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Abstract

In this paper, we introduce a new iterative scheme to approximate a common fixed point for a finite
family of nonexpansive non–self mappings. Strong convergence theorems of the proposed iteration
in Banach spaces.
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1. Introduction

Let X be a real Banach space, C a nonempty closed convex subset of a Banach space X and let
P : X → C be the nonexpansive retraction of X onto C, T : C → X a given mapping. T is said to
be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. The fixed point set of T denoted by F (T )
such that F (T ) = {x ∈ C : x = Tx} and f is called contraction if there exists a constant α ∈ (0, 1)
such that ‖f(x)− f(y)‖ ≤ α‖x− y‖ for all x, y ∈ C.

In 1953, Mann [7] introduced Mann iteration process define as follows: x1 ∈ C and

xn+1 = (1− αn)xn + αnTxn,∀n ≥ 1,

where {αn} ⊂ (0, 1). Later, in 1974, Ishikawa [5] proposed the following two–step iteration: x1 ∈ C
and

yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)xn + αnTyn, ∀n ≥ 1,
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where {αn} and {βn} are sequences in (0, 1). This method is often called the Ishikawa iteration
process.

Very recently, Agarwal et al. [2] introduced a new iteration process as follows: x1 ∈ C and

yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)Txn + αnTyn, ∀n ≥ 1,

where {αn} and {βn} are sequences in (0, 1). This method is called the S–iteration process.
Motivated by Agarwal et al. [2], we have the aim to introduce and study a new mapping defined

by the following definition.

Definition 1.1. Let X be a real Banach space, C a nonempty closed convex subset of a real Banach
space X and let P : X → C be the nonexpansive retraction of X onto C. Let T1, T2, . . . , TN be a
finite family of nonexpansive non-self mappings of C onto X, and let λ1, λ2, . . . , λN ∈ [0, 1] for all
i = 1, 2, . . . , N. Define the mapping Y : X → X as follows:

U1 = λ1PT1 + (1− λ1)I,

U2 = λ2PT2U1 + (1− λ2)PT1,

U3 = λ3PT3U2 + (1− λ3)PT2,

...

UN−1 = λN−1PTN−1UN−2 + (1− λN−1)PTN−2,

Y = UN = λNPTNUN−1 + (1− λN )PTN−1, (1.1)

such that a mapping Y is called the Y –mapping generated by T1, T2, . . . , TN and λ1, λ2, . . . , λN and
I : X → X be identity mapping.

First, we use the definition above, study weak convergence of the following Mann–type iteration
process in a uniformly convex Banach space with a Fréchet differentiable norm: x1 ∈ C

xn+1 = (1− αn)xn + αnYnxn, ∀n ≥ 1, (1.2)

where Yn is a Y−mapping generated by T1, T2, . . . , TN and λn,1, λn,2, . . . , λn,N .
Finally, we discuss strong convergence of the iteration scheme involving the modified viscosity

approximation method [8] define as follows: x1 ∈ C and

xn+1 = αnf(xn) + βnxn + λnYnxn, ∀n ≥ 1, (1.3)

where {αn}, {βn} and {λn} are sequences in (0, 1) and f ∈ ΣC .
The aim of this paper is to obtain weak and strong convergence results for the iterative process

(1.1) of a nonexpansive non-self mappings in Banach spaces. This paper, we use the notation as
follows:

i ⇀ for weak convergence and → for strong convergence;

ii ωω(xn) = {x : xni
⇀} denote the weak ω–limit set of {xn}.

2. Preliminaries

In this section, we give some definitions and lemmas used in the main results.[1]
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Let X be a real Banach space and let U = {x ∈ X : ‖x‖ = 1} be the unit sphere of X. A Banach
space X is said to be strictly convex if for any x, y ∈ U,

x 6= y implies

∥∥∥∥x+ y

2

∥∥∥∥ < 1.

