
Int. J. Nonlinear Anal. Appl. 9 (2018) No. 1, 161-174
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2018.11642.1581

Efficient elliptic curve cryptosystems

Kamal Darweesha, Mohammad Salehb,∗

aApplied Mathematics Department, Palestine Technical University–Kadoorie, Tulkarm, Palestine
bMathematics Department, Birzeit University, P.O. Box 14, Palestine

(Communicated by M. Eshaghi)

Abstract

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a
smaller key size for the same level of security. The exponentiation on elliptic curve is the most
important operation in ECC, so when the ECC is put into practice, the major problem is how
to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for
exponentiation, which allow efficient implementations of ECC. In this paper, we improve efficient
algorithm for exponentiation on elliptic curves defined over Fp in terms of affine coordinates. The
algorithm computes 2n2(2n1P+Q) directly from random points P and Q on an elliptic curve, without
computing the intermediate points. Moreover, we apply the algorithm to exponentiation on elliptic
curves with width–w Mutual Opposite Form (wMOF) and analyze their computational complexity.
This algorithm can speed up the wMOF exponentiation of elliptic curves of size 160–bit about (21.7%)
as a result of its implementation with respect to affine coordinates.

Keywords: cryptography; elliptic curves; affine coordinates.
2010 MSC: 94A60.

1. Introduction

Elliptic curve cryptosystems, which were suggested independently by Miller [7] and Koblitz [5], are
new generation of public key cryptosystems that have smaller key sizes for the same level of security.

The elliptic curve cryptographic operations, like encryption/ decryption schemes generation/ ver-
ification signature, require computing of exponentiation on elliptic curve. The computational per-
formance of elliptic curve cryptographic protocol such as Diffie–Hellman [3]. Key Exchange protocol
strongly depends on the efficiency of exponentiation, because it is the costliest operation. There-
fore, it is very attractive to speed up exponentiation by providing algorithms that allow efficient
implementations of elliptic curve cryptosystems [1, 4, 6, 8, 9, 12].

∗Corresponding author
Email addresses: kdarweesh.scom@gmail.com (Kamal Darweesh), msaleh@birzeit.edu (Mohammad Saleh)

Received: April 2018 Revised: May 2018

http://dx.doi.org/10.22075/ijnaa.2018.11642.1581

162 Darweesh, Saleh

There are typical methods for exponentiation such as binary methods and windowing methods
[9]. These methods can speed up exponentiation by reducing additions, where addition of two points
and doubling of two points are performed repeatedly.

One of the efficient windowing methods is wMOF [11]. It is a base–2 representation which provide
the minimal hamming weight of exponent. Its great advantage is that it can be generated from left–
to–right which means, that the recoding doesn’t have to be done in a separate stage, but can be
performed on–the–fly during the evaluation. As a result, it is no longer necessary to store the whole
recoded exponent, but only small parts at once.

Another approach to speed up exponentiation is by increasing the speed of doublings. One method
to speed the doublings is direct computation of several doubling, which computes 2nP directly from
P ∈ E(Fq), without computing intermediate points 2P, 22P, . . . , 2n−1P . Sakai and Sakurai [12]
proposed formulae for computing 2nP directly (∀n > 1) on E(Fp) in terms of affine coordinates.
Since modular inversion is more expensive than multiplication, their formulae requires only one
inversion for computing 2nP instead of n inversions in usual add–double method.

In this paper, we improve efficient algorithm for exponentiation on elliptic curve defined over
Fp in terms of affine coordinates. We construct efficient formulae to compute 2n2(2n1P + Q) di-
rectly from P,Q ∈ E(Fp), without computing intermediate points 2P, 22P, . . . , 2n1P , 2(2n1P +
Q), . . . , 2n2−1(2n1P +Q) where n1 > 1. Our formulae have computational complexity (4n+ 10)M +
(4n+ 6)S + I , where M,S and I denote multiplication, squaring and inversion respectively in Fp ,
and n = n1 + n2.

Moreover, we show in which way this new algorithm for direct computing 2n2(2n1P +Q) can be
combined with wMOF exponentiation method [11]. We also implement wMOF exponentiation with
and without these formulae and discuss the efficiency. The result of this implementation shows that
21.7% speed increase in wMOF exponentiation with these formulae on elliptic curve of size 160–bit.

Let Fp denotes a prime finite field with p elements. We consider an elliptic curve E given
by Weierstrass non–homogeneous equation: E : y2 = x3 + ax + b, where a, b ∈ Fp, p > 3, and
4a3 + 27b2 6= 0 (i.e. E is smooth). Let

P1 = (x1, y1), P
′
1 = (x′1, y

′
1),

P2n = 2nP1 = (x2n , y2n) ∈ E(Fp).

