Int. J. Nonlinear Anal. Appl. 7 (2016) No. 1, 219-224 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2015.308

On fixed points of fundamentally nonexpansive mappings in Banach spaces

Mohammad Moosaei

Department of Mathematics, Faculty of Science, Bu-Ali Sina University, P.O. Box 6517838695, Hamedan, Iran

(Communicated by A. Ebadian)

Abstract

We first obtain some properties of a fundamentally nonexpansive self-mapping on a nonempty subset of a Banach space and next show that if the Banach space is having the Opial condition, then the fixed points set of such a mapping with the convex range is nonempty. In particular, we establish that if the Banach space is uniformly convex, and the range of such a mapping is bounded, closed and convex, then its the fixed points set is nonempty, closed and convex.

Keywords: fixed point; fundamentally nonexpansive mappings; nonexpansive mappings; Opial's condition; uniformly convex Banach spaces.

2010 MSC: Primary 47H09, 47H10; Secondary 46TXX.

1. Introduction and Preliminaries

Let K be a nonempty subset of a Banach space $(X, \|\cdot\|)$, and let $T : K \to K$ be a nonexpansive mapping or a generalized nonexpansive mapping. Under the various conditions on K, X and T, existence a fixed point for T has been investigated, and some fixed point theorems and convergence theorems for T have been presented by many authors, for example, see [2, 3, 4, 5, 7, 6].

In this paper, we give many fixed point theorems and convergence theorems for fundamentally nonexpansive self-mappings in Banach spaces and show that under certain conditions, the fixed points set of such self-mappings is nonempty, closed and convex.

We now review the needed preliminaries. Let K be a nonempty subset of a Banach space $(X, \|\cdot\|)$. Throughout this note, we will use \mathbb{N} to denote the set of all positive integers, \mathbb{R} to denote the set of all real numbers, B(x, r) to denote the open ball with center x and radius r, cl(K) to denote the closure of K and $x_n \rightharpoonup x$ to denote the weak convergence of the sequence $\{x_n\}$ in X to $x \in X$, respectively.

Received: January 2015 Revised: August 2015

Email address: m.moosaei@basu.ac.ir (Mohammad Moosaei)

Let T be a self-mapping of K. The mapping T is called nonexpansive if $||Tx - Ty|| \leq ||x - y||$ for all $x, y \in K$. We denote by F(T) the fixed points set of T, i.e., $F(T) = \{x \in K : Tx = x\}$. T is called quasi-nonexpansive if its fixed points set is nonempty and $||Tx - u|| \leq ||x - u||$ for all $x \in K$ and $u \in F(T)$. The mapping T is said to satisfy condition (C) [6] if $\frac{1}{2} ||x - Tx|| \leq ||x - y||$ implies $||Tx - Ty|| \leq ||x - y||$ for all $x, y \in K$. One can verify that condition (C) is weaker than nonexpansiveness and stronger than quasi-nonexpansiveness.

You can find the following definition in [3].

Definition 1.1. Let K be a nonempty subset of a normed space $(X, \|\cdot\|)$. A mapping $T: K \to X$ is said to be fundamentally nonexpansive if it satisfies

$$||T^2x - Ty|| \leq ||Tx - y||$$
 for each $x, y \in K$

It is clear that fundamental nonexpansiveness is weaker than nonexpansiveness and stronger than quasi-nonexpansiveness.

Example 1.2. Define a mapping T on [0, 4] as follows:

$$Tx = \begin{cases} 1 & \text{if } \mathbf{x} \neq 4\\ 2.5 & \text{if } \mathbf{x} = 4 \end{cases}$$

for all $x \in [0, 4]$. Then T is fundamentally nonexpansive, but it dose not satisfy condition (C). Therefore, T is not nonexpansive.

Let X be a Banach space. X is said to satisfy the Opial condition [5] if whenever a sequence $\{x_n\}$ in X converges weakly to $x \in X$, then

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|$$

holds for all $y \in X$ with $x \neq y$. It is said to be strictly convex if $\left\|\frac{x+y}{2}\right\| < 1$ for each $x, y \in X$ with $\|x\| = \|y\| = 1$ and $x \neq y$ (see [1]). X is said to be uniformly convex [1] if for any $\epsilon \in (0, 2]$ there exists some $\delta = \delta(\varepsilon) > 0$, whenever $x, y \in X$, $\|x\| \leq 1$, $\|y\| \leq 1$ and $\|x - y\| \ge \epsilon$, then $\left\|\frac{x+y}{2}\right\| \le 1-\delta$. It is evident that uniform convexity implies strict convexity.

