Int. J. Nonlinear Anal. Appl. 9 (2018) No. 1, 223-234 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2018.1596.1416

A new approximation method for common fixed points of a finite family of nonexpansive non-self mappings in Banach spaces

Pornsak Yatakoat

Division of Mathematics, Faculty of Sciences, Nakhon Phanom University, Nakhon Phanom 48000, Thailand

(Communicated by M.B. Ghaemi)

Abstract

In this paper, we introduce a new iterative scheme to approximate a common fixed point for a finite family of nonexpansive non–self mappings. Strong convergence theorems of the proposed iteration in Banach spaces.

Keywords: nonexpansive non-self mappings; common fixed points; Banach spaces.

2010 MSC: Primary 47A06, 47H09; Secondary 47H10, 49M05.

1. Introduction

Let X be a real Banach space, C a nonempty closed convex subset of a Banach space X and let $P: X \to C$ be the *nonexpansive retraction* of X onto C, $T: C \to X$ a given mapping. T is said to be *nonexpansive* if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. The fixed point set of T denoted by F(T) such that $F(T) = \{x \in C : x = Tx\}$ and f is called *contraction* if there exists a constant $\alpha \in (0, 1)$ such that $||f(x) - f(y)|| \le \alpha ||x - y||$ for all $x, y \in C$.

In 1953, Mann [7] introduced Mann iteration process define as follows: $x_1 \in C$ and

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T x_n, \forall n \ge 1,$$

where $\{\alpha_n\} \subset (0,1)$. Later, in 1974, Ishikawa [5] proposed the following two–step iteration: $x_1 \in C$ and

$$y_n = (1 - \beta_n)x_n + \beta_n T x_n,$$

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T y_n, \quad \forall n \ge 1,$$

Email address: p_yatakoat@npu.ac.th (Pornsak Yatakoat)

Received: September 2016 Revised: September 2017

where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in (0,1). This method is often called the *Ishikawa iteration* process.

Very recently, Agarwal et al. [2] introduced a new iteration process as follows: $x_1 \in C$ and

$$y_n = (1 - \beta_n)x_n + \beta_n T x_n,$$

$$x_{n+1} = (1 - \alpha_n)T x_n + \alpha_n T y_n, \quad \forall n \ge 1,$$

where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in (0, 1). This method is called the *S*-iteration process.

Motivated by Agarwal et al. [2], we have the aim to introduce and study a new mapping defined by the following definition.

Definition 1.1. Let X be a real Banach space, C a nonempty closed convex subset of a real Banach space X and let $P : X \to C$ be the nonexpansive retraction of X onto C. Let T_1, T_2, \ldots, T_N be a finite family of nonexpansive non-self mappings of C onto X, and let $\lambda_1, \lambda_2, \ldots, \lambda_N \in [0, 1]$ for all $i = 1, 2, \ldots, N$. Define the mapping $Y : X \to X$ as follows:

$$U_{1} = \lambda_{1}PT_{1} + (1 - \lambda_{1})I,$$

$$U_{2} = \lambda_{2}PT_{2}U_{1} + (1 - \lambda_{2})PT_{1},$$

$$U_{3} = \lambda_{3}PT_{3}U_{2} + (1 - \lambda_{3})PT_{2},$$

$$\vdots$$

$$U_{N-1} = \lambda_{N-1}PT_{N-1}U_{N-2} + (1 - \lambda_{N-1})PT_{N-2},$$

$$Y = U_{N} = \lambda_{N}PT_{N}U_{N-1} + (1 - \lambda_{N})PT_{N-1},$$
(1.1)

such that a mapping Y is called the Y-mapping generated by T_1, T_2, \ldots, T_N and $\lambda_1, \lambda_2, \ldots, \lambda_N$ and $I: X \to X$ be identity mapping.

First, we use the definition above, study weak convergence of the following Mann-type iteration process in a uniformly convex Banach space with a Fréchet differentiable norm: $x_1 \in C$

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n Y_n x_n, \quad \forall n \ge 1,$$

$$(1.2)$$

where Y_n is a Y-mapping generated by T_1, T_2, \ldots, T_N and $\lambda_{n,1}, \lambda_{n,2}, \ldots, \lambda_{n,N}$.

Finally, we discuss strong convergence of the iteration scheme involving the modified viscosity approximation method [8] define as follows: $x_1 \in C$ and

$$x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \lambda_n Y_n x_n, \quad \forall n \ge 1,$$
(1.3)

where $\{\alpha_n\}, \{\beta_n\}$ and $\{\lambda_n\}$ are sequences in (0, 1) and $f \in \Sigma_C$.

The aim of this paper is to obtain weak and strong convergence results for the iterative process (1.1) of a nonexpansive non-self mappings in Banach spaces. This paper, we use the notation as follows:

i \rightarrow for weak convergence and \rightarrow for strong convergence; ii $\omega_{\omega}(x_n) = \{x : x_{n_i} \rightarrow\}$ denote the weak ω -limit set of $\{x_n\}$.

