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Abstract

Endpoint results are presented for multi–valued cyclic contraction mappings on complete metric
spaces (X, d). Our results extend previous results given by Nadler (1969), Daffer–Kaneko (1995),
Harandi (2010), Moradi and Kojasteh (2012) and Karapinar (2011).
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1. Introduction

Let (X, d) be a metric space and P (X) denotes the class of all subsets of X. Define

Pf (X) =
{
A ⊆ X : A 6= ∅ has property f

}
.

Thus Pbd(X), Pcl(X), Pcp(X) and Pcl,bd(X) denote the classes of bounded, closed, compact and closed
bounded subsets of X, respectively. Also T : X −→ Pf (X) is called a multi–valued mapping on X.
A point x is called a fixed point of T if x ∈ Tx. Denote Fix(T ) = {x ∈ X : x ∈ Tx}. An element
x ∈ X is said to be an endpoint of multi–valued mapping T , if Tx = {x}. The set of all endpoints
of T denotes by End(T ). Obviously, End(T ) ⊆ Fix(T ). In recent years many authors studied the
existence and uniqueness of endpoints for a multi–valued mappings in metric spaces, see for example
[1, 5, 6, 11, 12, 14, 15, 19] and references therein.

A multi–valued mapping T : X −→ Pcl,bd(X) is said to be contraction if there exists 0 ≤ α < 1
such that

H(Tx, Ty) ≤ αd(x, y) (1.1)
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for all x, y ∈ X, where H denotes the Hausdorff metric on Pcl,bd(X) induced by d, that is,

H(A,B) := max
{

sup
x∈B

d(x,A), sup
x∈A

d(x,B)
}

(1.2)

for all A,B ∈ Pcl,bd(X).
Rhoades [17, Theorem 2] proved the following fixed point theorem for ϕ–weak contractive single

valued mappings, giving another generalization of the Banach Contraction Principle.

Theorem 1.1. Let (X, d) be a complete metric space, and let T : X −→ X be a mapping such that

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) (1.3)

for every x, y ∈ X (i.e. ϕ–weak contractive), where ϕ : [0,+∞) −→ [0,+∞) is a continuous and
nondecreasing function with ϕ(0) = 0 and ϕ(t) > 0 for all t > 0. Then T has a unique fixed point.

In the following theorem, Nadler [16] extended the Banach contraction principle to multivalued
mappings.

Theorem 1.2. Let (X, d) be a complete metric space. Suppose that T : X −→ Pcl,bd(X) is a
contraction mapping in the sense that for some 0 ≤ α < 1,

H(Tx, Ty) ≤ αd(x, y) (1.4)

for all x, y ∈ X. Then there exists a point x ∈ X such that x ∈ Tx.

In 2010 Amini–Harandi [1] proved the following endpoint result for a multi–valued mappings of a
complete metric space X into Pcl,bd(X).

Theorem 1.3. (Amini–Harandi [1, Theorem 2.1]) Let (X, d) be a complete metric space. Suppose
that T : X −→ Pcl,bd(X) is a multi–valued mapping that satisfies

H(Tx, Ty) ≤ ψ(d(x, y)) (1.5)

for each x, y ∈ X, where ψ : [0,+∞) −→ [0,+∞) is upper semicontinuous, ψ(t) < t for all t > 0,
and satisfies lim inft−→∞(t − ψ(t)) > 0. Then T has a unique endpoint if and only if T has the
approximate endpoint property.

In 2012 Moradi and Khojasteh [15] proved the following endpoint result and extended the Amini–
Harandi’s theorem.

Theorem 1.4. Let (X, d) be a complete metric space and let T : X −→ Pcl,bd(X) be a multi–valued
mapping that satisfies

H(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) (1.6)

for each x, y ∈ X, where ϕ ∈ Ψ(i.e., multi–valued ϕ–weak contractive). Then T has a unique
endpoint if and only if T has the approximate endpoint property. Moreover, End(T ) = Fix(T ).

In (2010) Păcurar [19] presented the following definitions.

Definition 1.5. Let X be a non–empty set, m a positive integer and T : X → X an operator. By
definition, X = ∪m

i=1Xi is a cyclic representation on X with respect to T if
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(1) Xi, i = 1, . . . ,m are non–empty sets;

(2) T (X1) ⊆ X2, T (X2) ⊆ X3, . . . , T (Xm−1) ⊆ Xm, T (Xm) ⊆ X1.