Let K be a nonempty subset of a Banach space X, and let $\{x_n\}$ be a bounded sequence in X. Define the function $r_a(., \{x_n\}) : X \to [0, \infty)$ by

$$r_a(x, \{x_n\}) = \limsup_{n \to \infty} ||x_n - x||$$
 for each $x \in X$.

The function $r_a(., \{x_n\})$ is convex and weakly lower semicontinuous (see [1, page 128]). The infimum of $r_a(., \{x_n\})$ over K is said to be the asymptotic radius of $\{x_n\}$ with respect to K and denoted by $r_a(K, \{x_n\})$. A point $u \in K$ is said to be asymptotic center of the sequence $\{x_n\}$ with respect to K if $r_a(u, \{x_n\}) = r_a(K, \{x_n\})$. The set of all asymptotic center of the sequence $\{x_n\}$ with respect to K is denoted by $Z_a(K, \{x_n\})$ (see [1] for more details).

Definition 1.3. ([1]) Let K be a nonempty subset of a Banach space X, and let T be a self-mapping of K. A sequence $\{x_n\}$ in K is called an approximate fixed point sequence for T if

$$\lim_{n \to \infty} \|x_n - Tx_n\| = 0.$$

The following lemma can be found in [2]

Lemma 1.4. Let $\{x_n\}$ and $\{y_n\}$ be bounded sequences in a Banach space X such that

 $x_{n+1} = \lambda y_n + (1-\lambda)x_n \quad \text{and} \quad \|y_n - y_{n+1}\| \leq \|x_n - x_{n+1}\|$ for all $n \in \mathbb{N}$, where $\lambda \in (0, 1)$. Then $\lim_{n \to \infty} \|x_n - y_n\| = 0$.

2. Main results

The following lemmas are useful to prove our main results.

Lemma 2.1. Let K be a nonempty subset of a normed space X, and let $T : K \to X$ be a fundamentally nonexpansive mapping. Then

$$||x - Ty|| \le 3 ||x - Tx|| + ||x - y||$$

holds for each $x, y \in K$.

Proof. For each $x, y \in K$, we have

$$\begin{aligned} \|x - Ty\| &\leq \|x - Tx\| + \|Tx - T^2x\| + \|T^2x - Ty\| \\ &\leq 2 \|x - Tx\| + \|Tx - y\| \\ &\leq 3 \|x - Tx\| + \|x - y\|. \end{aligned}$$

Therefore, we obtain the demanded result. \Box

The following lemma is easy to verify.

Lemma 2.2. Let K be a nonempty subset of a normed space X, and let $T : K \to X$ be a mapping. Then the following hold:

(i) If T is nonexpansive, then it is fundamentally nonexpansive.

(ii) If T is fundamentally nonexpansive, and F(T) is nonempty, then T is quasi-nonexpansive.

Lemma 2.3. Let T be a fundamentally nonexpansive self-mapping on a nonempty subset K of a Banach space X, and let T(K) be bounded and convex. Define a sequence $\{Tx_n\}$ in T(K) by $x_1 \in K$ and

$$Tx_{n+1} = \lambda T^2 x_n + (1-\lambda)Tx_n \text{ for all } n \in \mathbb{N},$$

where $\lambda \in (0,1)$. Then $\{Tx_n\}$ is an approximate fixed point sequence for T.

Proof . Since T is fundamentally nonexpansive, we have

 $||T^2 x_{n+1} - T^2 x_n|| \le ||T x_{n+1} - T x_n||$ for all $n \in \mathbb{N}$.

Lemma 1.4 implies that $\lim_{n\to\infty} ||Tx_n - T^2x_n|| = 0$. This completes the proof of the lemma. \Box

Proposition 2.4. Let $T : K \to K$ be a fundamentally nonexpansive mapping, where K is a nonempty subset of a Banach space X. Then F(T) is closed. Moreover, if X is strictly convex, and K or T(K) is convex, then F(T) is also convex.

