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Abstract

The aim of the present paper is to introduce the concept of joint common limit range property
((JCLR) property) for single–valued and set–valued maps in non–Archimedean fuzzy metric spaces.
We also list some examples to show the difference between (CLR) property and (JCLR) property.
Further, we establish common fixed point theorems using implicit relation with integral contractive
condition. Several examples to illustrate the significance of our results are given.
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1. Introduction

Kramosil and Michalek [7] introduced the notion of fuzzy metric spaces (FMS) as a generalization
of probabilistic metric spaces by using continuous t–norms. George and Veeramani [6] modified the
Kramosil and Michalek [7] notion and obtained a Hausdorff topology on these FMS. Recently, some
results in non-Archimedean FMS appeared [1, 3, 13].
On the other hand, Sintunavarat and Kumam [14] generalized (E.A) property into the notion of
(CLR) property. Also, Chauhan et al. [5] introduced the concept of (JCLR) property in FMS. For
more results on (CLR) property in FMS, see [2, 4, 8, 11] and others.
In this paper, we introduce the notion of (JCLR) property for single–valued and set–valued maps in
non–Archimedean FMS. Further, we obtain coincidence and fixed points using implicit relation.
Now, we list some basic definitions.
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Definition 1.1. (Schweizer and Sklar [12]) A binary operation ? : [0, 1]2 → [0, 1] is said to be
continuous t–norm, if

(i) ? is commutative and associative;

(ii) ? is continuous;

(iii) a ? 1 = a for all a ∈ [0, 1];

(iv) a ? b ≤ c ? d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Two classical examples of t–norms are a ? b = ab and a ? b = min{a, b}.

Definition 1.2. (George and Veeramani [6]) Let X be a nonempty set, ? be a continuous t–norm
and M be a fuzzy set on X ×X × (0,∞). If the following conditions are satisfied for all x, y, z ∈ X
and t, s > 0:

(i) M(x, y, t) > 0;

(ii) M(x, y, t) = 1 iff x = y;

(iii) M(x, y, t) = M(y, x, t);

(iv) M(x, z, t+ s) ≥M(x, y, t) ? M(y, z, s);

(v) M(x, y, .) : (0,∞)→ (0, 1] is continuous,

then (X,M, ?) is said to be a FMS. One may replace the triangle inequality (iv) withM(x, z,max{t, s}) ≥
M(x, y, t) ? M(y, z, s), in this case the triplet (X,M, ?) is said to be a Non–Archimedean FMS.

Definition 1.3. (George and Veeramani [6]) (i) A sequence {xn} in a FMS (X,M, ?) is said to be
convergent to x ∈ X, if lim

n→∞
M(xn, x, t) = 1 for all t > 0.

(ii) A subset A ⊂ X is called open, if for each x in A, there exist t > 0 and 0 < r < 1 such that
{y ∈ X : M(x, y, t) > 1− r} ⊂ A. A subset B of X is called closed if its complement is open.
(iii) A fuzzy metric space in which every sequence has a convergent subsequence is said to be compact.

Definition 1.4. (Rodŕıguez–López and Romaguera [10]) Let CP (X) be the set of all nonempty
compact subsets of a FMS (X,M, ?). Then for every A,B ∈ CP (X) and t > 0,

M(A,B, t) = min{ inf
a∈A

M(a,B, t), inf
b∈B

M(A, b, t)},

also (M, ?) is a fuzzy metric on CP (X).

Definition 1.5. (Ahmed and Nafadi [2]) Let CL(X) be the set of all nonempty closed subsets of
a FMS (X,M, ?). Two mappings f : X → X and F : X → CL(X) are said to be satisfy the (CLRf)
property if there exists a sequence {xn} in X such that for some u, v ∈ X,

lim
n→∞

fxn = u = fv ∈ A = lim
n→∞

Fxn.

Definition 1.6. (Beg et al. [4]) Let (X,M, ?) be a non–Archimedean FMS, F,G : X → CL(X)
and f, g : X → X. Then (f, F ) and (g,G) are said to have the (JCLR) property if there exist two
sequences {xn} and {yn} in X and A,B ∈ CL(X) such that for some u, v, w ∈ X and u ∈ A ∩B:

lim
n→∞

fxn = lim
n→∞

gyn = u = fv = gw, lim
n→∞

Fxn = A, lim
n→∞

Gyn = B.
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Remark 1.7. (i) It is clear that (JCLR) property generalizes (CLR) property but the converse is
not true in general.

