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Abstract

In this paper, we introduce a new iterative scheme to approximate a common fixed point for a finite
family of nonexpansive non-self mappings. Strong convergence theorems of the proposed iteration
in Banach spaces.
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1. Introduction

Let X be a real Banach space, C' a nonempty closed convex subset of a Banach space X and let
P : X — C be the nonexpansive retraction of X onto C, T : C' — X a given mapping. T is said to
be nonexpansive it |Tx — Ty|| < ||z — y|| for all z,y € C. The fixed point set of T denoted by F(T)
such that F(T) = {x € C : x = Tz} and f is called contraction if there exists a constant « € (0, 1)
such that || f(z) — f(v)|| < al|lz — y]| for all z,y € C.

In 1953, Mann [7] introduced Mann iteration process define as follows: z; € C' and

Tpr1 = (1 —ap)zn + apyTx,, Vn > 1,

where {a,,} C (0,1). Later, in 1974, Ishikawa [5] proposed the following two-step iteration: z; € C
and

Tpi1 = (1 —ap)x, + Ty, VYn>1,
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where {a,} and {f,} are sequences in (0,1). This method is often called the Ishikawa iteration
process.
Very recently, Agarwal et al. [2] introduced a new iteration process as follows: x; € C' and

Yn = (]- - Bn)xn + BnTxna
Tp1 = (1 — )Tz, + @, Ty, Yn>1,

where {a,} and {8,} are sequences in (0, 1). This method is called the S—iteration process.
Motivated by Agarwal et al. [2], we have the aim to introduce and study a new mapping defined
by the following definition.

Definition 1.1. Let X be a real Banach space, C' a nonempty closed convex subset of a real Banach
space X and let P : X — C' be the nonexpansive retraction of X onto C. Let Ty, T5,...,Tx be a
finite family of nonexpansive non-self mappings of C' onto X, and let Ay, Ag, ..., An € [0,1] for all
t=1,2,...,N. Define the mapping Y : X — X as follows:

Uy =\PT) + (1 — )\1)1,

Us = M PToUs + (1 — \) PTh,

Us = \sPT3Us + (1 — \3) PTy,

Un—1=AN-1PTN_1Un—2+ (1 = An_1)PTN_2,
Y = Uy = ANPTxUn—1 + (1 — Ax)PTy_1, (1.1)

such that a mapping Y is called the Y —-mapping generated by T1,T5, ..., TN and A, Aa, ..., Ay and
1: X — X be identity mapping.

First, we use the definition above, study weak convergence of the following Mann—type iteration
process in a uniformly convex Banach space with a Fréchet differentiable norm: x; € C

Tpy1 = (1 - O‘n)xn + anynxnu Vn > 1, (12)

where V), is a Y —mapping generated by 7', T5,...,Ty and A\, 1, \p2, ..., Aun-
Finally, we discuss strong convergence of the iteration scheme involving the modified viscosity
approximation method [§] define as follows: z; € C' and

where {a,},{5,} and {\,} are sequences in (0,1) and f € ¢.

The aim of this paper is to obtain weak and strong convergence results for the iterative process
(1.1) of a nonexpansive non-self mappings in Banach spaces. This paper, we use the notation as
follows:

i — for weak convergence and — for strong convergence;
i wy(x,) ={z: 2z, —} denote the weak w-limit set of {z,}.

