣∣∣
≤
∫ 1

0

G(t, s)|f(s, x(s))− f(s, y(s))| ds

≤ 8

∫ 1

0

G(t, s)α(s)|x(s)− y(s)| ds

≤ 8λ1‖x− y‖∞ sup
t∈I

∫ 1

0

G(t, s) ds

= λ1‖x− y‖∞.

Next, we recall that for each t ∈ I one has
∫ 1

0
G(t, s) ds = t(1−t)

2
, and then

sup
t∈I

∫ 1

0

G(t, s) ds =
1

8
.

Therefore,
‖T x− T y‖∞ ≤ λ1‖x− y‖∞. (3.3)

Moreover, we have

|T x(t)| =
∣∣∣∣∫ 1

0

G(t, s)f(s, x(s)) ds

∣∣∣∣ ≤ ∫ 1

0

G(t, s)|f(s, x(s))| ds

≤ 8

∫ 1

0

G(t, s)β(s)|x(s)| ds ≤ 8λ2‖x‖∞ sup
t∈I

∫ 1

0

G(t, s) ds

≤ λ2‖x‖∞.

Thus
‖T x‖∞ ≤ λ2‖x‖∞, (3.4)

and also
‖T y‖∞ ≤ λ2‖y‖∞. (3.5)

Assuming e−τ = λ1 + 2λ2 < 1 (τ ∈ R+). Using (3.3)–(3.5), we obtain

σ(T x, T y) = ‖T x− T y‖∞ + ‖T x‖∞ + ‖T y‖∞
≤ λ1‖x− y‖∞ + λ2‖x‖∞ + λ2‖y‖∞
≤ (λ1 + 2λ2)(‖x− y‖∞ + ‖x‖∞ + ‖y‖∞)

= e−τσ(x, y) ≤ e−τ
(

max

{
σ(x, y), σ(x, T x), σ(y, T y),

σ(x, T y) + σ(y, T x)

4
,
σ(x, T x)σ(y, T y)

1 + σ(x, y)

})
.

Taking the function F : R+ → R defined by F (α) = lnα, belonging to F we get

τ + F (σ(T x, T y)) ≤ F
(

max

{
σ(x, y), σ(x, T x), σ(y, T y),

σ(x, T y) + σ(y, T x)

4
,
σ(x, T x)σ(y, T y)

1 + σ(x, y)

})
.

Therefore all hypotheses of Theorem 2.2 are satisfied, and so T has a unique fixed point u ∈ X ,
that is, the problem (3.1) has a unique solution u ∈ C2(I). �
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4. An application to fractional differential equations

In this section, we apply Theorem 2.2 to establish the existence of solution of fractional order func-
tional differential equation.
Consider the following initial value problem (IVP for short) of the form

Dαy(t) = f(t, yt), for each t ∈ J = [0, b], 0 < α < 1, (4.1)

y(t) = φ(t), t ∈ (−∞, 0] (4.2)

where Dα is the standard Riemann-Liouville fractional derivative, f : J × B → R, φ ∈ B, φ(0) = 0
and B is called a phase space or state space satisfying some fundamental axioms (H-1, H-2, H-3)
given below which were introduced by Hale and Kato in [5].
For any function y defined on (−∞, b] and any t ∈ J , we denote by yt the element of B defined by

yt(θ) = y(t+ θ), θ ∈ (−∞, 0].

Here yt(·) represents the history of the state from −∞ up to present time t.

By C(J,R) we denote the Banach space of all continuous functions from J into R with the norm

||y||∞ := sup{|y(t)| : t ∈ J}

where | · | denotes a suitable complete norm on R.

Now consider the metric like space σ on X given by

σ(x, y) = 2d(x, y) for all x, y ∈ X.

Then, (X , σ) is complete as the metric space (X , d) is complete.

(H-1) If y : (−∞, b]→ R, and y0 ∈ B, then for every t ∈ [0, b] the following conditions hold:

(i) yt is in B,
(ii) ||yt||B ≤ K(t) sup{|y(s)| : 0 ≤ s ≤ t}+M(t)||y0||B,

(iii) |y(t)| ≤ H||yt||B,
where H ≥ 0 is a constant, K : [0, b] → [0,∞) is continuous, M : [0,∞) → [0,∞) is
locally bounded and H,K,M are independent of y(·).

(H-2) For the function y(·) in (H-1), yt is a B-valued continuous function on [0, b].

(H-3) The space B is complete.