Proof. Suppose, for contradiction, that there is an element x of cl(F(T)) such that $x \notin F(T)$. Set $r = \frac{\|x - Tx\|}{3}$. Since $x \in cl(F(T))$, $B(x,r) \cap F(T)$ is nonempty. Let $u \in B(x,r) \cap F(T)$. Then $\|x - u\| < r$ and Tu = u hold. By Lemma 2.2 (ii), we have

$$\begin{aligned} \|x - Tx\| &\leq \|x - u\| + \|Tx - u\| \\ &\leq 2 \|x - u\| \\ &< 2r \\ &= \frac{2\|x - Tx\|}{3}, \end{aligned}$$

which is a contradiction. Thus F(T) is closed. Assume that X is strictly convex, we show that F(T) is convex. Let $\lambda \in (0, 1)$ and $x, y \in F(T)$ with $x \neq y$. Put $u = \lambda x + (1 - \lambda)y$. By Lemma 2.2 (ii), we have

$$\begin{aligned} \|x - y\| &\leq \|Tu - x\| + \|Tu - y\| \\ &\leq \|u - x\| + \|u - y\| \\ &= \|x - y\|. \end{aligned}$$

Thus,

$$||x - y|| = ||Tu - x|| + ||Tu - y|| = ||u - x|| + ||u - y||.$$
(2.1)

As X is strictly convex, Proposition 2.1.7 of [1] implies that there exists t > 0 such that Tu - y = t(x - Tu). So $Tu = \frac{t}{t+1}x + \frac{1}{1+t}y$. From (2.1), we conclude that

$$||Tu - x|| = ||u - x||$$
 and $||Tu - y|| = ||u - y||$

which implies $\lambda = \frac{t}{t+1}$. Hence $Tu = \lambda x + (1 - \lambda)y = u$, that is, $u \in F(T)$. Therefore, we obtain the desired result. \Box

Theorem 2.5. Let K be a nonempty compact subset of a Banach space X. Assume that $T : K \to K$ is fundamentally nonexpansive, and T(K) is convex. Then the sequence $\{Tx_n\}$ in T(K) defined by $x_1 \in K$ and

$$Tx_{n+1} = \lambda T^2 x_n + (1-\lambda)Tx_n \quad for \ all \ n \in \mathbb{N},$$
(2.2)

where $\lambda \in (0, 1)$, converges strongly to a fixed point of T.

Proof. Since K is compact, there is a subsequence $\{Tx_{n_k}\}$ of $\{Tx_n\}$ such that $\lim_{k\to\infty} Tx_{n_k} = u$ for some $u \in K$. From (2.2), we obtain $\lim_{k\to\infty} T^2 x_{n_k} = u$. Since T is fundamentally nonexpansive, we have

 $||T^2x_{n_k} - Tu|| \leq ||Tx_{n_k} - u|| \quad \text{for all } k \in \mathbb{N}.$

This implies that $\lim_{k\to\infty} T^2 x_{n_k} = Tu$, hence u is a fixed point of T. On the other hand, we have

$$\begin{aligned} \|Tx_{n+1} - u\| &= \|\lambda T^2 x_n + (1 - \lambda)Tx_n - Tu\| \\ &\leq \lambda \|T^2 x_n - Tu\| + (1 - \lambda) \|Tx_n - u\| \\ &\leq \|Tx_n - u\| \end{aligned}$$

for all $n \in \mathbb{N}$. It follows that the sequence $\{||Tx_n - u||\}$ is bounded and decreasing, hence it is convergent. As $\lim_{k \to \infty} Tx_{n_k} = u$, we conclude that $\lim_{n \to \infty} Tx_n = u$. \Box

Theorem 2.6. Let K be a nonempty weakly compact subset of a Banach space X with the Opial condition. Suppose $T : K \to K$ is a fundamentally nonexpansive mapping, and T(K) is convex. Then the sequence $\{Tx_n\}$ in T(K) defined by $x_1 \in K$ and

$$Tx_{n+1} = \lambda T^2 x_n + (1-\lambda)Tx_n \text{ for all } n \in \mathbb{N},$$

where $\lambda \in (0, 1)$, converges weakly to a fixed point of T.

Proof. Since K is weakly compact, there is a subsequence $\{Tx_{n_k}\}$ of $\{Tx_n\}$ such that $Tx_{n_k} \rightarrow u \in K$ as $k \rightarrow \infty$. We next show that u is a fixed point of T. Suppose, for contradiction, that $Tu \neq u$. From Lemma 2.1, we obtain

$$||Tx_{n_k} - Tu|| \leq 3 ||Tx_{n_k} - T^2x_{n_k}|| + ||Tx_{n_k} - u||$$
 for all $k \in \mathbb{N}$.