Let the elliptic curve point addition and doubling be denoted by ECADD and ECDBL, respectively.
Let M,S and I denote multiplication, squaring and inversion, respectively in Fp, where S = 0.8M ,
as it is customary nowadays.

2. Previous work

In this section, we summarize the known algorithms for point addition, point doublings, and direct
doublings.

2.1. Point addition
In terms of affine coordinates, point addition can be computed as follows:
Let P1 = (x1, y1), and Q = (x, y) 6= O where O denotes the point at infinity, then P ′ = (x′, y′) can
be computed as follows

x′ = λ2 − x1 − x;
y′ = λ(x1 − x′)− y1;

λ =
(y − y1)
(x− x1)

.

The formulae above have computational complexity S + 2M + I [2].

Efficient elliptic curve cryptosystems 9 (2018) No. 1, 161-174 163

2.2. Point doubling

In terms of affine coordinates, point addition can be computed as follows: Assume Let P1 = (x1, y1) 6=
O where O denotes the point at infinity, then 2P = P2 = (x2, y2) can be computed as follows

x2 = λ2 − 2x1;
y2 = λ(x1 − x2)− y1;

λ =
(3x21 + a)

(2y1)
.

The formulae above have computational complexity 2S + 2M + I [2].

2.3. Direct doubling

One method to increase the speed of doublings is direct computation of several doublings, which can
compute 2nP directly from P ∈ E(Fq), without computing the intermediate points 2P, 22P, . . . , 2n−1

(see [12]).
Guajardo and Paar [4] suggested increase doubling speed by formulating algorithms for direct

computation of 4P, 8P , and 16P on elliptic curves over F2m in terms of affine coordinates.
Sakai and Sakurai [12] proposed formulae for computing 2nP directly (∀n > 1) on E(Fp) in

terms of affine coordinates. These formulae require only one inversion for computing 2nP instead of
n inversions in regular add–double method.

In affine coordinate, direct computation requires only one inversion for computing 2nP instead of
n inversions in regular add–double method. Therefore direct computation of several doublings may
be effective in elliptic curve exponentiation in terms of affine coordinate, since modular inversion is
more expensive than modular multiplication [12].

3. Direct Computation of 2n2(2n1P + Q) in affine coordinate

In this section, we derive formulae for computing 2n2(2n1P +Q) directly from a given points P,Q ∈
E(Fp) without computing the intermediate points 2P, 22P, . . . , 2n1P, 2(2n1P +Q), . . . , 2n2−1(2n1P +
Q), where n1 ≥ 1, in terms of affine coordinate. These formulae can work with wMOF exponentiation
method [11].

We begin by constructing formulae for small n1, n2, then we will construct algorithm for general
n1, n2.

As an example, let n1 = 2, n2 = 1, and P1 = (x1, y1), Q = (x, y), P ′1(x
′
1, y
′
1) ∈ E(Fp). Then for an

elliptic curve with Weierstrass form in terms of affine coordinates P ′2 = 2P ′1 = 2(4P1 +Q) = (x′2, y
′
2)

can be computed as the following:

1) Computing 4P1 as in [12] 4P1 = P4 = (x4, y4) can be computed as follows:
Let

C0 = y1;
A0 = x1;
B0 = 3x21 + a;
A1 = B2

0 − 8A0C
2
0 ;

C1 = −8C4
0 −B0(A1 − 4A0C

2
0);

B1 = 3A2
1 + 16aC4

0 ;
A2 = B2

1 − 8A1C
2
1 ;

C2 = −8C4
1 −B1(A2 − 4A1C

2
1).

164 Darweesh, Saleh

Then 4P1 = P4 = (x4, y4) can be computed as follows:

x4 =
A2

(4C0C1)
2 , (3.1)

y4 =
C2

(4C0C1)
3 . (3.2)

2) Computing (4P1 +Q)
Assume 4P1 = (x4, y4) 6= −Q, recall from Section 2, the point addition then P ′1 = (x′1, y

′
1) =

(4P1 +Q) in term of affine coordinates, can be computed as follows:

x′1 = λ2 − x− x4, y′1 = λ(x− x′1)− y. (3.3)

Substituting x4, y4 in λ = y4−y
x4−x we get

λ =

C2

(4C0C1)3
− y

A2

(4C0C1)2
− x

. (3.4)

Now let
T = C2 − (4C0C1)

3y,
S = A2 − (4C0C1)

2x.