By a solution of problem (4.1)-(4.2), we mean a space Ω = {y : (−∞, b] → R : y|(−∞,0] ∈
B and y|[0,b] is continuous}. Thus a function y ∈ Ω is said to be a solution of (1)-(2) if y satisfies
the equation Dαy(t) = f(t, yt) on J , and the condition y(t) = φ(t) on (−∞, 0].

The following lemma is crucial to prove our existence theorem for the problem (4.1)-(4.2).

Lemma 4.1. (See [4].) Let 0 < α < 1 and let h : (0, b]→ R be continuous and lim
t→0+

h(t) = h(0+) ∈
R. Then y is a solution of the fractional integral equation

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds,
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if and only if y is a solution of the initial value problem for the fractional differential equation

Dαy(t) = h(t), t ∈ (0, b],

y(0) = 0.

Now we are ready to prove following existence theorem.

Theorem 4.2. Let f : J ×B → R. Assume
(H) there exists q > 0 such that

|f(t, u)− f(t, v)| ≤ q||u− v||B, for t ∈ J and every u, v ∈ B.

If bαKbq
Γ(α+1)

= λ < 1 where

Kb = sup{|K(t)| : t ∈ [0, b]},

then there exists a unique solution for the IVP (4.1)-(4.2) on the interval (−∞, b].

Proof . To prove the existence of solution for the IVP (4.1)-(4.2), we transform it into a fixed point
problem. For this, consider the operator N : Ω→ Ω defined by

N(y)(t) =

{
φ(t) t ∈ (−∞, 0],

1
Γ(α)

∫ t
0
(t− s)α−1f(s, ys)ds t ∈ [0, b].

Let x(·) : (−∞, b]→ R be the function defined by

x(t) =

{
φ(t) t ∈ (−∞, 0],
0 t ∈ [0, b].

Then x0 = φ. For each z ∈ C([0, b],R) with z(0) = 0, we denote by z̄ the function defined by

z̄(t) =

{
0 if t ∈ (−∞, 0],
z(t) if t ∈ [0, b].

If y(·) satisfies the integral equation

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds,

we can decompose y(·) as y(t) = z̄(t)+x(t), 0 ≤ t ≤ b, which implies yt = z̄t+xt, for every 0 ≤ t ≤ b,
and the function z(·) satisfies

z(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds

Set
C0 = {z ∈ C([0, b],R) : z0 = 0},

and let || · ||b be the seminorm in C0 defined by

||z||b = ||z0||B + sup{|z(t)|; 0 ≤ t ≤ b} = sup{|z(t)|; 0 ≤ t ≤ b}, z ∈ C0.



144 Nashine, Gopal, Jain

C0 is a Banach space with norm || · ||b. Let the operator P : C0 → C0 be defined by

(Pz)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds, t ∈ [0, b]. (4.3)

That the operator N has a fixed point is equivalent to P has a fixed point, and so we turn to proving
that P has a fixed point. Indeed, consider z, z∗ ∈ C0. Then we have for each t ∈ [0, b]

|P (z)(t)− P (z∗)(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1|f(s, z̄s + xs)− f(s, z̄∗s + xs)| ds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1q||z̄s − z̄∗s ||B ds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1qKb sup
s∈[o,t]

||z(s)− z∗(s)|| ds

≤ Kb

Γ(α)

∫ t

0

(t− s)α−1q ds ||z − z∗||b.

Therefore

||P (z)− P (z∗)||b ≤
qbαKb

Γ(α + 1)
||z − z∗||b,

i.e.
σ(P (z), P (z∗)) ≤ λσ(z, z∗).

By passing through logarithm, we write lnσ(P (z), P (z∗)) ≤ ln(e−τσ(z, z∗)) (where λ = e−τ > 0)
and hence

τ + F ((σ(P (z), P (z∗))) ≤ F ((σ(z, z∗))

≤ F

(
max

{
σ(z, z∗), σ(z, P (z)), σ(z∗, P (z∗)), σ(z,P (z∗)+σ(z∗,P (z))

4
,

σ(z,P (z))σ(z∗,P (z∗))
1+σ(z,z∗)

})
.

Now we observe that the function F : R+ → R defined by F (u) = lnu for each u ∈ R+, then F ∈ F
and so we deduce that the operator P satisfies all the hypothesis of Theorem 2.2. Thus P has unique
fixed point. �

5. Conclusion

Taking into account its interesting applications, searching for fixed point theorems involving new
contractive type conditions in abstract spaces has received considerable attention through the last
few decades. In this connection, the main aim of our paper is to present new concepts of rational
Ćirić type generalized F -contraction and F -Suzuki contraction in a metric-like space and utilize the
same to establish fixed point results. Two applications to initial and boundary value problems are
illustrated to the usability of the obtained fixed point results.
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