2. Preliminaries

In this section, we give some definitions and lemmas used in the main results.[I]
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Let X be a real Banach space and let U = {z € X : ||z|| = 1} be the unit sphere of X. A Banach
space X is said to be strictly convez if for any x,y € U,

T Fy implies H H
It also said to be uniformly convex if for each e € (0, 2], there exists § > 0 such that for any x,y € U,
|z —y|| >¢€ implies H H

It is known that a uniformly convex Banach space is reflexive and strictly convex. Define a function
9 :[0,2] — [0,1] called the modulus of convezity of X as follows:

r+y

5(¢) = inf {1 -

H oy e X, el = lll = 1. o — gl > }

Then X is uniformly convex if and only if §(¢) > 0 for all € € (0,2]. A Banach space X is said to be
smooth if the limit

tull =
ety o
t—0 t

exist for all z,y € U. The norm is said to be uniformly Gateaux differentiable, if for y € U, the limit is
attained uniformly for x € U. It is said to be Frechet differentiable, if for x € U, the limit is attained
uniformly for y € U. It is said to be uniformly smooth or uniformly Frechet differentiable if the limit
(2.1) is attained uniformly for z,y € U. The normalized duality mapping J : X — 2% is defined by

J(@) = {z" € X"t (z,27) = [|=[* = [|2"]*} (2:2)

for all z € X. It is know that X is smooth if and only if the duality mapping J is single valued and
that if X has a uniformly Gateaux differentiable norm, J is uniformly norm-to-weak continuous on
each bounded subset of X. A Banach space X is said to satisfy Opial’s condition [9]. If z € X and
r, — z, then

Tim sup ||z, — || < Tim sup [z, —yll, Yy e X,z #y. (2.3)

Let T': C'— C. Then I —T is demiclosed at 0 if for all sequence {z,} in C,z,, — q and ||z, —T,|| — 0
imply ¢ = T'q. It is known that if X is uniformly convex, C'is nonempty closed and convex, and T’
is nonexpansive, then I — T is demiclosed at 0 [3].

The following lemmas are needed for proving our main results.

Lemma 2.1. (Agarwal et al. [I]) Let X be a Banach space. Then the following hold:
Lol +yl* = [l=]* + 2{y, J (2)) for all z,y € X;

2. |z +yll? < ||z|* + 2y, J(z +y)) for all z,y € X.
Lemma 2.2. (Takahashi [I1]) In a strictly convex Banach space X, if
]| = [yl = [[Az + (1 = A)yll

for all z,y € X and A € (0,1), then z =y
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Lemma 2.3. (Suzuki [I0]) Let {z,} and {z,} be two sequences in a Banach space E such that

Tp+1 = ﬁnmn + (1 - 5n)2n7 n 2 17

where {3, } satisfies the condition 0 < liminf,_ ., 8, < limsup,,_, . 5, < 1.
If limsup,, o (||zn+1 — 2nl| = |Zne1 — znl]) <0, then ||z, — z,]| = 0 as n — co.

Lemma 2.4. (Tan and Xu [12]) Let X be a uniformly convex Banach space with a Frec¢het differen-
tiable norm. Let G be a closed convex subset of X and let {S,}2%; be a family of L, —Lipschitzian
self-mappings on C' such that X2, (L, —1) < oo and F (), F(S,) # 0. For arbitrary z; € C, define
Tpa1 = Spxy, for all n > 1. Then, for every p,q € F,lim,,_,o{(x,, J(p — q)) exists, in particular, for all
u,v € wy(z,) and p,q € F,(u—v,J(p—q)) =0.

Lemma 2.5. (Jung and Sahu [6]) Let X be a reflexive and strictly uniformly convex Banach space
with a uniformly Gacteaux differentiable norm, let C' be a closed convex subset of X and let A : C' —
C' be a continuous strongly pseudocontractive mapping with constant k& € [0,1), and let T: C' — X
be a continuous pseudocontractive mapping satisfying the weakly inward condition. If T" has a fixed
point in C, then the path {z;} defined by

Tt = tA.It -+ (1 — t)T.Z’t,

converges strongly to a fixed point ¢ of 7" as ¢t — 0, which is a unique solution of the variational
inequality
(I —A)q, J(g—p)) <0, Vpe F(T).

Lemma 2.6. (Xu [I3]) Assume that {a,} is a sequence of nonnegative real numbers such that
an1 < (1 —cp)ay + by, Vn>1,

where {c,} is a sequence in (0,1) and {b,} is a sequence such that
1. X% ¢, = o0
bn
2. limsup — < 0 or X%, |b,| < o0.
n—o0 Cn

Then lim,, . a,, = 0.