2. Preliminaries

In this section, we give some definitions and lemmas used in the main results.[1]

Let X be a real Banach space and let $U = \{x \in X : ||x|| = 1\}$ be the unit sphere of X. A Banach space X is said to be *strictly convex* if for any $x, y \in U$,

$$x \neq y$$
 implies $\left\|\frac{x+y}{2}\right\| < 1.$

It also said to be uniformly convex if for each $\epsilon \in (0, 2]$, there exists $\delta > 0$ such that for any $x, y \in U$,

$$||x - y|| \ge \epsilon$$
 implies $\left|\left|\frac{x + y}{2}\right|\right| < 1 - \delta$

It is known that a uniformly convex Banach space is reflexive and strictly convex. Define a function $\delta : [0, 2] \rightarrow [0, 1]$ called the *modulus of convexity* of X as follows:

$$\delta(\epsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : x, y \in X, \|x\| = \|y\| = 1, \|x-y\| \ge \epsilon \right\}.$$

Then X is uniformly convex if and only if $\delta(\epsilon) > 0$ for all $\epsilon \in (0, 2]$. A Banach space X is said to be *smooth* if the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t} \tag{2.1}$$

exist for all $x, y \in U$. The norm is said to be uniformly Gâteaux differentiable, if for $y \in U$, the limit is attained uniformly for $x \in U$. It is said to be Fréchet differentiable, if for $x \in U$, the limit is attained uniformly for $y \in U$. It is said to be uniformly smooth or uniformly Fréchet differentiable if the limit (2.1) is attained uniformly for $x, y \in U$. The normalized duality mapping $J: X \to 2^{X^*}$ is defined by

$$J(x) = \{x^* \in X^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}$$
(2.2)

for all $x \in X$. It is know that X is smooth if and only if the duality mapping J is single valued and that if X has a uniformly Gâteaux differentiable norm, J is uniformly norm-to-weak continuous on each bounded subset of X. A Banach space X is said to satisfy Opial's condition [9]. If $x \in X$ and $x_n \rightharpoonup x$, then

$$\lim_{n \to \infty} \sup \|x_n - x\| < \lim_{n \to \infty} \sup \|x_n - y\|, \quad \forall y \in X, x \neq y.$$
(2.3)

Let $T: C \to C$. Then I-T is demiclosed at 0 if for all sequence $\{x_n\}$ in $C, x_n \to q$ and $||x_n - T_n|| \to 0$ imply q = Tq. It is known that if X is uniformly convex, C is nonempty closed and convex, and T is nonexpansive, then I - T is demiclosed at 0 [3].

The following lemmas are needed for proving our main results.

Lemma 2.1. (Agarwal et al. [1]) Let X be a Banach space. Then the following hold:

- 1. $||x+y||^2 \ge ||x||^2 + 2\langle y, J(x) \rangle$ for all $x, y \in X$;
- 2. $||x+y||^2 \le ||x||^2 + 2\langle y, J(x+y) \rangle$ for all $x, y \in X$.

Lemma 2.2. (Takahashi [11]) In a strictly convex Banach space X, if

$$||x|| = ||y|| = ||\lambda x + (1 - \lambda)y||$$

for all $x, y \in X$ and $\lambda \in (0, 1)$, then x = y

Lemma 2.3. (Suzuki [10]) Let $\{x_n\}$ and $\{z_n\}$ be two sequences in a Banach space E such that

$$x_{n+1} = \beta_n x_n + (1 - \beta_n) z_n, \quad n \ge 1,$$

where $\{\beta_n\}$ satisfies the condition $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1$. If $\limsup_{n \to \infty} (\|z_{n+1} - z_n\| - \|x_{n+1} - x_n\|) \le 0$, then $\|z_n - x_n\| \to 0$ as $n \to \infty$.

Lemma 2.4. (Tan and Xu [12]) Let X be a uniformly convex Banach space with a Frechet differentiable norm. Let G be a closed convex subset of X and let $\{S_n\}_{n=1}^{\infty}$ be a family of L_n -Lipschitzian self-mappings on C such that $\sum_{n=1}^{\infty} (L_n - 1) < \infty$ and $F \bigcap_{n=1}^{\infty} F(S_n) \neq \emptyset$. For arbitrary $x_1 \in C$, define $x_{n+1} = S_n x_n$ for all $n \ge 1$. Then, for every $p, q \in F$, $\lim_{n\to\infty} \langle x_n, J(p-q) \rangle$ exists, in particular, for all $u, v \in \omega_{\omega}(x_n)$ and $p, q \in F, \langle u - v, J(p-q) \rangle = 0$.

Lemma 2.5. (Jung and Sahu [6]) Let X be a reflexive and strictly uniformly convex Banach space with a uniformly Gâcteaux differentiable norm, let C be a closed convex subset of X and let $A: C \to C$ be a continuous strongly pseudocontractive mapping with constant $k \in [0, 1)$, and let $T: C \to X$ be a continuous pseudocontractive mapping satisfying the weakly inward condition. If T has a fixed point in C, then the path $\{x_t\}$ defined by

$$x_t = tAx_t + (1-t)Tx_t,$$

converges strongly to a fixed point q of T as $t \to 0$, which is a unique solution of the variational inequality

$$\langle (I-A)q, J(q-p) \rangle \le 0, \quad \forall p \in F(T).$$

Lemma 2.6. (Xu [13]) Assume that $\{a_n\}$ is a sequence of nonnegative real numbers such that

$$a_{n+1} \le (1 - c_n)a_n + b_n, \quad \forall n \ge 1,$$

where $\{c_n\}$ is a sequence in (0, 1) and $\{b_n\}$ is a sequence such that

1. $\sum_{n=1}^{\infty} c_n = \infty;$ 2. $\limsup_{n \to \infty} \frac{b_n}{c_n} \le 0 \text{ or } \sum_{n=1}^{\infty} |b_n| < \infty.$

Then $\lim_{n\to\infty} a_n = 0$.