It also said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such that for any x, y ∈ U,

‖x− y‖ ≥ ε implies

∥∥∥∥x+ y

2

∥∥∥∥ < 1− δ.

It is known that a uniformly convex Banach space is reflexive and strictly convex. Define a function
δ : [0, 2]→ [0, 1] called the modulus of convexity of X as follows:

δ(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ X, ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε

}
.

Then X is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. A Banach space X is said to be
smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1)

exist for all x, y ∈ U. The norm is said to be uniformly Gâteaux differentiable, if for y ∈ U, the limit is
attained uniformly for x ∈ U. It is said to be Fŕechet differentiable, if for x ∈ U, the limit is attained
uniformly for y ∈ U. It is said to be uniformly smooth or uniformly Fŕechet differentiable if the limit
(2.1) is attained uniformly for x, y ∈ U. The normalized duality mapping J : X → 2X

∗
is defined by

J(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2} (2.2)

for all x ∈ X. It is know that X is smooth if and only if the duality mapping J is single valued and
that if X has a uniformly Gâteaux differentiable norm, J is uniformly norm–to–weak continuous on
each bounded subset of X. A Banach space X is said to satisfy Opial’s condition [9]. If x ∈ X and
xn ⇀ x, then

lim
n→∞

sup ‖xn − x‖ < lim
n→∞

sup ‖xn − y‖, ∀y ∈ X, x 6= y. (2.3)

Let T : C → C. Then I−T is demiclosed at 0 if for all sequence {xn} in C, xn ⇀ q and ‖xn−Tn‖ → 0
imply q = Tq. It is known that if X is uniformly convex, C is nonempty closed and convex, and T
is nonexpansive, then I − T is demiclosed at 0 [3].

The following lemmas are needed for proving our main results.

Lemma 2.1. (Agarwal et al. [1]) Let X be a Banach space. Then the following hold:

1. ‖x+ y‖2 ≥ ‖x‖2 + 2〈y, J(x)〉 for all x, y ∈ X;

2. ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, J(x+ y)〉 for all x, y ∈ X.

Lemma 2.2. (Takahashi [11]) In a strictly convex Banach space X, if

‖x‖ = ‖y‖ = ‖λx+ (1− λ)y‖

for all x, y ∈ X and λ ∈ (0, 1), then x = y
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Lemma 2.3. (Suzuki [10]) Let {xn} and {zn} be two sequences in a Banach space E such that

xn+1 = βnxn + (1− βn)zn, n ≥ 1,

where {βn} satisfies the condition 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
If lim supn→∞(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0, then ‖zn − xn‖ → 0 as n→∞.

Lemma 2.4. (Tan and Xu [12]) Let X be a uniformly convex Banach space with a Frećhet differen-
tiable norm. Let G be a closed convex subset of X and let {Sn}∞n=1 be a family of Ln−Lipschitzian
self-mappings on C such that Σ∞n=1(Ln−1) <∞ and F

⋂∞
n=1 F (Sn) 6= ∅. For arbitrary x1 ∈ C, define

xn+1 = Snxn for all n ≥ 1. Then, for every p, q ∈ F, limn→∞〈xn, J(p− q)〉 exists, in particular, for all
u, v ∈ ωω(xn) and p, q ∈ F, 〈u− v, J(p− q)〉 = 0.

Lemma 2.5. (Jung and Sahu [6]) Let X be a reflexive and strictly uniformly convex Banach space
with a uniformly Gâcteaux differentiable norm, let C be a closed convex subset of X and let A : C →
C be a continuous strongly pseudocontractive mapping with constant k ∈ [0, 1), and let T : C → X
be a continuous pseudocontractive mapping satisfying the weakly inward condition. If T has a fixed
point in C, then the path {xt} defined by

xt = tAxt + (1− t)Txt,

converges strongly to a fixed point q of T as t → 0, which is a unique solution of the variational
inequality

〈(I − A)q, J(q − p)〉 ≤ 0, ∀p ∈ F (T ).