3. Weak convergence in Banach spaces

In this section, we use the concept of Y-mapping and study weak convergence of the sequence
generated by Mann—type iteration process (|1.2)).

Lemma 3.1. Let C' be a nonempty, closed and convex subset of a strictly convex Banach space X
and let P : X — C be a nonexpansive retraction of X onto C. Let {T;}Y., be a finite family of
nonexpansive non—self mappings of C' into X such that ﬂfvzl F(T;) # 0, and let A\, A, ..., An be
s real numbers such that 0 < X\; < 1 for allt = 1,2,...,.N —1 and 0 < Ay < 1. Let Y be the
Y —mapping generated by T1,Ts, ..., Ty and A, Ao, ..., An. Then the following hold:
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1. F(Y) =Y, F(T);

2. Y is nonexpansiave.

Proof .
1. Since N\, F(T;) € F(Y) is trivial, it suffices to show that F(Y) ¢ N, F(T;). To this end,
let p € F(Y) and p* € Y, F(T;). Then we have
lp—p"l = [Yp—p’|
= [[AN(PTNUn-1p —p*) + (1 = AN)AN(PTNp — p) ||
AN[[Un—1p = p"[[ + (1 = An)lp — p]]
ANIIAN -1 (PTy 1Un—2p — p") + (1 = An—1)(PTn—2p — p7)||
+(1 = An)llp =Pl
ANAN-1[|Un—2p = p*[| + (1 = AnAn—1)[lp — p7||
ANAN1[AN—2(PTn 2Un—3p — p") + (1 = Ay —2(PTn—3p — p")||
+(1 = AnAn-—1)|lp — p||

IN

ANAN=1 - A3||[ A (PToUp — p*) 4+ (1 — Xo) (PTip — pY)||
+(1 = AnvAn1---A3)llp — ol
ANAN=1 . Ao [PToUip — p*|| + (1 = AnAn—1.. . A2)[lp — p7|
ANAN_1 - X ||Up — p¥|| + (1 = AnAn_1 ... N)|lp — p||
ANAN-1 - Al (PTip — p™) + (1= A1) (p — pY) ||
(1= AnAn_1..- Aa)|lp —p7|
ANAN-1 - XA |[PThp = p*[| 4+ (1 = AnAn—1 ... Ao i) [[p — p7 ||
ANAN-1 - Al =%+ (1 = AnAn—1 . Ao\ |lp — o
= p=2p7l (3.1)
This show that

lp =0 = AvAn—1 - XM (PTip —p) + (L= X)) (0 — )| + (1 = AnAn—1 ... A)llp — P

ININA

IA A

which turns out to be
lp—p*|| = |M(PTip—p*) + (1= Ai)(p—pY)].

By , we see that
lp ="l = |1PTap — p7
and thus
lp —p*ll = [[PTip — p*|| = [[M(PTip — p*) + (1 = M) (p — p7)-
Using Lemma , we get that PT; = p and hence U;p = p. Again by , we have

[p—p"|| = AnAn—1. . A3l A (PTRUip—p") + (1= X)) (PTip—p") |+ (1 = AnAn—1... A3)|[p—p"|,
which implies that

lp = p*ll = [[A2(PT2Urp — p*) 4+ (1 = Xo) (PTap — p7)|.
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From (3.1]), we see that
|Usp = p*|| = [[PToUp — 7.

Since Uyp = p and PTip = p,
lp = p*|| = [|PTap — p*|| = | Ae(PTap — p*) + (1 = X2)(p — p*) |-

Again by ([2.2)), we get that PTop = p and hence Usyp = p. By continuing this process, we can
show that PT;p=pand Ujpp=p foralli=1,2,..., N — 1. Finally, we obtain

Ip = Twpll < llp = Ypll + [Yp = Twp
=llp=Ypll+ (1= An)llp — Tnpl,
which yields that p = PTyp, since p € F(Y'). Hence p = PT1p = PTyp = - -+ = PTxp and thus

pe mz]il F(T;).
2. The proof follows directly from (1).

