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Abstract

Let A be a Banach algebra. We say that a sequence {Dn}∞n=0 of continuous operators form A into
A is a local higher derivation if to each a ∈ A there corresponds a continuous higher derivation
{da,n}∞n=0 such that Dn(a) = da,n(a) for each non-negative integer n. We show that if A is a C∗-
algebra then each local higher derivation on A is a higher derivation. We also prove that each local
higher derivation on a C∗-algebra is automatically continuous.
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1. Introduction and preliminaries

Let A be a Banach algebra. A continuous operator ∆ : A→ A is called a local derivation if for each
a ∈ A there is a derivation δa : A → A such that ∆(a) = δa(a). A celebrated theorem of Johnson
[8] states that each local derivation on a C∗-algebra is a derivation. Taking idea from this concept,
we introduce the notion of a local higher derivation and show that each local higher derivation on a
C∗-algebra is indeed a higher derivation.

Though there is a continuity assumption in the definition of a local derivation, Johnson shows that
we can omit this assumption when A is a C∗-algebra. Similarly, we show that when the domain of a
local higher derivation is a C∗-algebra, we can remove the continuity assumption from the definition of
a local higher derivation and each local higher derivation on a C∗-algebra is automatically continuous
even if not assumed a priori to be so.
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For a discussion about automatic continuity of derivations and the related subjects, the reader
is referred to [3, 4, 13, 9, 16] and [17]. Various works on derivations, higher derivations and their
generalizations can be found in [1, 2, 5, 12, 10, 7, 6, 14] and [11].

Proposition 1.1. Let {Dn}∞n=0 be a local higher derivation from a Banach algebra A into itself with
D0 = I. Then there is a sequence {∆n}∞n=1 of local derivations on A such that

(n+ 1)Dn+1 =
n∑

k=0

∆k+1Dn−k

for each non-negative integer n.

Proof . Let a be an element of A. Since {Dn}∞n=0 is a local higher derivation, there is a continuous
higher derivation {da,n}∞n=0 such that Dn(a) = da,n(a) for each non-negative integer n.

We use induction on n. For n = 0 we have D1(a) = da,1(a) = da,1(D0(a)) = da,1D0(a). Thus if
∆1 : A→ A is defined by ∆1(a) = da,1 for each a ∈ A, then ∆1 is a local derivation on A.

Now suppose that ∆k is defined and is a local derivation for k 6 n. We can inductively assume
that for each a ∈ A and each k 6 n there is a derivation δa,k : A → A, defined by δa,k = kda,k −∑k−2

i=0 δa,i+1da,k−1−i, such that ∆k(a) = δa,k(a).
Putting ∆n+1 = (n+ 1)Dn+1 −

∑n−1
k=0 ∆k+1Dn−k, we show that the well-defined mapping ∆n+1 is

a local derivation on A. To see this, suppose that δa,n+1 = (n+ 1)da,n+1−
∑n−1

k=0 δa,k+1da,n−k. Clearly,
∆n+1(a) = δa,n+1(a). We show that δa,n+1 is a derivation. For x, y ∈ A we have

δa,n+1(xy) = (n+ 1)da,n+1(xy)−
n−1∑
k=0

δa,k+1da,n−k(xy)

= (n+ 1)
n+1∑
k=0

da,k(x)da,n+1−k(y)−
n−1∑
k=0

δa,k+1

(
n−k∑
`=0

da,`(x)da,n−k−`(y)

)
.

Now we have

δa,n+1(xy) =
n+1∑
k=0

(n+ 1)da,k(x)da,n+1−k(y)−
n−1∑
k=0

δa,k+1

(
n−k∑
`=0

da,`(x)da,n−k−`(y)

)

=
n+1∑
k=0

(k + n+ 1− k)da,k(x)da,n+1−k(y)−
n−1∑
k=0

δa,k+1

(
n−k∑
`=0

da,`(x)da,n−k−`(y)

)
.

Since δa,1, . . . , δa,n are derivations,

δa,n+1(xy) =
n+1∑
k=0

kda,k(x)da,n+1−k(y) +
n+1∑
k=0

da,k(x)(n+ 1− k)da,n+1−k(y)

−
n−1∑
k=0

n−k∑
`=0

[δa,k+1(da,`(x))da,n−k−`(y) + da,`(x)δa,k+1(da,n−k−`(y))] .