The above inequality and Lemma 2.3 imply

$$\liminf_{k \to \infty} \|Tx_{n_k} - Tu\| \le \liminf_{k \to \infty} \|Tx_{n_k} - u\|$$

which contradicts the Opial condition. Therefore, u is a fixed point of T. We now assert that the sequence $\{Tx_n\}$ converges weakly to u. Suppose, for contradiction, that there is a subsequence $\{Tx_{m_j}\}$ of $\{Tx_n\}$ such that $Tx_{m_j} \rightarrow v \in K$ as $j \rightarrow \infty$ with $u \neq v$. Similarly, one can show that v is a fixed point of T. We know that $\lim_{n \to \infty} ||Tx_n - u||$ and $\lim_{n \to \infty} ||Tx_n - v||$ are existent, so the Opial

condition implies that

$$\lim_{n \to \infty} \|Tx_n - u\| = \liminf_{k \to \infty} \|Tx_{n_k} - u\|$$

$$< \liminf_{k \to \infty} \|Tx_{n_k} - v\|$$

$$= \liminf_{j \to \infty} \|Tx_{m_j} - v\|$$

$$< \liminf_{j \to \infty} \|Tx_{m_j} - u\|$$

$$= \lim_{n \to \infty} \|Tx_n - u\|,$$

which is a contradiction. Therefore, $Tx_n \rightharpoonup u$ as $n \rightarrow \infty$. \Box

Theorem 2.7. Let K be a nonempty subset of a uniformly convex Banach space X, and let T be a fundamentally nonexpansive self-mapping of K. If T(K) is bounded, closed and convex, then the fixed points set of T is nonempty, closed and convex.

Proof. Define a sequence $\{Tx_n\}$ in T(K) by $x_1 \in K$ and

 $Tx_{n+1} = \frac{1}{2}T^2x_n + \frac{1}{2}Tx_n$ for all $n \in \mathbb{N}$.

The theorem assumptions and Theorem 2.2.8 of [1] imply that X is reflexive. Now, consider the convex function $r_a(., \{Tx_n\})$ on X. As $r_a(., \{Tx_n\})$ is weakly lower semicontinuous, Theorem 1.9.20 in [1] along with Theorem 2.5.4 in [1] imply that there exists an element $u \in K$ such that

$$r_a(Tu, \{Tx_n\}) = \inf\{r_a(Tx, \{Tx_n\}) : x \in K\}.$$
(2.3)

On the other hand, X is uniformly convex, hence Theorem 3.1.5 of [1] yields $Z_a(T(K), \{Tx_n\})$ is a singleton set. From (2.3), we get $Z_a(K, \{Tx_n\}) = \{Tu\}$. By Lemma 2.1, we have

$$||Tx_n - T^2u|| \leq 3 ||Tx_n - T^2x_n|| + ||Tx_n - Tu||$$
 for all $n \in \mathbb{N}$.

The above inequality and Lemma 2.3 imply $r_a(T^2u, \{Tx_n\}) \leq r_a(Tu, \{Tx_n\})$. So $r_a(T^2u, \{Tx_n\}) = r_a(Tu, \{Tx_n\})$, that is, $T^2u \in Z_a(T(K), \{Tx_n\})$. Thus, T(Tu) = Tu, i.e., the fixed points set of T is nonempty. Since X is uniformly convex, it is strictly convex. Hence Proposition 2.4 implies that F(T) is closed and convex. Therefore, we obtain the desired result. \Box

Acknowledgement

The author would like to thank the referee(s) and the editor for their comments and suggestions on the manuscript. This work was supported by Bu-Ali Sina university of Hamedan.

References

- [1] R.P. Agarwal, D. O'Regan and D.R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer, New York, 2009.
- [2] K. Goebel and W.A. Kirk, Iteration processes for nonexpansive mappings, Contemp. Math. 21 (1983) 115–123.
- [3] S.J. Hosseini Ghoncheh and A. Razani, Fixed point theorems for some generalized nonexpansive mappings in ptolemy spaces, Fixed Point Theory Appl., 2014 (2014).
- [4] S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1976) 65–71.
- [5] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1976) 591–597.
- [6] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. 340 (2008) 1088–1095.
- T. Suzuki, Strongly convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl. 2005 (2005) 103–123.