0

Lemma 3.2. Let C' be a nonempty closed and convex subset of a strictly conver Banach space X
and let P : X — C be a nonexpansive retraction of X onto C. Let {T;}Y., be a finite family of
nonexpansive non-self mappings of C' into X such that ﬂf\il F(T;) # 0 and let Y be the Y ~-mapping
generated by Ty, Ty, ..., T and A\, Ao, ..., Ay. Let {\,;}Y, be real sequence in (0,1). For every
n €N, let y, be the Y —mapping generated by 11, T5,...,Tn and A1, An2, ..., Apn as follows;

Un,l = )\n,lpTl + (1 - )\n,1>[>

Uno = Ao PToUy + (1 — N\, 2) PTh,

Uns = MsPT3U; + (1 — N\, 3) Py,

Upn-1 =AM N-1PTN_1Un_g+ (1 = Ay n—1)PTN_o,
Y, = Upy = Ay PTyUy—1 + (1 — A n) PTy.
If \ni = Xi €(0,1) for alli=1,2,...,N then
1. lim Y,z =Yz forall z € C,

n—oo
2. Y, is nonexpansive.

Proof .

1. Let x € C' ,Uj be generated by 11,T5,...,T; and A\i, Ag, ..., A\, and let U, ; be generated by
1,15, ..., T and Ay 1, A2, ..., Ak, respectively. Then

[Unpz — Urz|| = [[(An1 — M) (PThe — z)|| < [Aaor — Mf[|[PThe — .
Let k € {2,3,...,N} and M = max{||PTyUx_1z|| : k =2,3,..., N}. Then
||Un,kl‘ - UkZEH = ||/\n7kPTkUn,k_1ZE + (1 — /\n,k>PTk—1~T - )\kPTkUk—l — (1 - Ak)PTk—lx”
H)\n,kPTkUn,kflx — )\n,kPkalx — )\kPTkkal + )\kPTk,1$”
Msl|PLU, -1 — PTR Uk z|] + [N — Ml || PTRUp 12|
+|/\n,k - /\k‘HPTk—IxH
HUn,kflm — Uk,1$" + |>\n,k — )\k|M

IN

IN
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It follows that

1Yoz = Ya|| = [[Us vz — Un||
= Unn-12 — Un_az|| + [Ap .y — An|M
<|NUnN—2x — Uy_sz| + | Aun-1 — AN—1|M + | Auny — An|M

S ||Un71$ — Ull’H + |/\n,2 - )\2|M + ...+ |/\n,N—1 - /\N_1|M + |)\an — )\N|M
S |>\n,1 — )\1|HPT1.§C — .Z’H + ’)‘7%2 — )\2|M 4+ ...+ ’)\n’Nfl — )\N71|M
+ [An — An|M.

Since A\,; = A; asn — oo (1 =1,2,..., N), we thus complete the proof.
2. It is easily see that for all n € N, Y, is nonexpansive.

O

Lemma 3.3. Let C be a nonempty closed and convex subset of a real Banach space X and let
P : X — C be a nonexpansive retraction of X onto C. Let {T;}¥, be a finite family of nonexpansive
non-self mappings of C' into X such that (., F(T;) # 0. Let {M\.:}Y, be a real sequence in (0,1),
for alln € N, let Y, be the Y -mapping generated by 11,15, ..., Tx and M\y1, A\n2, ..., Ao.N-

[fnlggo [Ant1i — Anil =0 foralli=1,2,...,N, then

lim ||Yii12, — Yoazo|| =0
n—o0

for each bounded sequence {z,} € C.