3. Weak convergence in Banach spaces

In this section, we use the concept of Y-mapping and study weak convergence of the sequence generated by Mann-type iteration process (1.2).

Lemma 3.1. Let C be a nonempty, closed and convex subset of a strictly convex Banach space X and let $P: X \to C$ be a nonexpansive retraction of X onto C. Let $\{T_i\}_{i=1}^N$ be a finite family of nonexpansive non-self mappings of C into X such that $\bigcap_{i=1}^N F(T_i) \neq \emptyset$, and let $\lambda_1, \lambda_2, \ldots, \lambda_N$ be s real numbers such that $0 < \lambda_i < 1$ for all $i = 1, 2, \ldots, N - 1$ and $0 < \lambda_N \leq 1$. Let Y be the Y-mapping generated by T_1, T_2, \ldots, T_N and $\lambda_1, \lambda_2, \ldots, \lambda_N$. Then the following hold:

1.
$$F(Y) = \bigcap_{i=1}^{N} F(T_i);$$

2. Y is nonexpansiave.

Proof.

1. Since $\bigcap_{i=1}^{N} F(T_i) \subset F(Y)$ is trivial, it suffices to show that $F(Y) \subset \bigcap_{i=1}^{N} F(T_i)$. To this end, let $p \in F(Y)$ and $p^* \in \bigcap_{i=1}^{N} F(T_i)$. Then we have

$$\begin{split} \|p - p^*\| &= \|Yp - p^*\| \\ &= \|\lambda_N(PT_NU_{N-1}p - p^*) + (1 - \lambda_N)\lambda_N(PT_Np - p^*)\| \\ &\leq \lambda_N \|U_{N-1}p - p^*\| + (1 - \lambda_N)\|p - p^*\| \\ &= \lambda_N \|\lambda_{N-1}(PT_{N-1}U_{N-2}p - p^*) + (1 - \lambda_{N-1})(PT_{N-2}p - p^*)\| \\ &+ (1 - \lambda_N)\|p - p^*\| \\ &\leq \lambda_N \lambda_{N-1} \|U_{N-2}p - p^*\| + (1 - \lambda_N \lambda_{N-1})\|p - p^*\| \\ &= \lambda_N \lambda_{N-1} \|\lambda_{N-2}(PT_{N-2}U_{N-3}p - p^*) + (1 - \lambda_{N-2}(PT_{N-3}p - p^*)\| \\ &+ (1 - \lambda_N \lambda_{N-1})\|p - p^*\| \\ &\vdots \\ &= \lambda_N \lambda_{N-1} \dots \lambda_3 \|\lambda_2(PT_2U_1p - p^*) + (1 - \lambda_2)(PT_1p - p^*)\| \\ &+ (1 - \lambda_N \lambda_{N-1} \dots \lambda_3)\|p - p^*\| \\ &\leq \lambda_N \lambda_{N-1} \dots \lambda_2 \|PT_2U_1p - p^*\| + (1 - \lambda_N \lambda_{N-1} \dots \lambda_2)\|p - p^*\| \\ &\leq \lambda_N \lambda_{N-1} \dots \lambda_2 \|\lambda_1(PT_1p - p^*) + (1 - \lambda_1)(p - p^*)\| \\ &+ (1 - \lambda_N \lambda_{N-1} \dots \lambda_2)\|p - p^*\| \\ &\leq \lambda_N \lambda_{N-1} \dots \lambda_2 \lambda_1 \|PT_1p - p^*\| + (1 - \lambda_N \lambda_{N-1} \dots \lambda_2 \lambda_1)\|p - p^*\| \\ &\leq \lambda_N \lambda_{N-1} \dots \lambda_2 \lambda_1 \|p - p^*\| + (1 - \lambda_N \lambda_{N-1} \dots \lambda_2 \lambda_1)\|p - p^*\| \\ &\leq \lambda_N \lambda_{N-1} \dots \lambda_2 \lambda_1 \|p - p^*\| + (1 - \lambda_N \lambda_{N-1} \dots \lambda_2 \lambda_1)\|p - p^*\| \\ &\leq (3.1) \end{aligned}$$

This show that

 $\|p - p^*\| = \lambda_N \lambda_{N-1} \dots \lambda_2 \|\lambda_1 (PT_1p - p^*) + (1 - \lambda_1)(p - p^*)\| + (1 - \lambda_N \lambda_{N-1} \dots \lambda_2) \|p - p^*\|,$ which turns out to be

$$||p - p^*|| = ||\lambda_1(PT_1p - p^*) + (1 - \lambda_1)(p - p^*)||.$$

By (3.1), we see that

$$||p - p^*|| = ||PT_1p - p^*||$$

and thus

$$||p - p^*|| = ||PT_1p - p^*|| = ||\lambda_1(PT_1p - p^*) + (1 - \lambda_1)(p - p^*)||.$$

Using Lemma 2.2, we get that $PT_1 = p$ and hence $U_1p = p$. Again by (3.1), we have

$$\|p - p^*\| = \lambda_N \lambda_{N-1} \dots \lambda_3 \|\lambda_2 (PT_2U_1p - p^*) + (1 - \lambda_2)(PT_1p - p^*)\| + (1 - \lambda_N \lambda_{N-1} \dots \lambda_3) \|p - p^*\|,$$

which implies that

$$||p - p^*|| = ||\lambda_2(PT_2U_1p - p^*) + (1 - \lambda_2)(PT_1p - p^*)||$$

From (3.1), we see that

$$||U_1p - p^*|| = ||PT_2U_1p - p^*||$$

Since $U_1p = p$ and $PT_1p = p$,

 $||p - p^*|| = ||PT_2p - p^*|| = ||\lambda_2(PT_2p - p^*) + (1 - \lambda_2)(p - p^*)||.$