Then we get:

λ =
T

(4C0C1)S
. (3.5)

Substituting, λ and x4 into the expression for x′1, we find

x′1 =
T 2 − S2(A2 + (4C0C1)

2x

(4C0C1)2S2
. (3.6)

Let M = A2 + (4C0C1)
2x, we get:

x′1 =
T 2 −MS2

(4C0C1)2S2
. (3.7)

Let A′0 = T 2 −MS2 and, substituting λ, and x′1 into the expression for y′1. Then we get:

y′1 =
−(4C0C1)

3yS3 − T (A′0 − (4C0C1)
2xS2)

(4C0C1)3S3
. (3.8)

Let
C ′0 = −(4C0C1)

3yS3 − T (A′0 − (4C0C1)
2xS2).

Then we get:

y′1 =
C ′0

(4C0C1)3S3
. (3.9)

3) Computing
2(4P1 +Q) = 2P ′1

Efficient elliptic curve cryptosystems 9 (2018) No. 1, 161-174 165

Recall from Section 2, the point doubling, then 2P ′1 = P ′2 = (x′2, y
′
2) in term of affine coordinates,

can be computed as follows:

λ =
3A′0

2 + a(4C0C1)
4S4

2C ′0(4C0C1)S
. (3.10)

Now, let B′0 = 3A′0
2 +a(4C0C1)

4S4 and, substituting λ, and x′1 into the expression for x′2. Then
we find:

x′2 =
B′0

2 − 8A′0C
′
0
2

(2C ′0)
2(4C0C1)2S2

. (3.11)

Let A′1 = B′0
2 − 8A′0C

′
0
2, and substituting λ, y′1, x

′
1 and x′2 into the expression for y′2. Then we

find

y′2 =
−8C ′0

4 −B′0(A′1 − 4A′0C
′
0
2)

(2C ′0)
3(4C0C1)

3S3
. (3.12)

Let C ′1 = −8C ′0
4 −B′0(A′1 − 4A′0C

′
0
2). Then we get finally:

y′2 =
C ′1

(2C ′0)
3(4C0C1)

3S3
. (3.13)

The formulae above have computational complexity 18S + 22M + I.

3.1. The formulae computing 2n2(2n1P +Q) in affine coordinate

From the above formulae for direct computing 2(4P1 + Q), we can easily obtain general formulae
that allow direct computing 2n2(2n1P +Q) for n1 > 1. Algorithm 1 describes these formulae.

Theorem 3.1 (bellow) describes the computational complexity of this formula.

Theorem 3.1. In terms of affine coordinates, there exits an algorithm that computes 2n2(2n1P +Q)
at most [4(n+ 2) + 2]M , [4(n+ 1) + 2]S, and I in Fp for any point P,Q ∈ E(Fp) where M,S and I
denote multiplication, squaring and inversion respectively and n = n1 + n2.

Proof . The complexity of step 1 and step 2 (the same as in ([12] Algorithm 1) involve (2M +
3S)n1 + (M + S)(n1 − 1) + S.

In step 3, we first compute
n1−1∏
i=0

Ci which takes n1 − 1 multiplication. Secondly, we perform one

squaring to compute (2n1

n1−1∏
i=0

Ci)
2. Next, we perform one multiplication to compute (2n1

n1−1∏
i=0

Ci)
2x.

Then we obtain N and V . Next, we perform two multiplications, one multiplication to compute

(2n1

n1−1∏
i=0

Ci)
2y and other to compute (2n1

n1−1∏
i=0

Ci)(2
n1

n1−1∏
i=0

Ci)
2y = (2n1

n1−1∏
i=0

Ci)
3y. Then we obtain

W . Third, we perform two squaring to compute W 2, N2, and one multiplication to compute V N2.

Then we obtain A′0. Fourth, we perform one multiplication to compute (2n1

n1−1∏
i=0

Ci)N . Then we

obtain Z. Next, we perform two squaring to compute Z2, Z4 and one multiplication to compute Z3.
Next, we perform two multiplications to compute Z2x, Z3y. Finally, we perform one multiplication to
compute W (A′0−Z2x). Then we obtain C ′0. The complexity of step 3 involves (n1−1)M +9M +5S.
In step 4 we perform one squaring to compute A′0

2. Next we perform one multiplication to compute
aZ4 where Z4 is computed in step 3. Then we obtain B′0 . The complexity of step 4 involve M + S
and the complexity of step 4 involves (2M + 3S)n2 + (M + S)(n2 − 1) as step 2.