(ii) If f = g, {xn} = {yn} and F = G in Definition 1.6, then (JCLR) property reduces to (CLR)
property.

Example 1.8. Let X = [0, 1]. Define the maps f, g, F,G on X as fx = x
2
, gx = x

3
,

Fx =

{[
0, x

2

)
, if 0 ≤ x < 1

3
,[

x
2
, 1
]
, if 1

3
≤ x ≤ 1

and

Gx =

{[
0, x

3

)
, if 0 ≤ x < 1

2
,[

x
3
, 1
]
, if 1

2
≤ x ≤ 1

for all x, y ∈ X. Define two sequences {xn} and {yn} in X such that {xn} = {1
3

+ 1
n
}, {yn} =

{1
2

+ 1
2n
}, n ∈ N. Since lim

n→∞
fxn = 1

6
and lim

n→∞
Fxn = [1

6
, 1], then lim

n→∞
fxn = 1

6
∈ [1

6
, 1] = lim

n→∞
Fxn.

Similarly, lim
n→∞

gyn = 1
6

and lim
n→∞

Gyn = [1
6
, 1]. Now, lim

n→∞
fxn = lim

n→∞
gyn = 1

6
∈ [1

6
, 1] = lim

n→∞
Fxn =

lim
n→∞

Gyn, that is, the hybrid pairs (f, F ) and (g,G) satisfy the property (JCLR). If f = g, F = G

and {xn} = {yn}, then (f, F ) satisfies the property (CLR).

Example 1.9. In Example 1.8, if gx = x
5
, {yn} = {1

2
+ 1

2n
} and

Gx =

{[
0, x

5

)
, if 0 ≤ x < 1

2
,[

x
5
, 1
]
, if 1

2
≤ x ≤ 1,

then lim
n→∞

gyn = 1
10

and lim
n→∞
{Gyn} 1

4
= [ 1

10
, 1], i.e., both of (f, F ) and (g,G) satisfy the property

(CLR) but does not satisfy the property (JCLR).

Definition 1.10. (Pathak and Rodŕıguez–López [9]) Let (X, d) be a metric spaces. A map f :
X → X is said to be occasionally coincidentally idempotent w.r.t. a mapping F : X → CL(X) if
ffx = fx for some x ∈ C(f, F ), where C(f, F ) is the set of coincidence point of f and F .

Remark 1.11. (Pathak and Rodŕıguez–López [9]) Coincidentally idempotent pairs of mappings are
occasionally coincidentally idempotent, but the converse is not necessarily true.

Definition 1.12. (Beg et al. [4]) Let (X,M, ?) be a non–Archimedean FMS. A map f : X → X is
said to be F–weakly commuting at x ∈ X if ffx ∈ Ffx.

Let Φ be the family of continuous mappings φ : (0, 1]4 → [0, 1], which is non–decreasing in the
first coordinate and satisfying the following condition for each u, v ∈ (0, 1]: if φ(u, v, v, u) ≥ 0 or
φ(u, v, u, v) ≥ 0, then u ≥ v.

Example 1.13. (i) φ(t1, t2, t3, t4) = t1 −min{t2, t3+t42
}; (ii) φ(t1, t2, t3, t4) = t1 − t2 − t3+t4

2
.
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Let Ψ be the family of continuous mappings ψ : (0, 1]3 → [0, 1], which is non–decreasing in the
first coordinate and satisfying the following condition for each u, v ∈ (0, 1]: if ψ(u, v, v) ≥ 0 or
ψ(u, v, u) ≥ 0, then u ≥ v.

Example 1.14. (i) ψ(t1, t2, t3) = t1 − t2+t3
2

; (ii) ψ(t1, t2, t3) = t1 − 3(t2+t3)
4

; (iii) ψ(t1, t2, t3) = t1 −
n(t2+t3)
n+1

, n ∈ N.

Let Θ be the family of continuous mappings θ : (0, 1]2 → [0, 1], which is non–decreasing in the first
coordinate and satisfying the following condition for each u, v ∈ (0, 1]: if θ(u, v) ≥ 0 or θ(u, v) ≥ 0,
then u ≥ v.

Example 1.15. (i) θ(t1, t2) = t1 − t2; (ii) θ(t1, t2) = t1
2 − t2

2; (iii) θ(t1, t2) = t1
n − t2

n; (iv)

θ(t1, t2) = t1 − nt2; (v) θ(t1, t2) = t1 − t1+t2
2

; (vi) θ(t1, t2) = t1 − 3(t1+t2)
4

; (vii) θ(t1, t2) = t1 − n(t1+t2)
n+1

.