Again by (2.2), we get that $PT_2p = p$ and hence $U_2p = p$. By continuing this process, we can show that $PT_ip = p$ and $U_ip = p$ for all i = 1, 2, ..., N - 1. Finally, we obtain

$$||p - T_N p|| \le ||p - Yp|| + ||Yp - T_N p|| = ||p - Yp|| + (1 - \lambda_N)||p - T_N p||,$$

which yields that $p = PT_N p$, since $p \in F(Y)$. Hence $p = PT_1 p = PT_2 p = \cdots = PT_N p$ and thus $p \in \bigcap_{i=1}^N F(T_i)$.

2. The proof follows directly from (1).

Lemma 3.2. Let C be a nonempty closed and convex subset of a strictly convex Banach space X and let $P: X \to C$ be a nonexpansive retraction of X onto C. Let $\{T_i\}_{i=1}^N$ be a finite family of nonexpansive non-self mappings of C into X such that $\bigcap_{i=1}^N F(T_i) \neq \emptyset$ and let Y be the Y-mapping generated by T_1, T_2, \ldots, T_N and $\lambda_1, \lambda_2, \ldots, \lambda_N$. Let $\{\lambda_{n,i}\}_{i=1}^N$ be real sequence in (0, 1). For every $n \in \mathbb{N}$, let y_n be the Y-mapping generated by T_1, T_2, \ldots, T_N and $\lambda_{n,1}, \lambda_{n,2}, \ldots, \lambda_{n,N}$ as follows;

$$U_{n,1} = \lambda_{n,1} PT_1 + (1 - \lambda_{n,1})I,$$

$$U_{n,2} = \lambda_{n,2} PT_2 U_1 + (1 - \lambda_{n,2}) PT_1,$$

$$U_{n,3} = \lambda_{n,3} PT_3 U_2 + (1 - \lambda_{n,3}) PT_2,$$

$$\vdots$$

$$U_{n,N-1} = \lambda_{n,N-1} PT_{N-1} U_{N-2} + (1 - \lambda_{n,N-1}) PT_{N-2}$$

$$Y_n = U_{n,N} = \lambda_{n,N} PT_N U_{N-1} + (1 - \lambda_{n,N}) PT_N.$$

If $\lambda_{n,i} \to \lambda_i \in (0,1)$ for all $i = 1, 2, \dots, N$ then

1. $\lim_{n \to \infty} Y_n x = Y x$ for all $x \in C$,

2. $Y_n \xrightarrow{n \to \infty}{is \text{ nonexpansive.}}$

Proof.

1. Let $x \in C$, U_k be generated by T_1, T_2, \ldots, T_k and $\lambda_1, \lambda_2, \ldots, \lambda_k$ and let $U_{n,k}$ be generated by T_1, T_2, \ldots, T_k and $\lambda_{n,1}, \lambda_{n,2}, \ldots, \lambda_{n,k}$, respectively. Then

$$||U_{n,1}x - U_1x|| = ||(\lambda_{n,1} - \lambda_1)(PT_1x - x)|| \le |\lambda_{n-1} - \lambda_1|||PT_1x - x||.$$

Let $k \in \{2, 3, ..., N\}$ and $M = \max\{\|PT_kU_{k-1}x\| : k = 2, 3, ..., N\}$. Then

$$\begin{aligned} \|U_{n,k}x - U_{k}x\| &= \|\lambda_{n,k}PT_{k}U_{n,k-1}x + (1 - \lambda_{n,k})PT_{k-1}x - \lambda_{k}PT_{k}U_{k-1} - (1 - \lambda_{k})PT_{k-1}x\| \\ &= \|\lambda_{n,k}PT_{k}U_{n,k-1}x - \lambda_{n,k}PT_{k-1}x - \lambda_{k}PT_{k}U_{k-1} + \lambda_{k}PT_{k-1}x\| \\ &\leq \lambda_{n,k}\|PT_{k}U_{n,k-1}x - PT_{k}U_{k-1}x\| + |\lambda_{n,k} - \lambda_{k}|\|PT_{k}U_{k-1}x\| \\ &+ |\lambda_{n,k} - \lambda_{k}|\|PT_{k-1}x\| \\ &\leq \|U_{n,k-1}x - U_{k-1}x\| + |\lambda_{n,k} - \lambda_{k}|M. \end{aligned}$$

It follows that

$$\begin{split} \|Y_{n}x - Yx\| &= \|U_{n,N}x - U_{N}\| \\ &= \|U_{n,N-1}x - U_{N-1}x\| + |\lambda_{n,N} - \lambda_{N}|M \\ &\leq \|U_{n,N-2}x - U_{N-2}x\| + |\lambda_{n,N-1} - \lambda_{N-1}|M + |\lambda_{n,N} - \lambda_{N}|M \\ &\vdots \\ &\leq \|U_{n,1}x - U_{1}x\| + |\lambda_{n,2} - \lambda_{2}|M + \ldots + |\lambda_{n,N-1} - \lambda_{N-1}|M + |\lambda_{n,N} - \lambda_{N}|M \\ &\leq |\lambda_{n,1} - \lambda_{1}|\|PT_{1}x - x\| + |\lambda_{n,2} - \lambda_{2}|M + \ldots + |\lambda_{n,N-1} - \lambda_{N-1}|M \\ &+ |\lambda_{n,N} - \lambda_{N}|M. \end{split}$$

Since $\lambda_{n,i} \to \lambda_i$ as $n \to \infty$ (i = 1, 2, ..., N), we thus complete the proof.