166 Darweesh, Saleh

Algorithm 1 Direct computation of 2n2(2n1P + Q) in affine coordinate, where n1 > 1, and P,Q ∈
E(Fp)

Input: p1 = (x1, y1), Q = (x, y) ∈ E(Fp)
Output: P ′2n2 = 2n2P ′ = 2n2(2n1P1 +Q) = (x′2n2 , y′2n2) ∈ E(Fp)
1. Compute A0 and C0 and B0

2. For i from 1 to n1 Compute Ai, Ci, for i from 1 to n1 -1 Compute Bi
for i = 1 to n1 do

Ai = B2
i−1 − 8Ai−1C

2
i−1

Ci = −8C4
i−1 −Bi−1(Ai − 4Ai−1C

2
i−1)

end for

for i = 1 to n1 − 1 do Bi = 3A2
i + 16ia(

i−1∏
j=0

Cj)
4

3. Compute the N, V,W,Z then,

N ← An1 − (2n1

n1−1∏
i=0

Ci)
2x

V ← An1 − (2n1

n1−1∏
i=0

Ci)
2x

W ← Cn1 − (2n1

n1−1∏
i=0

Ci)
3y

Z ← (2k1
k1−1∏
i=0

Ci)N

A′0 = W 2 − V N2

C ′0 = −Z3y −W (A′0 − Z2x)
4. if (n2 > 0)
Compute B′0 = 3A′0

2 + aZ4

For i from 1 to n2 Compute , for i from 1 to n2 -1 Compute
for i = 1 to n2 do . Compute A′ and C ′ values

A′i = B′2i−1 − 8A′iC
′2
i

C ′i = −8C ′4i−1 −B′i−1(A′i − 4A′iC
′2
i)

end for

for i = 1 to n2 − 1 do B′i = 3A′2i−1 + 16i aZ4(
i−1∏
j=0

C ′j)
4 . Compute B′ values

Compute Z ← Z(2n2

n2−1∏
i=0

C ′i)

Compute x′2n2 ←
A′

n2

Z2 , y′2n2 ←
C′

n2

Z3

In step 4 we compute
n2−1∏
i=0

C ′i which takes n2− 1 multiplications. Secondly, we perform one multipli-

cation to compute Z(2n2

n2−1∏
i=0

C ′i). Then we obtain new value for Z. the complexity of step 4 involves

n2M . Hence, the complexity of step 4 involves 4n2M + 4n2S.
In step 5, we perform one inversion to compute Z−1 and the result is set to T . Next, we perform
one squaring to compute T 2. Next, we perform one multiplication to compute A′n2

T 2. Then we
obtain x′2n2 . Finally we perform two multiplications to compute C ′n2

T 2T . Then we obtain y′2n2 .

Efficient elliptic curve cryptosystems 9 (2018) No. 1, 161-174 167

The complexity of step 5 involves 3M + S + I. So the complexity of above computations involve
[4(n+ 2) + 2]M, [4(n+ 1) + 2]S, where n = n1 + n2. �

3.2. Complexity comparison

For application in practice it is highly relevant to compare the complexity of 2n2(2n1P + Q) our
algorithm for direct computing of 2n2(2n1P + Q) with regular add–double method which requires
(n1 +n2) separated doublings and one addition, and with Sakai–Sakuri algorithm [12] for computing
2n1+n2P and 2n2Q. The performance of the new method depends on the cost factor of one inversion
relatively to the cost of one multiplication. For this purpose, we introduce, as [4], the notation of a
“break even point”. It is possible to express the time that it takes to perform one inversion in terms
of the equivalent number of multiplication needed per inversion.

In general let n = n1 + n2, let us denote the direct computing of 2n2(2n1P + Q) by symbol
DECDBL(n). Then our formulae can outperform the regular double and add algorithm if the fol-
lowing relation to hold:

Cost(separatenECDBL+ ECADD) > Cost(DECDBL(n))

Table 1: Complexity comparison: direct computing of 2n2(2n1P + Q) vs. Individual (n1 + n2) doublings and one
addition.

Calculation
2n2(2n1P +
Q) where

Method
Complexity Break–

Even
PointS M I

n1 + n2 = 3
DECDBL(3) 18 22 1

7.6M < I
3 doublings +

1 addition
8 7 4

n1 + n2 = 4
DECDBL(4) 22 26 1

6.6 M ¡ I
4 doublings +

1 addition
10 9 5

n1 + n2 = 5
DECDBL(5) 26 30 1

6 M ¡ I
5 doublings +

1 addition
12 11 6

n1 + n2 = n
DECDBL(n) 4n+6 4n+10 1 (3.6n+12)

n M < I
n doublings +

1 addition
2n+1 2n+2 n+1

Ignoring squarings and additions and expressing the Cost function in terms of multiplications
and inversions, we have:

(2nM + 2nS + nI + 2M + S + I) > (4(n+ 2)M + 4(n+ 1)S + 2M + 2S + I).