2. Main results

The first result is the following.

Theorem 2.1. Let (X,M, ?) be a non–Archimedean FMS, f, g : X → X and F,G : X → 2X such
that for each x ∈ X, Fx,Gx ∈ CL(X), suppose that there exist φ ∈ Φ such that∫ φ(Q)

0

α(s)ds− L
∫ max(Q)

0

β(e)de ≥ 0, (2.1)

where
Q = (M(Fx,Gy, t),M(fx, gy, t),M(fx, Fx, t),M(gy,Gy, t)),

where 0 ≤ L < 1 and α, β : [0,∞) → [0,∞) are summable non negative Lebesgue integrable func-
tions such that for each ε ∈ (0, 1],

∫ ε
0
α(s)ds > 0 and

∫ ε
0
β(e)de > 0. If (f, F ) and (g,G) satisfy

(JCLR) property, weakly commuting and occasionally coincidentally idempotent, then f, g, F,G have
a common fixed point.

Proof . By (JCLR) property, we have lim
n→∞

Fxn = A, lim
n→∞

Gyn = B, lim
n→∞

fxn = lim
n→∞

gyn = u ∈ A∩B,

where {xn}, {yn} ∈ X, A,B ∈ CL(X) and u = fv = gw, for some u, v, w ∈ X. Now, v is a
coincidence point of f and F , that is fv ∈ Fv. To prove this, suppose not, i.e., M(Fv, fv, t) 6= 1,
since ∫ φ(Q)

0

α(s)ds− L
∫ max(Q)

0

β(e)de ≥ 0,

where
Q = φ(M(Fv,Gyn, t),M(fv, gyn, t),M(fv, Fv, t),M(gyn, Gyn, t)) ≥ 0.

When n→∞, we get ∫ φ(M(Fv,B,t),1,M(fv,Fv,t),1)

0

α(s)ds ≥ 0.

But φ(M(Fv, fv, t), 1,M(fv, Fv, t), 1) ≥ φ(M(Fv,B, t), 1,M(fv, Fv, t), 1), therefore∫ φ(M(Fv,fv,t),1,M(fv,Fv,t),1)

0

α(s)ds ≥ 0.
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It further give
φ(M(Fv, fv, t), 1,M(fv, Fv, t), 1) ≥ 0.

But φ(u, v, u, v) ≥ 0 implies u ≥ v, then M(Fv, fv, t) ≥ 1, which a contradiction. So that fv ∈ Fv.
In similar way, one may use φ(u, v, v, u) ≥ 0 and deduce that gw ∈ Gw. By weakly commuting and
occasionally coincidentally idempotent, we have ffv = fv and ffv ∈ Ffv. So that u = fu ∈ Fu.
Further, ggw = gw and ggw ∈ Ggw implies u = gu ∈ Gu. Then f, g, F,G have a common fixed
point. This concludes the proof. �

Now, we list two examples to illustrate Theorem 2.1.

Example 2.2. Let (X,M, ?) be a non–Archimedean FMS where X = [0, 1], a ∗ b = min{a, b} for
all a, b ∈ [0, 1] and M(x, y, t) = t

t+|x−y| for all t > 0 and x, y ∈ X. Define φ : [0, 1]4 → [0, 1] as

φ(t1, t2, t3, t4) = t1 − t2. Also, we define the maps F,G, f, g on X as Fx = [3x
5
, 1], Gx = [x3, 1],

fx = x
5

and gx = x
2

for all x, y ∈ X. Define two sequences {xn} = { 1
n
}, {yn} = { 1

2n
}, n ∈ N, in X.

As lim
n→∞

fxn = lim
n→∞

gyn = 0 ∈ [0, 1] = lim
n→∞

Fxn = lim
n→∞

Gyn, then (f, F ) and (g,G) are satisfy (JCLR)

property. Further, ff0 = f0 ∈ [0, 1] = Ff0 and gg0 = g0 ∈ [0, 1] = Gg0, i.e., (f, F ) and (g,G) are
weakly commuting and occasionally coincidentally idempotent besides∫ φ(M(Fxn,Gyn,t),M(fxn,gyn,t),M(fxn,Fxn,t),M(gyn,Gyn,t))

0

α(s)ds = 0,

which gives

φ(M(Fxn, Gyn, t),M(fxn, gyn, t),M(fxn, Fxn, t),M(gyn, Gyn, t)) = 0.