2. It is easily see that for all $n \in \mathbb{N}, Y_n$ is nonexpansive.

Lemma 3.3. Let C be a nonempty closed and convex subset of a real Banach space X and let $P: X \to C$ be a nonexpansive retraction of X onto C. Let $\{T_i\}_{i=1}^N$ be a finite family of nonexpansive non-self mappings of C into X such that $\bigcap_{i=1}^N F(T_i) \neq \emptyset$. Let $\{\lambda_{n,i}\}_{i=1}^N$ be a real sequence in (0, 1), for all $n \in \mathbb{N}$, let Y_n be the Y-mapping generated by T_1, T_2, \ldots, T_N and $\lambda_{n,1}, \lambda_{n,2}, \ldots, \lambda_{n,N}$. If $\lim_{n \to \infty} |\lambda_{n+1,i} - \lambda_{n,i}| = 0$ for all $i = 1, 2, \ldots, N$, then

$$\lim_{n \to \infty} \left\| Y_{n+1} z_n - Y_n z_n \right\| = 0$$

for each bounded sequence $\{z_n\} \in C$.

Proof. Let $\{z_n\}$ be a bounded sequence in C. For $j \in \{0, 1, ..., N-2\}$ and for some M > 0, we have that

$$\begin{aligned} \|U_{n+1,N-j}z_n - U_{n,N-1}z_n\| &= \|\lambda_{n+1,N-j}PT_{N-j}U_{n+1,N-j-1}z_n + 1 - \lambda_{n+1,N-j}PT_{N-j-1}z_n \\ &- \lambda_{n,N-j}PT_{N-j}U_{n,N-j-1}z_n - 1 - \lambda_{n,N-j}PT_{n-j-1}z_n \| \\ &\leq \lambda_{n+1,N-j}\|PT_{N-j}U_{n+1,N-j-1}z_n - PT_{N-j}U_{n,N-j-1}z_n \| \\ &+ |\lambda_{n+1,N-j} - \lambda_{n,N-j}|\|PT_{N-j}U_{n,N-j-1}z_n\| \\ &+ |\lambda_{n+1,N-j} - \lambda_{n,N-j}|\|PT_{N-j-1}z_n\| \\ &\leq \|U_{n+1,N-j-1}z_n - U_{n,N-j-1}z_n\| + |\lambda_{n+1,N-j} - \lambda_{n,N-j}|M. \end{aligned}$$

Using the relation above, we can show that

$$\begin{aligned} \|Y_{n+1}z_n - Y_n z_n\| &= \|U_{n+1,N}z_n - U_{n,N}z_n\| \\ &\leq M \sum_{j=2}^N |\lambda_{n+1,j} - \lambda_{n,j}| + |\lambda_{n+1,1} - \lambda_{n,1}| (\|z_n\| + \|T_1 z_n\|). \end{aligned}$$

Since $\lim_{n\to\infty} |\lambda_{n+1,i} - \lambda_{n,i}| = 0$ for all $i = 1, 2, \ldots, N$, we obtain the desired result. \Box

Theorem 3.4. Let X be a uniformly convex Banach space having a Fréchet differentiable norm. Let C be a nonempty, closed and convex subset of X and let $P : X \to C$ be a nonexpansive retraction of

X onto C. Let $\{T_i\}_{i=1}^N$ be a finite family of nonexpansive non-self mappings of C into X such that $\bigcap_{i=1}^N F(T_i) \neq \emptyset$. Let $\{\lambda_{n,i}\}_{i=1}^N$ be a real sequence in (0,1) such that $\lambda_{n,i} \to \lambda_i (i = 1, 2, ..., N)$. For every $n \in \mathbb{N}$, let Y_n be the Y-mapping generated by T_1, T_2, \ldots, T_N and $\lambda_{n,1}, \lambda_{n,2}, \ldots, \lambda_{n,N}$. Let $\{\alpha_n\}$ be a sequence in (0,1) satisfying $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$. Let $\{x_n\}$ be generated by $x_1 \in C$ and

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n Y_n x_n, \quad \forall n \ge 1.$$

Then $\{x_n\}$ converges weakly to $x^* \in \bigcap_{i=1}^N F(T_i)$.

Proof. Let $p \in \bigcap_{i=1}^{N} F(T_i)$. Then $p = Y_n p$ for all $n \ge 1$ and hence

$$||x_{n+1} - p|| \le (1 - \alpha_n) ||x_n - p|| + \alpha_n ||Y_n x_n - p|| \le ||x_n - p||.$$

It follows that $\{\|x_n - p\|\}$ is nonincreasing; consequently, $\lim_{n \to \infty} \|x_n - p\|$ exists. Assume that $\|x_n - p\| > 0$. Since X is uniformly convex, it follows (see, for example, [4]) that

$$||x_{n+1} - p|| \le ||x_n - p|| \left\{ 1 - 2\min\{\alpha_n, 1 - \alpha_n\}\delta_X\left(\frac{||x_n - Y_n x_n||}{||x_n - p||}\right) \right\},\$$

which implies that

$$\begin{aligned} \alpha_n(1-\alpha_n) \|x_n - p\| \delta_X \Big(\frac{\|x_n - Y_n x_n\|}{\|x_n - p\|} \Big) &\leq \min\{\alpha_n, 1-\alpha_n\} \|x_n - p\| \delta_X \Big(\frac{\|x_n - Y_n x_n\|}{\|x_n - p\|} \Big) \\ &\leq \frac{1}{2} (\|x_n - p\| - \|x_{n+1} - p\|). \end{aligned}$$