We define r = I/M (the ratio of speed between a multiplication and inversion), and assume that
one squaring has complexity S = 0.8M [12]. We also assume that the cost of field addition and
multiplication by small constants can be ignored. One can rewrite the above expressions as:

nrM > (2nM + 8M + 1.6nM + 4M).

Solving for r in terms of M one obtains:

r >
(3.6n+ 12)

n
.

168 Darweesh, Saleh

Table 2: Complexity comparison: direct computing of 2n2(2n1P + Q) vs. direct computing of 2n1+n2P and 2n2Q.

Calculation
2n2(2n1P +Q)

where
Method

Complexity Break–
Even
PointS M I

n1 = 4, n2 = 0
DECDBL(4) 22 26 1

4.2M < I
Sakai–Sakuri

algorithm
19 20 3

n1 = 3, n2 = 2
DECDBL(4) 22 26 1

0.6M < I
Sakai–Sakuri

algorithm
23 24 3

n1 = 2, n2 = 2
DECDBL(4) 22 26 1 −3M < I
Sakai–Sakuri

algorithm
27 28 3

n1 + n2 = n
DECDBL(4) 4n+6

4n +
10

1 8.4−7.2n2
2 M < I

Sakai–Sakuri
algorithm

4(n +
n2) +

3

4(n +
n2 +

1)
3

As we see from Table 1, if a field inversion has complexity I > 7.6M , direct computation of 3
doublings and one addition may be more efficient than 3 separate doubling and one addition.

Moreover, our algorithm for direct computing of 2n2(2n1P +Q) can outperform Sakai–Sakuri al-
gorithm for computing 2n1+n2P and 2n2Q if: Cost(direct computing of 2n1+n2P and direct computing
of 2n2Q and then simply adding the two) > Cost(DECDBL(n1 + n2)).

In case, we ignore squaring and additions and expressing the Cost function in terms of multipli-
cations and inversions, we have:

[(4n+ 1)M + (4n+ 1)S + (4n2 + 1)M + (4n2 + 1)S + 3I + 2M + S] >

[4(n+ 2)M + 4(n+ 1)S + 2M + 2S + I].

After simplification we can rewrite the above expressions as:

2I > 6M + 3S − 4n2S − 4n2M

Solving for r in terms of M one obtains:

r >
8.4− 7.2n2

2
.

As we see from Table 2, if a field inversion has complexity I > 4.2M , direct computation of 4
doublings and one addition by using our algorithm is more efficient than 4 doublings by using Sakai–
Sakuri algorithm and then performing one addition. Also, it is clear from the table and the above
discussion that DECDBL(n) is different from the Sakai–Sakuri algorithm for computing 2n1+n2P and
2n2Q.2n2(2n1P +Q).

3.3. Exponentiation with direct computation of 2n2(2n1P +Q)

By using our previous formulae for direct computation of 2n2(2n1P + Q), where n1 > 1, and P,Q ∈
E(Fp), we can improve algorithm B.1 [11] for elliptic curve exponentiation with wMOF by change

Efficient elliptic curve cryptosystems 9 (2018) No. 1, 161-174 169

the step 3.2 of algorithm B.1 [11] with a new step that compute 2n2(2n1P + Q) directly as in the
following algorithm.

Algorithm 2 Exponentiation with wMOF Using Direct Computation of 2n2(2n1P +Q)

Input: a non–zero t–bit binary string k, P ∈ E(Fp), and the multiple of the point P, γ0···tw and
ξ0···tw, the precomputed table look–up .
Output: exponentiation kP .
i← t ; Q← O
while i > 0 do

if (ki XOR ki−1) = 0 then
Q← ECDBL(Q)
i← i− 1

else
index← ((k >> (i− w))&(2w+1 − 1))− 2w−1

if i < w then
Q← 2i−(w−ξindex)+1(2(w−ξindexQ+ γindexP)

else
Q← 2ξindex(2(w−ξindexQ+ γindexP)
i← i− 1

end if else
end if else

end While
if i = 0 then

Q← ECDBL(Q)
if k0 = 1 then Q← ECADD(Q,−P)

return Q

In algorithm 2, for each window width w of wMOF, Step 3.1 performs direct computation of
2i−(w−ξindex)+1(2(w−ξindexQ + γindexP) if (i < w) otherwise Step 3.2 performs direct computations of
2ξindex(2(w−ξindexQ+γindexP) if (i > w), where ξindex = 0, 1, . . . , w−1, γindexP = {±1,±3, . . . ,±(2w−1−
1)}.