Lemma 2.6. (Xu [13]) Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− cn)an + bn, ∀n ≥ 1,

where {cn} is a sequence in (0, 1) and {bn} is a sequence such that

1. Σ∞n=1cn =∞;

2. lim sup
n→∞

bn
cn
≤ 0 or Σ∞n=1|bn| <∞.

Then limn→∞ an = 0.

3. Weak convergence in Banach spaces

In this section, we use the concept of Y –mapping and study weak convergence of the sequence
generated by Mann–type iteration process (1.2).

Lemma 3.1. Let C be a nonempty, closed and convex subset of a strictly convex Banach space X
and let P : X → C be a nonexpansive retraction of X onto C. Let {Ti}Ni=1 be a finite family of
nonexpansive non–self mappings of C into X such that

⋂N
i=1 F (Ti) 6= ∅, and let λ1, λ2, . . . , λN be

s real numbers such that 0 < λi < 1 for all i = 1, 2, . . . , N − 1 and 0 < λN ≤ 1. Let Y be the
Y−mapping generated by T1, T2, . . . , TN and λ1, λ2, . . . , λN . Then the following hold:
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1. F (Y ) =
⋂N
i=1 F (Ti);

2. Y is nonexpansiave.

Proof .

1. Since
⋂N
i=1 F (Ti) ⊂ F (Y ) is trivial, it suffices to show that F (Y ) ⊂

⋂N
i=1 F (Ti). To this end,

let p ∈ F (Y ) and p∗ ∈
⋂N
i=1 F (Ti). Then we have

‖p− p∗‖ = ‖Y p− p∗‖
= ‖λN(PTNUN−1p− p∗) + (1− λN)λN(PTNp− p∗)‖
≤ λN‖UN−1p− p∗‖+ (1− λN)‖p− p∗‖
= λN‖λN−1(PTN−1UN−2p− p∗) + (1− λN−1)(PTN−2p− p∗)‖

+(1− λN)‖p− p∗‖
≤ λNλN−1‖UN−2p− p∗‖+ (1− λNλN−1)‖p− p∗‖
= λNλN−1‖λN−2(PTN−2UN−3p− p∗) + (1− λN−2(PTN−3p− p∗)‖

+(1− λNλN−1)‖p− p∗‖
...

= λNλN−1 . . . λ3‖λ2(PT2U1p− p∗) + (1− λ2)(PT1p− p∗)‖
+(1− λNλN−1 . . . λ3)‖p− p∗‖

≤ λNλN−1 . . . λ2‖PT2U1p− p∗‖+ (1− λNλN−1 . . . λ2)‖p− p∗‖
≤ λNλN−1 . . . λ2‖U1p− p∗‖+ (1− λNλN−1 . . . λ2)‖p− p∗‖
= λNλN−1 . . . λ2‖λ1(PT1p− p∗) + (1− λ1)(p− p∗)‖

+(1− λNλN−1 . . . λ2)‖p− p∗‖
≤ λNλN−1 . . . λ2λ1‖PT1p− p∗‖+ (1− λNλN−1 . . . λ2λ1)‖p− p∗‖
≤ λNλN−1 . . . λ2λ1‖p− p∗‖+ (1− λNλN−1 . . . λ2λ1)‖p− p∗‖
= ‖p− p∗‖. (3.1)

This show that

‖p− p∗‖ = λNλN−1 . . . λ2‖λ1(PT1p− p∗) + (1− λ1)(p− p∗)‖+ (1− λNλN−1 . . . λ2)‖p− p∗‖,

which turns out to be

‖p− p∗‖ = ‖λ1(PT1p− p∗) + (1− λ1)(p− p∗)‖.

By (3.1), we see that
‖p− p∗‖ = ‖PT1p− p∗‖

and thus
‖p− p∗‖ = ‖PT1p− p∗‖ = ‖λ1(PT1p− p∗) + (1− λ1)(p− p∗)‖.