Since $\lim_{n\to\infty} ||x_n - p||$ exists and $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$, by the continuity of δ_X , we have

$$\lim_{n \to \infty} \|x_n - Y_n x_n\| = 0.$$

Since $\delta_{n,i} \to \lambda_i (i = 1, 2, ..., \lambda_N)$, let the mapping $Y : X \to X$ be generated by $T_1, T_2, ..., T_N$ and $\lambda_1, \lambda_2, ..., \lambda_N$. Then, by Lemma 3.2, we have $\lim_{n \to \infty} ||Y_n x - Yx|| = 0$ for all $x \in X$. So we have

$$||x_n - Yx_n|| \le ||x_n - Y_n x_n|| + ||Y_n x_n - Yx_n||$$

$$\le ||x_n - Y_n x_n|| + \sup_{z \in \{x_n\}} ||Y_n z - Yz||$$

$$\to 0.$$

Since Y is nonexpansive adn X is uniformly convex, by the demiclosedness principle, $\omega_{\omega}(x_n) \subset F(Y)$. Morever, $F(Y) = \bigcap_{i=1}^{N} F(T_i)$ by Lemma 3.1 (i). Next, we show that $\omega_{\omega}(x_n)$ is a singleton. Indeed, suppose that $x^*, y^* \in \omega_{\omega}(x_n) \subset \bigcap_{i=1}^{N} F(T_i)$. Define $S_n; X \to X$ by

$$S_n x = (1 - \alpha_n)x + \alpha_n Y_n x, \quad x \in X.$$

Then S_n is nonexpansive and $x^*, y^* \in \bigcap_{i=1}^{\infty} F(S_n)$. Using Lemma 2.4, we have $\lim_{n \to \infty} \langle x_n, J(x^* - y^*) \rangle$ exists. Suppose that $\{x_{n_k}\}$ and $\{x_{m_k}\}$ are subsequence of $\{x_n\}$ such that $x_{n_k} \rightharpoonup x^*$ and $x_{m_k} \rightharpoonup y^*$. Then

$$\|x^* - y^*\|^2 = \langle x^* - y^*, J(x^* - y^*) \rangle = \lim_{k \to \infty} \langle x_{n_k} - x_{m_k}, J(x^* - y^*) \rangle = 0.$$

This shows that $x^* = y^*$. The proof is completes. \Box

4. Strong convergence in Banach spaces

In this section, strong convergence results for the iterative process (1.1) on strictly convex and reflexive Banach space having a uniformly Gáteaux differentiable norm involving the modified viscosity approximation method [8].

Theorem 4.1. Let X be a strictly convex and reflexive Banach space having a uniformly Gáteaux differentiable norm. Let C be a nonempty, closed and convex subset of X and let $P : X \to C$ be a nonexpansive retraction of X onto C. Let $\{T_i\}_{i=1}^N$ be a finite family of nonexpansive non-self mappings of C into X such that $\bigcap_{i=1}^N F(T_i) \neq \emptyset$. Let $\{\lambda_{n,i}\}_{i=1}^N$ be a real sequence in (0,1) such that $\lambda_{n,i} \to \lambda_i$ (i = 1, 2, ..., N). For every $n \in \mathbb{N}$, let Y_n be the Y-mapping generated by $T_1, T_2, ..., T_N$ and $\lambda_{n,1}, \lambda_{n,2}, ..., \lambda_{n,N}$. Let $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ be sequence in (0,1) which satisfy the conditions:

(A1) $\alpha_n + \beta_n + \gamma_n = 1;$

(A2) $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$;

(A3) $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1.$

Let $f \in \sum_{C}$ and define the sequence $\{x_n\}$ by $x_1 \in C$ and

$$x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n Y_n x_n, \quad \forall n \ge 1.$$

Then $\{x_n\}$ converges strongly to $q \in \bigcap_{i=1}^N F(T_i)$, where q also the unique solution of the variational inequality

$$\langle (I-f)(q), J(q-p) \rangle \le 0, \quad \forall p \in \bigcap_{i=1}^{N} F(T_i).$$

$$(4.1)$$

Proof. We divide the proof into the following steps.

Step 1. We show that $\{x_n\}$ is bounded. Let $p \in \bigcap_{i=1}^N F(T_i)$. Then $p = Y_n p$ for all $n \ge 1$ and hence, by the nonexpansiveness of $\{Y_n\}_{n=1}^{\infty}$, we have

$$\begin{aligned} |x_{n+1} - p|| &= \|\alpha_n(f(x_n) - p) + \beta_n(x_n - p) + \gamma_n(Y_n x_n - p)\| \\ &\leq \alpha_n \|(f(x_n) - p\| + \beta_n \|x_n - p\| + \gamma_n \|x_n - p\| \\ &\leq \alpha_n \|(f(x_n) - f(p)\| + \alpha_n \|f(p) - p\| + (1 - \alpha_n) \|x_n - p\| \\ &\leq \alpha_n \alpha \|x_n - p\| + \alpha_n \|f(p) - p\| + (1 - \alpha_n) \|x_n - p\| \\ &= (1 - \alpha_n(1 - \alpha)) \|x_n - p\| + \alpha_n \|f(p) - p\| \\ &\leq \max \bigg\{ \|x_n - p\|, \frac{1}{1 - \alpha} \|f(p) - p\| \bigg\}. \end{aligned}$$