3.4. Complexity analysis of the wMOF method

In this subsection, we perform an analysis of wMOF method when it used in conjunction with
the 2n2(2n1P + Q) formulae. In addition, we compare the complexity of wMOF method, with and
without formulae. Moreover we derive an expression that predicts the theoretical improvement of
the wMOF method by using the formulae, in terms of the ratio between inversion and multiplication
times. Theorem 3.2 describes the complexity of algorithm B.1 [11] for computing exponentiation
with wMOF.

Theorem 3.2. In terms of affine coordinate, let P ∈ E(Fp), t–digits exponent in wMOF, then the
complexity of algorithm B.1 [11] for computing kP requires on average

(2w + 4)t

w + 1
M +

(2w + 3)t

w + 1
S +

(w + 2)t

w + 1
I,

where M,S and I denote multiplication, squaring and inversion respectively.

170 Darweesh, Saleh

Proof . We noticed that algorithm B.1 [11] performs an ECADD operation each time the current
digit is non–zero, recall from theorem 4[11] that the average non–zero density of wMOF is asymp-
totically 1

w+1
also, one ECDBL operation is performed in each iteration (where i > 0) to double the

intermediate result. Then on average, algorithm B.1 [11] for computing exponentiation with wMOF
requires

t ECDBL+
t

w + 1
ECADD.

Recall that the computational costs for doubling and additions operations in affine coordinate. Then
we can rewrite previous expression as:

(2M + 2S + I)t+
t

w + 1
(2M + S + I)

We can rewrite previous expression in terms of M,S and I as:

(2w + 4)t

w + 1
M +

(2w + 3)t

w + 1
S +

(w + 2)t

w + 1
I.

�

Theorem 3.3. In terms of affine coordinate, let P ∈ E(Fp), and t–digits exponent in wMOF, then
the complexity of algorithm 1 for computing kP requires on average

4(w + 3)t

w + 1
M +

4(w + 2)t

w + 1
S +

2t

w + 1
I,

where M,S and I denote multiplication, squaring and inversion respectively.

Proof . Recall from [11, Theorem 4] that for t–digits exponent k in its wMOF, if t→∞ the average
non–zero density of wMOF is asymptotically 1

w+1
and wMOF of k is infinity.

Long sequence constituted from two types of blocks:

1. b1 = (0), length of this block is 1;
2. b2 = (0i ∗ 0w−i−1), length of this block is w and 0 6 i 6 w − 1.

Then the number of block b2 equals 1
w+1

because every block b2 has a non–zero bit, and the number
of block b1 equals amount of 0s in wMOF – the amount of 0s in b2 which equals

w

w+1
t− (w − 1)(

1

w+1
)t =

t

w+1
.

Now, step 3.1 of algorithm 1 performs 1
w+1

t blocks b1 and step 3.2 performs 1
w+1

t block b2 then
algorithm 1 for computing kP requires on average

t

w+1
ECDBL+

t

w+1
DECDBL(w).

Recall the computational costs for doublings and additions operations in affine coordinate. Then we
can rewrite previous expression as:

n

w + 1
(2M + 2S + I + 4(w + 2)M + 4(w + 1)S + 2M + 2S + I) .

We can rewrite previous expression in terms of M,S and I as:

4(w + 3)t

w + 1
M +

4(w + 2)t

w + 1
S +

2t

w + 1
I.

Now Theorem 3.3 describes the complexity of algorithm 1 for computing exponentiation with wMOF
by using 2n2(2n1P +Q). �

Efficient elliptic curve cryptosystems 9 (2018) No. 1, 161-174 171

Relative improvement

Let us denote the times it would take to perform exponentiation by using algorithms B.1 [11] and 1 by
symbols TRegularmethod and TFormulamethod, respectively. According to theorems B.1[11], and Theorem
3.1, we can derive expressions for the time it would take to perform a whole exponentiation with
wMOF as:

TRegularmethod =
(2w + 4)t

w + 1
M +

(2w + 3)t

w + 1
S +

(w + 2)t

w + 1
I, (3.14)

TFormulamethod =
4(w + 3)t

w + 1
M +

4(w + 2)t

w + 1
S +

2t

w + 1
I. (3.15)