Using Lemma 2.2, we get that PT1 = p and hence U1p = p. Again by (3.1), we have

‖p−p∗‖ = λNλN−1 . . . λ3‖λ2(PT2U1p−p∗)+(1−λ2)(PT1p−p∗)‖+(1−λNλN−1 . . . λ3)‖p−p∗‖,

which implies that

‖p− p∗‖ = ‖λ2(PT2U1p− p∗) + (1− λ2)(PT1p− p∗)‖.
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From (3.1), we see that
‖U1p− p∗‖ = ‖PT2U1p− p∗‖.

Since U1p = p and PT1p = p,

‖p− p∗‖ = ‖PT2p− p∗‖ = ‖λ2(PT2p− p∗) + (1− λ2)(p− p∗)‖.

Again by (2.2), we get that PT2p = p and hence U2p = p. By continuing this process, we can
show that PTip = p and Uip = p for all i = 1, 2, . . . , N − 1. Finally, we obtain

‖p− TNp‖ ≤ ‖p− Y p‖+ ‖Y p− TNp‖
= ‖p− Y p‖+ (1− λN)‖p− TNp‖,

which yields that p = PTNp, since p ∈ F (Y ). Hence p = PT1p = PT2p = · · · = PTNp and thus
p ∈

⋂N
i=1 F (Ti).

2. The proof follows directly from (1).

�

Lemma 3.2. Let C be a nonempty closed and convex subset of a strictly convex Banach space X
and let P : X → C be a nonexpansive retraction of X onto C. Let {Ti}Ni=1 be a finite family of
nonexpansive non–self mappings of C into X such that

⋂N
i=1 F (Ti) 6= ∅ and let Y be the Y –mapping

generated by T1, T2, . . . , TN and λ1, λ2, . . . , λN . Let {λn,i}Ni=1 be real sequence in (0, 1). For every
n ∈ N, let yn be the Y−mapping generated by T1, T2, . . . , TN and λn,1, λn,2, . . . , λn,N as follows;

Un,1 = λn,1PT1 + (1− λn,1)I,
Un,2 = λn,2PT2U1 + (1− λn,2)PT1,
Un,3 = λn,3PT3U2 + (1− λn,3)PT2,

...

Un,N−1 = λn,N−1PTN−1UN−2 + (1− λn,N−1)PTN−2,
Yn = Un,N = λn,NPTNUN−1 + (1− λn,N)PTN .

If λn,i → λi ∈ (0, 1) for all i = 1, 2, . . . , N then

1. lim
n→∞

Ynx = Y x for all x ∈ C,

2. Yn is nonexpansive.

Proof .

1. Let x ∈ C ,Uk be generated by T1, T2, . . . , Tk and λ1, λ2, . . . , λk and let Un,k be generated by
T1, T2, . . . , Tk and λn,1, λn,2, . . . , λn,k, respectively. Then

‖Un,1x− U1x‖ = ‖(λn,1 − λ1)(PT1x− x)‖ ≤ |λn−1 − λ1|‖PT1x− x‖.

Let k ∈ {2, 3, . . . , N} and M = max{‖PTkUk−1x‖ : k = 2, 3, . . . , N}. Then

‖Un,kx− Ukx‖ = ‖λn,kPTkUn,k−1x+ (1− λn,k)PTk−1x− λkPTkUk−1 − (1− λk)PTk−1x‖
= ‖λn,kPTkUn,k−1x− λn,kPTk−1x− λkPTkUk−1 + λkPTk−1x‖
≤ λn,k‖PTkUn,k−1x− PTkUk−1x‖+ |λn,k − λk|‖PTkUk−1x‖

+|λn,k − λk|‖PTk−1x‖
≤ ‖Un,k−1x− Uk−1x‖+ |λn,k − λk|M.
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It follows that

‖Ynx− Y x‖ = ‖Un,Nx− UN‖
= ‖Un,N−1x− UN−1x‖+ |λn,N − λN |M
≤ ‖Un,N−2x− UN−2x‖+ |λn,N−1 − λN−1|M + |λn,N − λN |M

...