Proof . Let {z,} be a bounded sequence in C. For j € {0,1,..., N — 2} and for some M > 0, we
have that

1Un+1,8-20 — Un.N-12nll = A1, N PTN-jUnti,N—j-12n + 1 = Aja N PTN-j-124
— MN_jPTN_jUpn_jo12n — L = Ay N j P12 |
< M1, N | PTN—jUnt1,n—j—12n — PTN—jUn n—j—124]]
+ [Ans1.n—j = AN [ PTN—jUn N —j-120]]
+ [Ant1,v—j = AN [[|PTN 120l

< |NWUns1,n—j—12n — Un N—jm12n]] + | Ans1.nv—j — Ann—j| M.
Using the relation above, we can show that

HYn+12n - Ynan = ”Un+1,NZn - Un,NZnH

N
< MY nsrs = Angl + Pngpra = Al (zall + 1 T220])).-
j=2

Since lim |A,41; — Al =0foralli=1,2,..., N, we obtain the desired result. [J
n—oo

Theorem 3.4. Let X be a uniformly convexr Banach space having a Fréchet differentiable norm. Let
C be a nonempty, closed and convex subset of X and let P : X — C' be a nonexpansive retraction of
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X onto C. Let {T;}X, be a finite family of nonexpansive non—self mappings of C into X such that
N, F(T;) # 0. Let {\.i}Y, be a real sequence in (0,1) such that \p; — \i(i = 1,2,...,N). For
every n € N, let Y, be the Y -mapping generated by T1,Ts, ..., Ty and Ay1, Angs .., Ann. Let {an,}
be a sequence in (0, 1) satisfying ligglf an(l —ay) > 0. Let {x,} be generated by x1 € C and

Toi1 = (1 —ap)x, + Yoz, Yn> 1.

Then {x,} converges weakly to z* € i, F(T}).

Proof . Let p € N, F(T;). Then p = Y,,p for all n > 1 and hence

[Zns1 —pll < (1= an)|lzn = pl| + anl|Yozn — pll < [Jz, — pl|.

It follows that {||z,,—p||} is nonincreasing; consequently, lim ||z, — pl|| exists. Assume that ||z, —p]|| >
n—oo

0. Since X is uniformly convex, it follows (see, for example, [4]) that

n Yn n
|41 = pll < lzn — pH{l — 2min{ay, 1 — an}(sX(W) }’
Ty — P

which implies that

|2n — Yo, . |2n — Yo,
an(1 = ay)||x, — pllox <—> min{a,, 1 — a, |z, — p|[ox (—)
[0 = pll [ — pll
1
< Sl =pl = llzan —2l).
Since lim ||z, — p|| exists and liminf a,,(1 — av,) > 0, by the continuity of dx, we have
n—oo n—oo

lim |z, — Y,z,| = 0.
n—o0

Since 0,,; — Ai(i = 1,2,...,An), let the mapping Y : X — X be generated by T3,T5,...,Tx and
A; A2, ..., Ax. Then, by Lemma , we have lim ||Y,z — Yz| =0 for all z € X. So we have
n—oo

Hxn - Yxn” < ”xn - Ynxn“ + ||Ynxn - Yxn”
< |wp = Yozn| + sup |[Yuz —Yz||

ZE\Tn

— 0.

Since Y is nonexpansive adn X is uniformly convex, by the demiclosedness principle, w,(x,) C F(Y).
Morever, F(Y) = N, F(T}) by Lemma (i). Next, we show that w,(z,) is a singleton. Indeed,
suppose that z*, y* € w,(z,) C X, F(T}). Define S,; X — X by

Spr = (1 —ap)r+a,Ypx, z€X.

Then S, is nonexpansive and z*,y* € (2, F(S,). Using Lemma , we have lim (z,, J(z* —y*))

n—oo
exists. Suppose that {z,, } and {z,, } are subsequence of {z,} such that z,, — z* and z,,, — y*.