From equations (3.14), and (3.15), one can readily derive the relative improvement by defining
r = I/M (the ratio of speed between a multiplication and inversion) as:

Relative Improvement =
TRegularmethod − TFormulamethod

TRegularmethod
. (3.16)

By using (3.14) and (3.15)

Relative Improvement =
wI − [(2w + 8)M + (2w + 5)S]

(w + 2)I + [(2w + 4)M + (2w + 3)S]
. (3.17)

In our implementation S ≈M and r = 12.6, let w = 4, then

Relative Improvementis =
4(r)− 29

6(r) + 23
, (3.18)

Relative Improvementis =
4(12.6)− 29

6(12.6) + 23
× 100 = 21.7%. (3.19)

4. Implementation and results

In this section, we implement our methods and others, which have been given in previous sections
to show the actual performance of exponentiation. Implementation of an ECC system has several
choices. These include selection of elliptic curve domain parameters, platforms [1].

4.1. Elliptic curves domain parameters and platforms

Generating the domain parameters for elliptic curve is vary time consuming. It consists of a suitably
chosen elliptic curve E defined over a prime finite field Fp, and a base point G ∈ E(Fp). Therefore we
select NIST–recommended elliptic curves domain parameters in [10]. We implement 4 elliptic curves
over prime fields Fp, the prime modulo p are of a special type (generalized Mersenne numbers) with
log2 p = 160, 192, 224, 256. We call these curves as P160, P192, P224 or 256 respectively. The ECC
is implemented on a Pentium 4 personal computer (PC) with 2.0 GHz processor and 512 MB of
RAM. Programs were written in Java language for multi–precision integer operations, and are ran
under Windows XP.

4.2. Timings analysis of wMOF exponentiation method

We performed timing measurements on the individual k doublings and one addition operations
and the corresponding formulae for direct computation of one addition adjoint with k doublings.
In addition, we developed timing estimates based on the approximately ratio of speed between a
multiplication and inversion I/M in prime filed Fp as presented in Table 3.

172 Darweesh, Saleh

Table 3: The ratio of speed between a multiplication and inversion in prime filed Fp.

Curves
Average
Timing

(msec) for M

Average
Timing

(msec) for S

Average
Timing

(msec) for I
r = I/M

P160 7.0 6.9 88.0 12.6
P192 8.7 8.6 108.8 12.5
P224 10 9.8 123.1 12.3
P256 11.9 11.8 145.2 12.2

4.2.1. Optimal window size

To show the actual improvement of wMOF method with our new formula, we must find out the
most efficiency proper window size, where the length of input binary form is 160–bits, 192–bits, 224–
bits, or 256–bits. Figures (1– 4) illustrate the relation among the window size w, the speed of the
evaluation and pre–computed processes. We can notice from these Figures that when the window
size increases, time of the evaluation will decrease, while time of the precomputation will increase,
and the optimal w is 4 when the input is 160–bits, and the optimal w is 5 when the inputs is 192,
224 or 256–bits. So all the tests in this paper will be processed for w = 4 in 160–bits input and
w = 5 for 192, 224, or 256–bits.

Figure 1: Pre–compute and evaluation with 160–
bits input

Figure 2: Pre–compute and evaluation with 192–
bits input

4.2.2. The performance of improved wMOF method

Using Table 3, we can readily predict that the timings for performing a exponentiation with and
without the formulae presented in Algorithm 1. In addition, using the complexity shown in equations
(3.14, 3.15) and the timings shown in Table 3 we can make estimates as to how long an exponentiation
with wMOF will take using both doublings with formulae and individual doublings.

5. Conclusion

In this paper, we constructed efficient algorithm for exponentiation on elliptic curve defined over Fp

in terms of affine coordinates. The algorithm computes 2n2(2n1P + Q) directly from random points
P and Q on an elliptic curve, without computing the intermediate points. We showed that our

Efficient elliptic curve cryptosystems 9 (2018) No. 1, 161-174 173

Figure 3: Pre–compute and evaluation with 224–
bits input

Figure 4: Pre–compute and evaluation with 256–
bits input

Table 4: Average time comparison required to perform an exponentiation without pre–computations stage of a random
point in mesc (Pentium IV 2.0 GHz).