≤ ‖Un,1x− U1x‖+ |λn,2 − λ2|M + . . .+ |λn,N−1 − λN−1|M + |λn,N − λN |M
≤ |λn,1 − λ1|‖PT1x− x‖+ |λn,2 − λ2|M + . . .+ |λn,N−1 − λN−1|M

+ |λn,N − λN |M.

Since λn,i → λi as n→∞ (i = 1, 2, . . . , N), we thus complete the proof.

2. It is easily see that for all n ∈ N, Yn is nonexpansive.

�

Lemma 3.3. Let C be a nonempty closed and convex subset of a real Banach space X and let
P : X → C be a nonexpansive retraction of X onto C. Let {Ti}Ni=1 be a finite family of nonexpansive
non–self mappings of C into X such that

⋂N
i=1 F (Ti) 6= ∅. Let {λn,i}Ni=1 be a real sequence in (0, 1),

for all n ∈ N, let Yn be the Y –mapping generated by T1, T2, . . . , TN and λn,1, λn,2, . . . , λn,N .
If lim

n→∞
|λn+1,i − λn,i| = 0 for all i = 1, 2, . . . , N , then

lim
n→∞

‖Yn+1zn − Ynzn‖ = 0

for each bounded sequence {zn} ∈ C.

Proof . Let {zn} be a bounded sequence in C. For j ∈ {0, 1, . . . , N − 2} and for some M > 0, we
have that

‖Un+1,N−jzn − Un,N−1zn‖ = ‖λn+1,N−jPTN−jUn+1,N−j−1zn + 1− λn+1,N−jPTN−j−1zn

− λn,N−jPTN−jUn,N−j−1zn − 1− λn,N−jPTn−j−1zn‖
≤ λn+1,N−j‖PTN−jUn+1,N−j−1zn − PTN−jUn,N−j−1zn‖

+ |λn+1,N−j − λn,N−j|‖PTN−jUn,N−j−1zn‖
+ |λn+1,N−j − λn,N−j|‖PTN−j−1zn‖
≤ ‖Un+1,N−j−1zn − Un,N−j−1zn‖+ |λn+1,N−j − λn,N−j|M.

Using the relation above, we can show that

‖Yn+1zn − Ynzn‖ = ‖Un+1,Nzn − Un,Nzn‖

≤ M

N∑
j=2

|λn+1,j − λn,j|+ |λn+1,1 − λn,1|(‖zn‖+ ‖T1zn‖).

Since lim
n→∞

|λn+1,i − λn,i| = 0 for all i = 1, 2, . . . , N , we obtain the desired result. �

Theorem 3.4. Let X be a uniformly convex Banach space having a Fréchet differentiable norm. Let
C be a nonempty, closed and convex subset of X and let P : X → C be a nonexpansive retraction of
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X onto C. Let {Ti}Ni=1 be a finite family of nonexpansive non–self mappings of C into X such that⋂N
i=1 F (Ti) 6= ∅. Let {λn,i}Ni=1 be a real sequence in (0, 1) such that λn,i → λi(i = 1, 2, . . . , N). For

every n ∈ N, let Yn be the Y –mapping generated by T1, T2, . . . , TN and λn,1, λn,2, . . . , λn,N . Let {αn}
be a sequence in (0, 1) satisfying lim inf

n→∞
αn(1− αn) > 0. Let {xn} be generated by x1 ∈ C and

xn+1 = (1− αn)xn + αnYnxn, ∀n ≥ 1.

Then {xn} converges weakly to x∗ ∈
⋂N
i=1 F (Ti).

Proof . Let p ∈
⋂N
i=1 F (Ti). Then p = Ynp for all n ≥ 1 and hence

‖xn+1 − p‖ ≤ (1− αn)‖xn − p‖+ αn‖Ynxn − p‖ ≤ ‖xn − p‖.