Definition 1.6. Let (X, d) be a metric space, m a positive integer, A1, A2, . . . , Am closed non–
empty subsets of X and Y = ∪mi=1Ai. An operator T : Y → Y is called a cyclic weak ϕ–contraction
if

(1) ∪mi=1Ai is a cyclic representation of Y with respect to T , and

(2) there exists a continuous, non–decreasing function ϕ : [0,+∞) → [0,+∞) with ϕ(t) > 0 for
t > 0 and ϕ(0) = 0, such that

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) (1.7)

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m, where Am+1 = A1.

In 2011, Karapinar [9] proved the following theorem on the existence of fixed point for cyclic weak
ϕ–contraction mappings.

Theorem 1.7. Let (X, d) be a complete metric space, m ∈ N, A1, A2, . . . , Am closed non–empty
subsets of X and Y =

⋃m
i=1Ai. Let T : Y → Y be a cyclic weak φ–contractive mapping, where

φ : [0,+∞) −→ [0,+∞) with φ(t) > 0 is a continuous function for t ∈ (0,+∞), and φ(0) = 0. Then,
T has a unique fixed point z ∈

⋂m
i=1Ai.

Recently, Moradi [13] extended the Karapinar’s theorem. There are another results on the existence
of fixed point for cyclic mappings, see for example [2, 3, 4, 7, 8, 10, 18]. In Section 3 we extended
Amini–Harandi, Moradi, Karapinar and Moradi and Khojasteh’s results for cyclic mappings.

2. Preliminaries

In this work, (X, d) denotes a complete metric space and H denotes the Hausdorff metric on Pcl,bd(X)
induced by d. We denote by Φ the class of all mappings ϕ : [0,+∞) −→ [0,+∞) such that
ϕ−1(0) = {0} and ϕ(t) < t for all t > 0 and satisfies the following condition:

ϕ(tn)→ 0 implies tn → 0. (2.1)

Definition 2.1. Let X be a non–empty set, m a positive integer and T : X → Pcl,bd(X) a multi–
valued operator. By definition, X = ∪mi=1Xi is a cyclic representation on X with respect to T
if

(1) Xi, i = 1, . . . ,m are non–empty sets;

(2) Tx1 ⊆ X2, Tx2 ⊆ X3, . . . , Txm−1 ⊆ Xm, Txm ⊆ X1 for all x1 ∈ X1, x2 ∈ X2, . . . , xm ∈ Xm.

Definition 2.2. Let (X, d) be a metric space, m a positive integer, X1, X2, . . . , Xm closed non–
empty subsets of X and X = ∪mi=1Xi. An multi–valued operator T : X → Pcl,bd(X) is called a cyclic
ϕ–contraction if
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(1) ∪mi=1Xi is a cyclic representation of X with respect to T , and

(2) there exists ϕ ∈ Φ such that

H(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) (2.2)

for any x ∈ Xi, y ∈ Xi+1, i = 1, 2, . . . ,m, where Xm+1 = X1.

Definition 2.3. Let (X, d) be a metric space, m a positive integer, X1, X2, . . . , Xm closed non–
empty subsets of X and X = ∪mi=1Xi. Suppose that X = ∪mi=1Xi is a cyclic representation on X
with respect to multi–valued operator T : X → Pcl,bd(X). We say that T has the approximate cyclic
endpoint property if there exists a sequence {xn}∞n=1 in X such that xn ∈ Xn, n = 1, 2, 3, . . . and

lim
n→∞

H({xn}, Txn) = 0,

where Xm+1 = X1, Xm+2 = X2, . . . , X2m = Xm, X2m+1 = X1, X2m+2 = X2, . . ..

Definition 2.4. Let (X, d) be a metric space, m a positive integer, X1, X2, . . . , Xm closed non–
empty subsets of X and X = ∪mi=1Xi be a cyclic representation on X with respect to multi–valued
operator T : X → Pcl,bd(X). We say that the fixed point problem is well–posed for T with respect
to H if

(1) End(T ) = {x},

(2) if {xn} ⊂ X and lim
n→∞

H({xn}, Txn) = 0, then lim
n→∞

xn = x, where, xi ∈ Xi for all i ∈ N and

where Xm+1 = X1, Xm+2 = X2, . . . , X2m = Xm, X2m+1 = X1, X2m+2 = X2, . . ..