Curves Method
Predicted
Timing

Measured
Timing

% Improvement
Predicted Measured

P 160
wMOF with

formulae (w = 4)
17.4 18.3

21.62 21.8
wMOF (w = 4) 22.2 23.4

P 192
wMOF with

formulae (w = 5)
23.8 24.3

25.62 25.7
wMOF (w = 5) 32 32.6

P 224
wMOF with

formulae (w = 5)
31.7 33.9

24.52 24.6
wMOF (w = 5) 42 45

P 256
wMOF with

formulae (w = 5)
43.8 47.4

23.5 23.3
wMOF (w = 5) 57.3 61.8

algorithm for computing 2n2(2n1P +Q) is more efficient than Sakai–Sakuri algorithm for computing
2n1+n2P and 2n2Q. A comparison was made based on notation of a “break even point”, which is the
cost factor of one inversion relatively to the cost of one multiplication. Moreover, we applied the
algorithm to exponentiation on elliptic curve with wMOF and analyze its computational complexity.

This algorithm can speed the wMOF exponentiation of elliptic curve of size 160–bit about (21.7%)
as a result of its implementation with respect to affine coordinates.

References

[1] M. Brown, D. Hankerson, J. López and A. Menezes, Software implementation of the NIST elliptic curves over
prime fields, In: Naccache D. (eds) Topics in Cryptology–CT–RSA 2001. CT–RSA 2001. Lecture Notes in Com-
puter Science, vol 2020. Springer, Berlin, Heidelberg.

[2] H. Cohen, A. Miyaji and T. Ono, Efficient elliptic curve exponentiation using mixed coordinates In: Ohta K., Pei
D. (eds) Advances in Cryptology–ASIACRYPT’98. ASIACRYPT 1998. Lecture Notes in Computer Science, vol
1514. Springer, Berlin, Heidelberg.

174 Darweesh, Saleh

[3] W. Diffie and M.E. Hellman, New directions in cryptography IEEE Trans. Inf. Theory, 22 (1976) 644–654.
[4] J. Guajardo and Ch. Paar, Efficient algorithms for elliptic curve cryptosystems, In: Kaliski B.S. (eds) Advances

in Cryptology–CRYPTO ’97. CRYPTO 1997. Lecture Notes in Computer Science, vol 1294. Springer, Berlin,
Heidelberg.

[5] N. Koblitz, Elliptic curve cryptosystems, Math. Comp., 48 (1987) 203–209.
[6] K. Koyama and Y. Tsuruoka. Speeding up elliptic cryptosystems by using a signed binary window method, In:

Brickell E.F. (eds) Advances in Cryptology–CRYPTO’ 92. CRYPTO 1992. Lecture Notes in Computer Science,
vol 740. Springer, Berlin, Heidelberg.

[7] V.S. Miller. Use of elliptic curves in cryptography, In: Williams H.C. (eds) Advances in Cryptology – CRYPTO
’85 Proceedings. CRYPTO 1985. Lecture Notes in Computer Science, vol 218. Springer, Berlin, Heidelberg.

[8] A. Miyaji, T. Ono and H. Cohen, Efficient elliptic curve exponentiation, In: Han Y., Okamoto T., Qing S. (eds)
Information and Communications Security. ICICS 1997. Lecture Notes in Computer Science, vol 1334. Springer,
Berlin, Heidelberg.

[9] B. Möller. Improved techniques for fast exponentiation, In: Lee P.J., Lim C.H. (eds) Information Security
and Cryptology — ICISC 2002. ICISC 2002. Lecture Notes in Computer Science, vol 2587. Springer, Berlin,
Heidelberg.

[10] National Institute of Standards and Technology. Digital signature standard (dss). In Pil Joong Lee and Chae Hoon
Lim, editors, Information Security and Cryptology-ICISC 2002. FIPS PUB 186-2, 2000.

[11] K. Okeya, K. Schmidt–Samoa, Ch. Spahn and T. Takagi, Signed binary representations revisited, In: Franklin M.
(eds) Advances in Cryptology – CRYPTO 2004. CRYPTO 2004. Lecture Notes in Computer Science, vol 3152.
Springer, Berlin, Heidelberg.

[12] Y. Sakai and K. Sakurai, Efficient scalar multiplications on elliptic curves with direct computations of several
doublings, IEICE Transactions on Fundamentals of Electronics, Commun. Comput. Sci., E84–A (2001) 120–129.

	Introduction
	Previous work
	Point addition
	Point doubling
	Direct doubling

	Direct computation of in affine coordinate
	The formulae computing in affine coordinate
	Complexity comparison
	Exponentiation with direct computation of
	Complexity analysis of the wMOF method

	Implementation and results
	Elliptic curves domain parameters and platforms
	Timings analysis of wMOF exponentiation method
	Optimal window size
	The performance of improved wMOF method

	Conclusion