It follows that {‖xn−p‖} is nonincreasing; consequently, lim
n→∞

‖xn − p‖ exists. Assume that ‖xn−p‖ >
0. Since X is uniformly convex, it follows (see, for example, [4]) that

‖xn+1 − p‖ ≤ ‖xn − p‖
{

1− 2 min{αn, 1− αn}δX
(‖xn − Ynxn‖
‖xn − p‖

)}
,

which implies that

αn(1− αn)‖xn − p‖δX
(‖xn − Ynxn‖
‖xn − p‖

)
≤ min{αn, 1− αn}‖xn − p‖δX

(‖xn − Ynxn‖
‖xn − p‖

)
≤ 1

2
(‖xn − p‖ − ‖xn+1 − p‖).

Since lim
n→∞

‖xn − p‖ exists and lim inf
n→∞

αn(1− αn) > 0, by the continuity of δX , we have

lim
n→∞

‖xn − Ynxn‖ = 0.

Since δn,i → λi(i = 1, 2, . . . , λN), let the mapping Y : X → X be generated by T1, T2, . . . , TN and
λ1, λ2, . . . , λN . Then, by Lemma 3.2, we have lim

n→∞
‖Ynx− Y x‖ = 0 for all x ∈ X. So we have

‖xn − Y xn‖ ≤ ‖xn − Ynxn‖+ ‖Ynxn − Y xn‖
≤ ‖xn − Ynxn‖+ sup

z∈{xn}
‖Ynz − Y z‖

→ 0.

Since Y is nonexpansive adn X is uniformly convex, by the demiclosedness principle, ωω(xn) ⊂ F (Y ).
Morever, F (Y ) =

⋂N
i=1 F (Ti) by Lemma 3.1 (i). Next, we show that ωω(xn) is a singleton. Indeed,

suppose that x∗, y∗ ∈ ωω(xn) ⊂
⋂N
i=1 F (Ti). Define Sn;X → X by

Snx = (1− αn)x+ αnYnx, x ∈ X.

Then Sn is nonexpansive and x∗, y∗ ∈
⋂∞
i=1 F (Sn). Using Lemma 2.4, we have lim

n→∞
〈xn, J(x∗ − y∗)〉

exists. Suppose that {xnk
} and {xmk

} are subsequence of {xn} such that xnk
⇀ x∗ and xmk

⇀ y∗.
Then

‖x∗ − y∗‖2 = 〈x∗ − y∗, J(x∗ − y∗)〉 = lim
k→∞
〈xnk

− xmk
, J(x∗ − y∗)〉 = 0.

This shows that x∗ = y∗. The proof is completes. �
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4. Strong convergence in Banach spaces

In this section, strong convergence results for the iterative process (1.1) on strictly convex and reflex-
ive Banach space having a uniformly Gáteaux differentiable norm involving the modified viscosity
approximation method [8].

Theorem 4.1. Let X be a strictly convex and reflexive Banach space having a uniformly Gáteaux
differentiable norm. Let C be a nonempty, closed and convex subset of X and let P : X → C
be a nonexpansive retraction of X onto C. Let {Ti}Ni=1 be a finite family of nonexpansive non–self
mappings of C into X such that

⋂N
i=1 F (Ti) 6= ∅. Let {λn,i}Ni=1 be a real sequence in (0, 1) such that

λn,i → λi (i = 1, 2, . . . , N). For every n ∈ N, let Yn be the Y –mapping generated by T1, T2, . . . , TN
and λn,1, λn,2, . . . , λn,N . Let {αn}, {βn} and {γn} be sequence in (0, 1) which satisfy the conditions:

(A1) αn + βn + γn = 1;

(A2) limn→∞ αn = 0 and
∑∞

n=1 αn =∞;

(A3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Let f ∈
∑

C and define the sequence {xn} by x1 ∈ C and

xn+1 = αnf(xn) + βnxn + γnYnxn, ∀n ≥ 1.