3. The main results

The following theorem is the main theorem of this paper, providing a new type of endpoint theorem for
cyclic multi-valued operator. This theorem extends the Amoni–Harandi and Moradi and Khojasteh’
theorems.

Theorem 3.1. Let (X, d) be a metric space, m a positive integer, X1, X2, . . . , Xm closed non–empty
subsets of X and X = ∪mi=1Xi be a cyclic representation on X with respect to multi–valued operator
T : X → Pcl,bd(X). Let T be a cyclic ϕ–contraction for some ϕ ∈ Φ, that is,

H(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) (3.1)

for all x ∈ Xi, y ∈ Xi+1, where Xm+1 = X1. Then T has a unique endpoint if and only if T has the
approximate cyclic endpoint property. Moreover, Fix(T ) = End(T ). Also the fixed point problem is
well–posed for T .

Proof . At first we consider that Xm+1 = X1, Xm+2 = X2,. . . , X2m = Xm, X2m+1 = X1, X2m+2 =
X2, . . .. It is clear that, if T has an endpoint x ∈ X then x ∈ ∩m

i=1Xi. By define x1 = x2 = x3 =
· · · = x we have x1 ∈ X1, x2 ∈ X2, x3 ∈ X3,. . . and lim

n→∞
H({xn}, Txn) = 0. Therefore T has the

approximate cyclic endpoint property.
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Conversely, suppose that T has the approximate cyclic endpoint property; then there exists a sequence
{xn} in X such that for all n ∈ N; xn ∈ Xn and

lim
n→∞

H({xn}, Txn) = 0.

For all n ∈ N from xn ∈ Xn, xn+1 ∈ Xn+1;

d(xn+1, xn) = H({xn+1}, {xn}) ≤ H({xn+1}, Txn+1) +H(Txn+1, Txn) +H({xn}, Txn)

≤ H({xn+1}, Txn+1) + d(xn+1, xn)− ϕ(d(xn+1, xn)) +H({xn}, Txn).

So

ϕ(d(xn+1, xn)) ≤ H({xn+1}, Txn+1) +H({xn}, Txn).

This shows that lim
n→∞

ϕ(d(xn+1, xn)) = 0 and since ϕ ∈ Φ we get

lim
n→∞

d(xn+1, xn) = 0. (3.2)

We claim that {xn} is a Cauchy sequence. Indeed, if it is false, then there exist a > 0 and the
subsequence {n(k)}∞k=1 such that n(k + 1) > n(k) is minimal in the sense that d(xn(k+1), xn(k)) > a.
Obviously, n(k) ≥ k for all k ∈ N. Using (3.2) there exists N0 ∈ N such that for all k ≥ N0,
d(xk+1, xk) < a

3
. So for all k ≥ N0, n(k + 1) − n(k) ≥ 2 and by using the triangle inequality, we

obtain

a < d(xn(k+1), xn(k)) ≤ d(xn(k+1), xn(k+1)−1) + d(xn(k+1)−1, xn(k))

≤ d(xn(k+1), xn(k+1)−1) + a.

Letting k →∞ in the above inequality and using (3.2), we get

lim
k→∞

d(xn(k+1), xn(k)) = a. (3.3)

For all k ≥ N0, there exists l(k) ∈ {0, 1, 2, . . . ,m} such that n(k+ 1)− l(k) ≡ n(k) + 1(modm). Now
we show that lim

k→∞
d(xn(k+1)−l(k), xn(k)) = a. For all k ≥ N0,

d(xn(k+1), xn(k))− d(xn(k+1), xn(k+1)−1)− · · · − d(xn(k+1)−l(k)+1, xn(k+1)−l(k))

≤ d(xn(k+1)−l(k), xn(k))

≤ d(xn(k+1), xn(k)) + d(xn(k+1), xn(k+1)−1) + · · ·+ d(xn(k+1)−l(k)+1, xn(k+1)−l(k)).