Thus, all the conditions of Theorem 2.1 are satisfied and 0 is a common fixed point for the maps
f, g, F,G.

Example 2.3. Let (X,M, ?) as in Example 2.2. Define the maps f, g, F,G on X as fx = gx = 1
6
,

Fx =

{[
0, 1

6

)
, if 0 ≤ x < 1

3
,[

1
6
, 1
]
, if 1

3
≤ x ≤ 1

and

Gx =

{[
0, 1

6

)
, if 0 ≤ x < 1

2
,[

1
6
, 1
]
, if 1

2
≤ x ≤ 1

for all x, y ∈ X. Define two sequences {xn} and {yn} in X such that {xn} = {1
3

+ 1
n
}, {yn} =

{1
2

+ 1
2n
}, n ∈ N. Also, let φ(t1, t2, t3, t4) = t1

2 − t22, then all conditions of Theorem 2.1 are satisfied
and 1

6
be common fixed point of (f, F ) and (g,G).

Remark 2.4. (i) In Theorem 2.1, we can replace the equation (2.1) by one of the following:

(a) suppose that there exist ψ ∈ Ψ such that∫ ψ(Q)

0

α(s)ds− L
∫ max(Q)

0

β(e)de ≥ 0,

where
Q = (M(Fx,Gy, t),M(fx, gy, t),M(fx, Fx, t));
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(b) suppose that there exist θ ∈ Θ such that∫ θ(Q)

0

α(s)ds− L
∫ max(Q)

0

β(e)de ≥ 0,

where
Q = (M(Fx,Gy, t),M(fx, gy, t)).

(ii) One may put one of β(e) = 1 or α(s) or both in Theorem 2.1, in this case, condition (2.1) take
the following versions receptively:∫ φ(Q)

0

α(s)ds− Lmax(Q) ≥ 0,

φ(Q)− L
∫ max(Q)

0

β(e)de ≥ 0,

φ(Q)− Lmax(Q) ≥ 0,

where

Q = (M(Fx,Gy, t),M(fx, gy, t),M(fx, Fx, t),M(gy,Gy, t)).

Corollary 2.5. Let (X,M, ?) be a non–Archimedean FMS, f : X → X and F : X → 2X such that
Fx is a closed subset of X there exist φ ∈ Φ such that

φ(M(Fx, Fy, t),M(fx, fy, t),M(fx, Fx, t),M(fy, Fy, t)) ≥ 0.

If (f, F ) are satisfy (CLR) property, weakly commuting and occasionally coincidentally idempotent,
then f, g, F,G have a common fixed point.

Corollary 2.6. Let (X,M, ?) be a non–Archimedean FMS, f, g, F,G : X → X such that there exist
φ ∈ Φ such that

φ(M(Fx,Gy, t),M(fx, gy, t),M(fx, Fx, t),M(gy,Gy, t)) ≥ 0.

If (f, F ) and (g,G) are satisfy (JCLR) property, weakly commuting and occasionally coincidentally
idempotent, then f, g, F,G have a common fixed point.

Corollary 2.7. Let (X,M, ∗) be a non–Archimedean FMS, f, F : X → X such that there exist
φ ∈ Φ such that

φ(M(Fx, Fy, t),M(fx, fy, t),M(fx, Fx, t),M(fy, Fy, t)) ≥ 0.

If (f, F ) are satisfy (CLR) property, weakly commuting and occasionally coincidentally idempotent,
then f, g, F,G have a common fixed point.
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Theorem 2.8. Let (X,M, ?) be a non–Archimedean FMS, f, g : X → X and Fn : X → 2X such
that for each x ∈ X and n ∈ N, Fx ∈ CL(X). Suppose that there exist φ ∈ Φ such that∫ φ(Q)

0

α(s)ds− L
∫ max(Q)

0

β(e)de ≥ 0,

where
Q = (M(Fkx, Fly, t),M(fx, gy, t),M(fx, Fkx, t),M(gy, Fly, t)),

0 ≤ L < 1, k = 2n + 1, l = 2n + 2 and α, β : [0,∞) → [0,∞) are summable non negative lebesgue
integrable functions such that for each ε ∈ (0, 1],

∫ ε
0
α(s)ds > 0 and

∫ ε
0
β(e)de > 0. If (f, Fk) and

(g, Fl) are satisfy (JCLR) property, weakly commuting and occasionally coincidentally idempotent,
then f, g, Fk, Fl have a common fixed point.

Proof . Put F = Fk and G = Fl in Theorem 2.1. This concludes the proof. �
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