Then

o =y I = " =y T =) = I (= 2, T — 7)) = 0.

This shows that x* = y*. The proof is completes. [
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4. Strong convergence in Banach spaces

In this section, strong convergence results for the iterative process (|1.1)) on strictly convex and reflex-
ive Banach space having a uniformly Gateaux differentiable norm involving the modified viscosity
approximation method [§].

Theorem 4.1. Let X be a strictly conver and reflexive Banach space having a uniformly Gdteauz
differentiable norm. Let C' be a nonempty, closed and conver subset of X and let P : X — C
be a nonexpansive retraction of X onto C. Let {T;}Y., be a finite family of nonexpansive non—self
mappings of C into X such that (I, F(T;) # 0. Let {\ui}Y, be a real sequence in (0,1) such that
Ai — N (1=1,2,...,N). For every n € N, let Y,, be the Y -mapping generated by 11,15, ..., Ty
and Ap1, An2, .y Ann. Let {an}, {Bn} and {y.} be sequence in (0,1) which satisfy the conditions:

(A1) an+ Bn+ v =1
(A2) lim, oo v, =0 and Y 7| a, = 00;
(A3) 0 < liminf, ., 5, < limsup,_,. fBn < 1.

Let f € Y. and define the sequence {z,} by 1 € C and
Tp4+1 = anf(zn) + ﬁnxn + VnYnIna n Z 1.

Then {x,} converges strongly to q € N, F(T;), where q also the unique solution of the variational
imequality

(1= f)@), J(g—p)) <0, VpenLF(T). (4.1)

Proof . We divide the proof into the following steps.
Step 1. We show that {z,} is bounded. Let p € NY, F(T;). Then p = Y,,p for all n > 1 and hence,
by the nonexpansiveness of {Y,,}22 ,, we have

l2n1 = pll lan(f(xn) = P) + Bu(zn = p) + yu(Yown = )l

< an|(f(2a) = pll + Ballzn — pll + Yull2n — p|
S anH(f(xn) - f(p>|| + Oéan(p) _pH + (1 - an)||xn _pH
< agallr, = pll + ol f(p) = pll + (1 — an)||lzn — Dl
= (1 —an(l—a))llzn —pll + aullf(p) — pll
1
< max{llea —pll 12110 - ol

By induction, we can conclude that {x,} is bounded. So are {f(z,)} and {Y,x,}.

Step 2. We show that lim, o ||Zn41 — @,]] = 0. To this end, we define z, = % From
Tpi1 = A f(zn) + Butn + Y Ynxn, Yn > 1, where {a,},{8,} and {~,} are sequences in (0, 1), and
f e o we have

an+lf(xn+1> + rYn—&—lYn—klxn—s—l _ anf(xn> + ’YnYnxn

Zna1 — Znll =
=l — B 1= 6
Qpt1
= (Tny1) — Yoz,) + Y.t, — f(x,
Hl_ﬂnﬂ 1) = Yota) + T Vo — f ()
’Yn—l—l
+1 —5n+1( +1Tn+1 Tn)
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(07 | Ay,
M M Yn n - Yn n
T 1= fan +1—5n T Faa@nn 7l

(679 (079
(1 — 5;1 + 11— 5n)M + |Yos1Zns1 — Yoz, ||

(a7 | 7%
M n — dp Yn n _Yn n
(125 12 M i =l + Wi = Yo

for some M > 0. It turns out that

(a7 | Oy,
ot = 2l = s = 5l < (7225 4 222 )M+ Vo — o

From conditions (A2), (A3) and Lemma [3.3] we have

lim sup(||zn41 — 2nl| = [|[Zn41 — z0l|) < 0.
n—oo

Lemma [2.3| yields that ||z, — || — 0 and hence
|Zpt1 — znll = (1 = Bo)ll2n — @l = 0.