Then {xn} converges strongly to q ∈ ∩Ni=1F (Ti), where q also the unique solution of the variational
inequality

〈(I − f)(q), J(q − p)〉 ≤ 0, ∀p ∈ ∩Ni=1F (Ti). (4.1)

Proof . We divide the proof into the following steps.
Step 1. We show that {xn} is bounded. Let p ∈ ∩Ni=1F (Ti). Then p = Ynp for all n ≥ 1 and hence,
by the nonexpansiveness of {Yn}∞n=1, we have

‖xn+1 − p‖ = ‖αn(f(xn)− p) + βn(xn − p) + γn(Ynxn − p)‖
≤ αn‖(f(xn)− p‖+ βn‖xn − p‖+ γn‖xn − p‖
≤ αn‖(f(xn)− f(p)‖+ αn‖f(p)− p‖+ (1− αn)‖xn − p‖
≤ αnα‖xn − p‖+ αn‖f(p)− p‖+ (1− αn)‖xn − p‖
= (1− αn(1− α))‖xn − p‖+ αn‖f(p)− p‖

≤ max

{
‖xn − p‖,

1

1− α
‖f(p)− p‖

}
.

By induction, we can conclude that {xn} is bounded. So are {f(xn)} and {Ynxn}.
Step 2. We show that limn→∞ ‖xn+1 − xn‖ = 0. To this end, we define zn = xn+1−βnxn

1−βn . From

xn+1 = αnf(xn) + βnxn + γnYnxn, ∀n ≥ 1, where {αn}, {βn} and {γn} are sequences in (0, 1), and
f ∈

∑
C , we have

‖zn+1 − zn‖ =

∥∥∥∥αn+1f(xn+1) + γn+1Yn+1xn+1

1− βn+1

− αnf(xn) + γnYnxn
1− βn

∥∥∥∥
=

∥∥∥∥ αn+1

1− βn+1

(f(xn+1)− Ynxn) +
αn

1− βn
(Ynxn − f(xn))

+
γn+1

1− βn+1

(Yn+1xn+1 − Ynxn)

∥∥∥∥
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≤ αn+1

1− βn+1

M +
αn

1− βn
M + ‖Yn+1xn+1 − Ynxn‖

≤
(

αn+1

1− βn+1

+
αn

1− βn

)
M + ‖Yn+1xn+1 − Ynxn‖

≤
(

αn+1

1− βn+1

+
αn

1− βn

)
M + ‖xn+1 − xn‖+ ‖Yn+1xn+1 − Ynxn‖

for some M > 0. It turns out that

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤
(

αn+1

1− βn+1

+
αn

1− βn

)
M + ‖Yn+1xn − ynxn‖.

From conditions (A2), (A3) and Lemma 3.3, we have

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Lemma 2.3 yields that ‖zn − xn‖ → 0 and hence

‖xn+1 − xn‖ = (1− βn)‖zn − xn‖ → 0.

Step 3. We show that limn→∞ ‖Y xn − xn‖ = 0. Indeed, noting that

Ynxn − xn =
1

γn
(xn+1 − xn) + αn(xn − f(xn)),

we have, by (A2) and (A3),
lim
n→∞

‖Ynxn − xn‖ = 0.

Let Y : C → C be the Y –mapping generated by T1, T2, . . . , TN and λ1, λ2, . . . , λN . So, by Lemma
3.2, we have Ynx→ Y x for all x ∈ C. It also follows that

‖Y xn − xn‖ ≤ ‖Y xn − Ynxn‖+ ‖Ynxn − xn‖
≤ sup

z∈{xn}
‖Y z − Ynz‖+ ‖Ynxn − xn‖ → 0.

For t ∈ (0, 1), we define a contraction as follows:

Stx = tf(x) + (1− t)Y x.