(3.4)

Letting k →∞ in (3.4) and using (3.2) and (3.3), we get

lim
k→∞

d(xn(k+1)−l(k), xn(k)) = a. (3.5)

Also for all k ≥ N0,

d(xn(k+1), xn(k+1)−1)− d(xn(k+1)−1, xn(k+1)−2)− · · · − d(xn(k+1)−l(k)+1, xn(k+1)−l(k))

≤ d(xn(k+1), xn(k+1)−l(k))

≤ d(xn(k+1), xn(k+1)−1) + d(xn(k+1)−1, xn(k+1)−2) + · · ·+ d(xn(k+1)−l(k)+1, xn(k+1)−l(k)).
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Letting k →∞ in the above inequality and using (3.2) and 0 ≤ l(k) ≤ m for all k ≥ N0, we conclude
that

lim
k→∞

d(xn(k+1), xn(k+1)−l(k)) = 0. (3.6)

Since for all k ≥ N0, n(k + 1)− l(k) ≡ n(k) + 1(mod m); from (3.1)

d(xn(k+1), xn(k)) ≤ d(xn(k+1), xn(k+1)−l(k)) + d(xn(k+1)−l(k), xn(k))

= d(xn(k+1), xn(k+1)−l(k)) +H({xn(k+1)−l(k)}, {xn(k)})
≤ d(xn(k+1), xn(k+1)−l(k)) +H({xn(k+1)−l(k)}, Txn(k+1)−l(k))

+H(Txn(k+1)−l(k), Txn(k)) +H({xn(k)}, Txn(k))
≤ d(xn(k+1), xn(k+1)−l(k)) +H({xn(k+1)−l(k)}, Txn(k+1)−l(k))

+d(xn(k+1)−l(k), xn(k))− ϕ(d(xn(k+1)−l(k), xn(k)))

+H({xn(k)}, Txn(k)). (3.7)

Hence

0 ≤ ϕ(d(xn(k+1)−l(k), xn(k)))

≤ d(xn(k+1), xn(k+1)−l(k)) +H({xn(k+1)−l(k)}, Txn(k+1)−l(k)) + d(xn(k+1)−l(k), xn(k))

+H({xn(k)}, Txn(k))− d(xn(k+1), xn(k)).

(3.8)

Letting k →∞ in (3.8) and using (3.3), (3.5) and (3.6) we get

lim
k→∞

ϕ(d(xn(k+1)−l(k), xn(k))) = 0. (3.9)

Since ϕ ∈ Φ then lim
k→∞

d(xn(k+1)−l(k), xn(k)) = 0 and this is a contradiction. Thus {xn} is Cauchy.

Since (X, d) is complete and {xn} is Cauchy, it follows that there exists x ∈ X such that lim
n→∞

xn = x.

From lim
n→∞

xnm+i = x and {xnm+i : n ∈ N} ⊆ Xi we conclude that x ∈ Xi for i = 1, 2, . . . ,m. Hence

x ∈ ∩mi=1Xi. Now for all n ∈ N,

H({x}, Tx) ≤ H({x}, {xn}) +H({xn}, Txn) +H(Txn, Tx)

≤ d(x, xn) +H({xn}, Txn) + d(xn, x)− ϕ(d(xn, x)). (3.10)

Letting n → ∞ in (3.10) we get Tx = {x}. Hence T has an endpoint. Uniqueness of endpoint in
∩mi=1Xi follows from (3.1). Also every endpoint of T belong to ∩mi=1Xi. Therefore End(T ) = {x}.
Now suppose y ∈ Fix(T ) is arbitrary. Obviously, y ∈ ∩mi=1Xi. We need to show that y = x. Suppose
that y 6= x. Then from y ∈ Ty

d(x, y) ≤ H({x}, T y) = H(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) < d(x, y), (3.11)

and this is a contradiction. Therefore End(T ) = Fix(T ). Also the proof of theorem shows that the
fixed point problem is well–posed and this completes the proof. �

Remark 3.2. By taking X1 = X2 = · · · = Xm = X and using Theorem 3.1 we can generalized
Moradi and Khojasteh’s theorem (Theorem 1.6). Also by define ϕ(t) = t− ψ(t) and using Theorem
3.1 we conclude Amini-Harandi’s theorem (Theorem 1.3).

The following corollary is a direct result of Theorem 3.1.
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Corollary 3.3. Let (X, d) be a metric space, m a positive integer, X1, X2, . . . , Xm closed non–empty
subsets of X and X = ∪mi=1Xi be a cyclic representation on X with respect to single–valued operator
f : X → X. Let f be a cyclic ϕ–contraction for some ϕ ∈ Φ, that is,

d(fx, fy) ≤ d(x, y)− ϕ(d(x, y)) (3.12)

for all x ∈ Xi, y ∈ Xi+1, where Xm+1 = X1. Then f has a unique fixed point if and only if f has the
approximate cyclic fixed point property.