Step 3. We show that lim,,_, ||Y'z, — z,|| = 0. Indeed, noting that

1
Ynxn — Tp = _(xn+1 - xn) + a/n(xn - f(xn)>7
we have, by (A2) and (A3),
lim ||Y,z, — z,]| = 0.
n—o00

Let Y : C — C be the Y—mapping generated by 17,75, ..., Ty and A\, Ag,..., Ay. So, by Lemma
8.2 we have Y,z — Yz for all z € C. It also follows that

1Yz, =z, <[V, — You,| + [|[Yor, — 24

< sup ||[Yz—=Y.z|| + || Yoz, — xa]| — 0.
z€{xn}

For t € (0,1), we define a contraction as follows:

S =tf(x)+ (1 —1t)Yx.
Then there exists a unique path z; € C such that

rp=tf(z) + (1 —t)Yay.

From Lemma [2.4] we know that 2, — ¢ as ¢ — 0, where ¢ € F(Y). Lemma (1) also yields that
q € F(Y) =nX,F(T;). Moreover, ¢ is the unique solution of variational inequality (4.1)).
Step 4. We show that limsup(f(q) — ¢, J(z, — ¢)) < 0. We see that

n—oo

rp— 2y = (1 =) (Y, — x,) + t(f(x1) — 2p).
It follows, by Lemma [2.1] (i7) that

ze — zall® < (1= 8)?|Y @y — 20l|® + 26(f (20) — @0y T (20 — 20))
< (1 =2t +t(||lzy — 20|
+ |Yan — 2pl)? + 26(f (21) — @, J (20 — 20)) + 2t||2 — 2407,
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which gives

(1+ 3|z, — Y,
2t

t
(f(ae) =@, (@ —21)) < Qllze = zall + llen = Yau]) + 5l — al*

So we have ;
limsup(f(z;) — x¢, J (2, — x4)) < §M (4.2)

n—oo
for some M > 0. Since X has a uniformly Gateaux differentiable norm, J is norm—to-weak* uniformly
continuous in bounded subsets of E. So have

(fle) =, J(xn —q) = J(@n — 1)) = 0 (4.3)
and

(fl@) = f(xe) + 2 — g, J(xn — 1)) = 0 (4.4)
as t — 0. On the other hand, we have

(fl@) = ¢, J(zn —q)) = (f(ze) = x4, J(@n — 20)) + (f(@) — f(@e) + 2 — q, T (20 — 21))

+<f(Q) -9, J(xn - Q) - J(xn - xt)> (45)
Since lim sup and lim sup are interchangeable, using 1’1} we obtain
n—00 t—0

limsup(f(q) — ¢, J(zn — q)) < 0.

n—o0

Step 5. We show that x,, — ¢ as n — oo. In fact, we have

|Znt1ll = anlf(@n) — ¢, J(@nt1 — @) + Bul®n — ¢ J(Tnt1 — @) + W (Yozn — ¢, T (Tnt1 — q))
anal|zy — qll[|[zn+1 — qll + an(f(9) — ¢, J(@nt1 — q))

+Bnllzn — allllzns1 — qll + mllzn — gllllns1 — 4l

(1 —an(l = a))|lzn = qllllznt — gl + an(f(@) — ¢ J(Tnt1 — )

< %(1 —an(l = a))(lzn = all* + lznsr = al®) + an{f(@) — ¢, J (@ns1 — @),

which implies that

IN

L < lmemloa)y e 20 e _
[Zn1 —qlI” < m”iﬁn qll” + 1+an(1ia)<f(fﬁ ¢, J(Tnt1 — q))
B 200, (1 — @) 2 20y, B B
= (1 2 e - P+ i @)~ 0T — ),
Put ¢, = % and b, = %&_Q)(f(q) — ¢, J(zpy1 — q)). So it is easy to check that {c,}

is a sequence in (0,1) such that >7 ¢, = oo and limsup,_,, 2 < 0. Hence, By Lemma , we
conclude that x,, — ¢ as n — oo. The proof is completes. [
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