Writing

K =
n+1∑
k=0

kda,k(x)da,n+1−k(y)−
n−1∑
k=0

n−k∑
`=0

δa,k+1(da,`(x))da,n−k−`(y),

L =
n+1∑
k=0

da,k(x)(n+ 1− k)da,n+1−k(y)−
n−1∑
k=0

n−k∑
`=0

da,`(x)δa,k+1(da,n−k−`(y))
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we have δa,n+1(xy) = K + L. Let us compute K and L. In the summation
∑n−1

k=0

∑n−k
`=0 we have

0 ≤ k+` ≤ n and k 6= n. Thus if we put r = k+` then we can write it as the form
∑n

r=0

∑
k+`=r,k 6=n.

Putting ` = r − k we indeed have

K =
n+1∑
k=0

kda,k(x)da,n+1−k(y)−
n∑

r=0

∑
0≤k≤r,k 6=n

δa,k+1(da,r−k(x))da,n−r(y)

=
n+1∑
k=0

kda,k(x)da,n+1−k(y)−
n−1∑
r=0

r∑
k=0

δa,k+1(da,r−k(x))da,n−r(y)−
n−1∑
k=0

δa,k+1(da,n−k(x))y.

Putting r + 1 instead of k in the first summation we have

K +
n−1∑
k=0

δa,k+1(da,n−k(x))y

=
n∑

r=0

(r + 1)da,r+1(x)da,n−r(y)−
n−1∑
r=0

r∑
k=0

δa,k+1(da,r−k(x))da,n−r(y)

=
n−1∑
r=0

[
(r + 1)da,r+1(x)−

r∑
k=0

δa,k+1(da,r−k(x))

]
da,n−r(y) + (n+ 1)da,n+1(x)y.

By our assumption (r + 1)da,r+1(x) =
∑r

k=0 δa,k+1(da,r−k(x)) for r = 0, . . . , n − 1. We can therefore
deduce that

K =

[
(n+ 1)da,n+1(x)−

n−1∑
k=0

δa,k+1(da,n−k(x))

]
y = δa,n+1(x)y.

By a similar argument we have

L = x

[
(n+ 1)da,n+1(y)−

n−1∑
k=0

δa,k+1(da,n−k(y))

]
= xδa,n+1(y).

Thus
δa,n+1(xy) = K + L = δa,n+1(x)y + xδa,n+1(y).

Whence δa,n+1 is a derivation on A. �

Theorem 1.2. Each local higher derivation {Dn}∞n=0, with D0 = I, from a C∗-algebra A into itself
is a higher derivation.

Proof . Proposition 1.1 implies the existence of sequence {∆n}∞n=1 of local derivations such that
(n + 1)Dn+1 =

∑n
k=0 ∆k+1Dn−k. The famous theorem of Johnson [8] now guarantees that ∆n are

derivations.
To see that {∆n}∞n=1 is a higher derivation, let a, b ∈ A and n be a non-negative integer. We use

induction on n. For n = 0 we have D0(ab) = ab = D0(a)D0(b). Let us assume that

Dk(ab) =
k∑

i=0

Di(a)Dk−i(b)
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for k ≤ n. Thus we have

(n+ 1)Dn+1(ab) =
n∑

k=0

∆k+1Dn−k(ab)

=
n∑

k=0

∆k+1

n−k∑
i=0

Di(a)Dn−k−i(b)

=
n∑

i=0

(
n−i∑
k=0

∆k+1Dn−k−i(a)

)
Di(b)

+
n∑

i=0

Di(a)

(
n−i∑
k=0

∆k+1Dn−k−i(b)

)
.

Using our assumption, we can write

(n+ 1)Dn+1(ab) =
n∑

i=0

(n− i+ 1)Dn−i+1(a)Di(b)

+
n∑

i=0

Di(a)(n− i+ 1)Dn−i+1(b)

=
n+1∑
i=1

iDi(a)Dn+1−i(b) +
n∑

i=0

(n+ 1− i)Di(a)Dn+1−i(b)

= (n+ 1)
n+1∑
k=0

Dk(a)Dn+1−k(b).

�

Corollary 1.3. Each local higher derivation {Dn}∞n=0, with D0 = I, from a C∗-algebra A into itself
is automatically continuous.

Proof . We can inductively prove that each Dn is continuous. Clearly, D0 = I is continuous. Let
Dk be continuous for k 6 n. A beautiful theorem of Sakai [15] states that each derivation on a C∗-
algebra is automatically continuous. Thus ∆n’s of Proposition 1.1 are continuous. This implies that
Dn+1 = 1

n+1

∑n
k=0 ∆k+1Dn−k to be continuous as a linear combination of compositions of continuous

operators. �
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