Proof . Let Tx = {fx} and apply Theorem 3.1. �

The following theorem shows that for single–valued mappings the condition (3.12) is sufficient for
f to have the approximate cyclic fixed point property.

Theorem 3.4. Let (X, d) be a metric space, m a positive integer, X1, X2, . . . , Xm closed non–empty
subsets of X and X = ∪mi=1Xi be a cyclic representation on X with respect to single–valued operator
f : X → X. Let f be a cyclic ϕ–contraction for some ϕ ∈ Φ, that is,

d(fx, fy) ≤ d(x, y)− ϕ(d(x, y)) (3.13)

for all x ∈ Xi, y ∈ Xi+1, where Xm+1 = X1. Then f has the approximate cyclic fixed point property.

Proof . Let x1 ∈ X, x2 = fx1, x3 = fx2, . . .. We may assume that x1 ∈ X1. Hence x2 ∈ X2, x3 ∈
X3, . . .. For all n ∈ N, from xn−1 ∈ Xn−1 and xn ∈ Xn;

d(xn, fxn) = d(fxn−1, fxn) ≤ d(xn−1, xn)− ϕ(d(xn−1, xn)). (3.14)

Therefore the sequence {d(xn, xn+1)} is monotone non-increasing and bounded below. So, there
exists r > 0 such that lim

n→∞
d(xn, xn+1) = r. By using (3.14) we conclude that

ϕ(d(xn−1, xn)) ≤ d(xn−1, xn)− d(xn, xn+1), (3.15)

and so lim
n→∞

ϕ(d(xn−1, xn)) = 0. Hence lim
n→∞

d(xn−1, xn) = 0. Thus lim
n→∞

d(xn−1, fxn−1) = 0 and so

inf
x∈X

d(x, fx) = 0. Therefore f has the approximate cyclic fixed point property. �

Remark 3.5. As an application of Corollary 3.3 and Theorem 3.4, we obtain the following fixed
point results. This corollary extends Rhoades and Karapinar theorems.

Corollary 3.6. Let (X, d) be a metric space, m a positive integer, X1, X2, . . . , Xm closed non–empty
subsets of X and X = ∪mi=1Xi be a cyclic representation on X with respect to single–valued operator
f : X → X. Let f be a cyclic ϕ–contraction for some ϕ ∈ Φ, that is,

d(fx, fy) ≤ d(x, y)− ϕ(d(x, y)) (3.16)

for all x ∈ Xi, y ∈ Xi+1, where Xm+1 = X1. Then f has a unique fixed point and for every x0 ∈ X,
the sequence {fn(x0)} converges to this fixed point. Also the fixed point problem for f is well–posed.

The following corollary extends the Nadler’s theorem (Theorem 1.2).
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Corollary 3.7. Let (X, d) be a metric space, m a positive integer, X1, X2, . . . , Xm closed non–empty
subsets of X, ∩mi=1Xi 6= ∅ and X = ∪mi=1Xi be a cyclic representation on X with respect to multi–
valued operator T : X → Pcl,bd(X). Let T be a cyclic contraction mapping, that is,

H(Tx, Ty) ≤ αd(x, y) (3.17)

for all x ∈ Xi, y ∈ Xi+1 and for some α ∈ [0, 1), where Xm+1 = X1. Then there exists a point
x ∈ ∩mi=1Xi such that x ∈ X. Also if T has the approximate cyclic endpoint property, then Fix(T ) =
End(T ) = {x}. (So the fixed point is unique.)

Proof . Let Y = ∩mi=1Xi. Obviously, Ty ∈ Pcl,bd(Y ) for all y ∈ Y . Using Theorem 1.2, there
exists x ∈ Y such that x ∈ Tx. If T has the approximate endpoint property, then T has the unique
endpoint and End(T ) = Fix(T ) = {x}. �
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[18] M. Păcurar and I.A. Rus, Fixed point theory for cyclic ϕ−contraction, Nonlinear Anal., 72 (2010) 1181–1187.
[19] D. Wardowski, Endpoints and fixed points of a set–valued contractions in cone metric spaces, Nonlinear Anal., 71

(2009) 512–516.


	Introduction
	Preliminaries
	The main results