By induction, we can conclude that $\{x_n\}$ is bounded. So are $\{f(x_n)\}$ and $\{Y_nx_n\}$. **Step 2.** We show that $\lim_{n\to\infty} ||x_{n+1} - x_n|| = 0$. To this end, we define $z_n = \frac{x_{n+1}-\beta_nx_n}{1-\beta_n}$. From $x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n Y_n x_n$, $\forall n \ge 1$, where $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ are sequences in (0, 1), and $f \in \sum_C$, we have

$$\begin{aligned} \|z_{n+1} - z_n\| &= \left\| \frac{\alpha_{n+1}f(x_{n+1}) + \gamma_{n+1}Y_{n+1}x_{n+1}}{1 - \beta_{n+1}} - \frac{\alpha_n f(x_n) + \gamma_n Y_n x_n}{1 - \beta_n} \right\| \\ &= \left\| \frac{\alpha_{n+1}}{1 - \beta_{n+1}} (f(x_{n+1}) - Y_n x_n) + \frac{\alpha_n}{1 - \beta_n} (Y_n x_n - f(x_n)) \right\| \\ &+ \frac{\gamma_{n+1}}{1 - \beta_{n+1}} (Y_{n+1} x_{n+1} - Y_n x_n) \right\| \end{aligned}$$

$$\leq \frac{\alpha_{n+1}}{1-\beta_{n+1}}M + \frac{\alpha_n}{1-\beta_n}M + \|Y_{n+1}x_{n+1} - Y_nx_n\|$$

$$\leq \left(\frac{\alpha_{n+1}}{1-\beta_{n+1}} + \frac{\alpha_n}{1-\beta_n}\right)M + \|Y_{n+1}x_{n+1} - Y_nx_n\|$$

$$\leq \left(\frac{\alpha_{n+1}}{1-\beta_{n+1}} + \frac{\alpha_n}{1-\beta_n}\right)M + \|x_{n+1} - x_n\| + \|Y_{n+1}x_{n+1} - Y_nx_n\|$$

for some M > 0. It turns out that

$$||z_{n+1} - z_n|| - ||x_{n+1} - x_n|| \le \left(\frac{\alpha_{n+1}}{1 - \beta_{n+1}} + \frac{\alpha_n}{1 - \beta_n}\right)M + ||Y_{n+1}x_n - y_nx_n||.$$

From conditions (A2), (A3) and Lemma 3.3, we have

$$\limsup_{n \to \infty} (\|z_{n+1} - z_n\| - \|x_{n+1} - x_n\|) \le 0.$$

Lemma 2.3 yields that $||z_n - x_n|| \to 0$ and hence

$$||x_{n+1} - x_n|| = (1 - \beta_n) ||z_n - x_n|| \to 0.$$

Step 3. We show that $\lim_{n\to\infty} ||Yx_n - x_n|| = 0$. Indeed, noting that

$$Y_n x_n - x_n = \frac{1}{\gamma_n} (x_{n+1} - x_n) + \alpha_n (x_n - f(x_n)),$$

we have, by (A2) and (A3),

$$\lim_{n \to \infty} \|Y_n x_n - x_n\| = 0.$$

Let $Y : C \to C$ be the Y-mapping generated by T_1, T_2, \ldots, T_N and $\lambda_1, \lambda_2, \ldots, \lambda_N$. So, by Lemma 3.2, we have $Y_n x \to Y x$ for all $x \in C$. It also follows that

$$||Yx_n - x_n|| \le ||Yx_n - Y_n x_n|| + ||Y_n x_n - x_n||$$

$$\le \sup_{z \in \{x_n\}} ||Yz - Y_n z|| + ||Y_n x_n - x_n|| \to 0.$$

For $t \in (0, 1)$, we define a contraction as follows:

$$S_t x = t f(x) + (1-t)Y x.$$

Then there exists a unique path $x_t \in C$ such that

$$x_t = tf(x_t) + (1-t)Yx_t.$$

From Lemma 2.4, we know that $x_t \to q$ as $t \to 0$, where $q \in F(Y)$. Lemma 3.1 (*i*) also yields that $q \in F(Y) = \bigcap_{i=1}^{N} F(T_i)$. Moreover, q is the unique solution of variational inequality (4.1). **Step 4.** We show that $\limsup_{n \to \infty} \langle f(q) - q, J(x_n - q) \rangle \leq 0$. We see that

$$x_t - x_n = (1 - t)(Yx_t - x_n) + t(f(x_t) - x_n)$$

It follows, by Lemma 2.1 (ii) that

$$\begin{aligned} \|x_t - x_n\|^2 &\leq (1 - t)^2 \|Yx_t - x_n\|^2 + 2t \langle f(x_t) - x_n, J(x_t - x_n) \rangle \\ &\leq (1 - 2t + t^2) (\|x_t - x_n\| \\ &+ \|Yx_n - x_n\|)^2 + 2t \langle f(x_t) - x_n, J(x_t - x_n) \rangle + 2t \|x_t - x_n\|^2, \end{aligned}$$

which gives

$$\langle f(x_t) - x_t, J(x_n - x_t) \rangle \le \frac{(1 + t^2) \|x_n - Yx_n\|}{2t} (2\|x_t - x_n\| + \|x_n - Yx_n\|) + \frac{t}{2} \|x_t - x_n\|^2.$$