Then there exists a unique path xt ∈ C such that

xt = tf(xt) + (1− t)Y xt.

From Lemma 2.4, we know that xt → q as t → 0, where q ∈ F (Y ). Lemma 3.1 (i) also yields that
q ∈ F (Y ) = ∩Ni=1F (Ti). Moreover, q is the unique solution of variational inequality (4.1).
Step 4. We show that lim sup

n→∞
〈f(q)− q, J(xn − q)〉 ≤ 0. We see that

xt − xn = (1− t)(Y xt − xn) + t(f(xt)− xn).

It follows, by Lemma 2.1 (ii) that

‖xt − xn‖2 ≤ (1− t)2‖Y xt − xn‖2 + 2t〈f(xt)− xn, J(xt − xn)〉
≤ (1− 2t+ t2)(‖xt − xn‖

+ ‖Y xn − xn‖)2 + 2t〈f(xt)− xn, J(xt − xn)〉+ 2t‖xt − xn‖2,
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which gives

〈f(xt)− xt, J(xn − xt)〉 ≤
(1 + t2)‖xn − Y xn‖

2t
(2‖xt − xn‖+ ‖xn − Y xn‖) +

t

2
‖xt − xn‖2.

So we have

lim sup
n→∞

〈f(xt)− xt, J(xn − xt)〉 ≤
t

2
M (4.2)

for some M > 0. Since X has a uniformly Gáteaux differentiable norm, J is norm–to–weak∗ uniformly
continuous in bounded subsets of E. So have

〈f(q)− q, J(xn − q)− J(xn − xt)〉 → 0 (4.3)

and
〈f(q)− f(xt) + xt − q, J(xn − xt)〉 → 0 (4.4)

as t→ 0. On the other hand, we have

〈f(q)− q, J(xn − q)〉 = 〈f(xt)− xt, J(xn − xt)〉+ 〈f(q)− f(xt) + xt − q, J(xn − xt)〉
+〈f(q)− q, J(xn − q)− J(xn − xt)〉. (4.5)

Since lim sup
n→∞

and lim sup
t→0

are interchangeable, using (4.2)–(4.5), we obtain

lim sup
n→∞

〈f(q)− q, J(xn − q)〉 ≤ 0.

Step 5. We show that xn → q as n→∞. In fact, we have

‖xn+1‖ = αn〈f(xn)− q, J(xn+1 − q)〉+ βn〈xn − q, J(xn+1 − q)〉+ γn〈Ynxn − q, J(xn+1 − q)〉
≤ αnα‖xn − q‖‖xn+1 − q‖+ αn〈f(q)− q, J(xn+1 − q)〉

+βn‖xn − q‖‖xn+1 − q‖+ γn‖xn − q‖‖xn+1 − q‖
= (1− αn(1− α))‖xn − q‖‖xn+1 − q‖+ αn〈f(q)− q, J(xn+1 − q)〉

≤ 1

2
(1− αn(1− α))(‖xn − q‖2 + ‖xn+1 − q‖2) + αn〈f(q)− q, J(xn+1 − q)〉,

which implies that

‖xn+1 − q‖2 ≤ 1− αn(1− α)

1 + αn(1− α)
‖xn − q‖2 +

2αn

1 + αn(1− α)
〈f(q)− q, J(xn+1 − q)〉

=

(
1− 2αn(1− α)

1 + αn(1− α)

)
‖xn − q‖2 +

2αn

1 + αn(1− α)
〈f(q)− q, J(xn+1 − q)〉.

Put cn = 2αn(1−α)
1+αn(1−α) and bn = 2αn

1+αn(1−α)〈f(q) − q, J(xn+1 − q)〉. So it is easy to check that {cn}
is a sequence in (0, 1) such that

∑∞
n=1 cn = ∞ and lim supn→∞

bn
cn
≤ 0. Hence, By Lemma 2.6, we

conclude that xn → q as n→∞. The proof is completes. �
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