So we have

$$\limsup_{n \to \infty} \langle f(x_t) - x_t, J(x_n - x_t) \rangle \le \frac{t}{2}M$$
(4.2)

for some M > 0. Since X has a uniformly Gáteaux differentiable norm, J is norm-to-weak^{*} uniformly continuous in bounded subsets of E. So have

$$\langle f(q) - q, J(x_n - q) - J(x_n - x_t) \rangle \to 0$$

$$(4.3)$$

and

$$\langle f(q) - f(x_t) + x_t - q, J(x_n - x_t) \rangle \to 0$$
(4.4)

as $t \to 0$. On the other hand, we have

$$\langle f(q) - q, J(x_n - q) \rangle = \langle f(x_t) - x_t, J(x_n - x_t) \rangle + \langle f(q) - f(x_t) + x_t - q, J(x_n - x_t) \rangle + \langle f(q) - q, J(x_n - q) - J(x_n - x_t) \rangle.$$
(4.5)

Since $\limsup_{n\to\infty}$ and $\limsup_{t\to0}$ are interchangeable, using (4.2)–(4.5), we obtain

$$\limsup_{n \to \infty} \langle f(q) - q, J(x_n - q) \rangle \le 0.$$

Step 5. We show that $x_n \to q$ as $n \to \infty$. In fact, we have

$$\begin{aligned} \|x_{n+1}\| &= \alpha_n \langle f(x_n) - q, J(x_{n+1} - q) \rangle + \beta_n \langle x_n - q, J(x_{n+1} - q) \rangle + \gamma_n \langle Y_n x_n - q, J(x_{n+1} - q) \rangle \\ &\leq \alpha_n \alpha \|x_n - q\| \|x_{n+1} - q\| + \alpha_n \langle f(q) - q, J(x_{n+1} - q) \rangle \\ &+ \beta_n \|x_n - q\| \|x_{n+1} - q\| + \gamma_n \|x_n - q\| \|x_{n+1} - q\| \\ &= (1 - \alpha_n (1 - \alpha)) \|x_n - q\| \|x_{n+1} - q\| + \alpha_n \langle f(q) - q, J(x_{n+1} - q) \rangle \\ &\leq \frac{1}{2} (1 - \alpha_n (1 - \alpha)) (\|x_n - q\|^2 + \|x_{n+1} - q\|^2) + \alpha_n \langle f(q) - q, J(x_{n+1} - q) \rangle, \end{aligned}$$

which implies that

$$\begin{aligned} \|x_{n+1} - q\|^2 &\leq \frac{1 - \alpha_n (1 - \alpha)}{1 + \alpha_n (1 - \alpha)} \|x_n - q\|^2 + \frac{2\alpha_n}{1 + \alpha_n (1 - \alpha)} \langle f(q) - q, J(x_{n+1} - q) \rangle \\ &= \left(1 - \frac{2\alpha_n (1 - \alpha)}{1 + \alpha_n (1 - \alpha)}\right) \|x_n - q\|^2 + \frac{2\alpha_n}{1 + \alpha_n (1 - \alpha)} \langle f(q) - q, J(x_{n+1} - q) \rangle. \end{aligned}$$

Put $c_n = \frac{2\alpha_n(1-\alpha)}{1+\alpha_n(1-\alpha)}$ and $b_n = \frac{2\alpha_n}{1+\alpha_n(1-\alpha)} \langle f(q) - q, J(x_{n+1}-q) \rangle$. So it is easy to check that $\{c_n\}$ is a sequence in (0,1) such that $\sum_{n=1}^{\infty} c_n = \infty$ and $\limsup_{n \to \infty} \frac{b_n}{c_n} \leq 0$. Hence, By Lemma 2.6, we conclude that $x_n \to q$ as $n \to \infty$. The proof is completes. \Box

Acknowledgments

Yatakoat's work was partially supported by National Research Council of Thailand(NRCT) Fund under The Project 256108A1340002 and Nakhon Phanom University, Nakhon Phanom, Thailand.

References

 R.P. Agarwal, D. O'Regan, D.R. Sahu, Fixed Point theory for Lipschitzain-Type Mappings with Applications, Vol. 6., Springer, New York, 2009.

- [2] R.P. Agarwal, D. O'Regan and D.R. Sahu, Iterative Construction of Fixed Points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007) 61–79.
- [3] F.E. Bowder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA, 54 (1965) 1041– 1044.
- [4] R.E. Bruck, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Isr. J. Math., 32 (1979) 107-116.
- [5] S. Ishikawa, Fixed Points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974) 147–150.
- [6] J.S. Jung and D.R. Sahu, Convergence of approximation paths to solutions of variational inequalities involving non-Lipschitzian mappings, J. Korean Math. Soc., 45 (2008) 377–392.
- [7] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953) 506–510.
- [8] A. Moudafi, Viscosity approximation methods for fixed point problems, J. Math. Anal. Appl., 241 (2000) 46–55.
- [9] Z. Opial, Weak convergence of successive approximations of nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967) 531–537.
- [10] T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 305 (2005) 227–239.
- [11] W. Takahashi, Nonlinear Function Analysis, Yokohama Publisher, Yokohama, 2000.
- [12] K.K. Tan, H.K. Xu, Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 122 (1994) 733–739.
- [13] H.K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., 298 (2004) 279–291.