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Abstract

Let 2 be a Banach algebra. We say that a sequence {D,,}°, of continuous operators form 2 into
2 is a local higher derivation if to each a € 2 there corresponds a continuous higher derivation
{dan}ey such that D,(a) = d,n(a) for each non-negative integer n. We show that if 2 is a C*-
algebra then each local higher derivation on %2l is a higher derivation. We also prove that each local
higher derivation on a C*-algebra is automatically continuous.
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1. Introduction and preliminaries

Let 2 be a Banach algebra. A continuous operator A : 20 — 2 is called a local derivation if for each
a € A there is a derivation 4, : 2 — 2 such that A(a) = d,(a). A celebrated theorem of Johnson
[8] states that each local derivation on a C*-algebra is a derivation. Taking idea from this concept,
we introduce the notion of a local higher derivation and show that each local higher derivation on a
C*-algebra is indeed a higher derivation.

Though there is a continuity assumption in the definition of a local derivation, Johnson shows that
we can omit this assumption when 2 is a C*-algebra. Similarly, we show that when the domain of a
local higher derivation is a C*-algebra, we can remove the continuity assumption from the definition of
a local higher derivation and each local higher derivation on a C*-algebra is automatically continuous
even if not assumed a priori to be so.
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For a discussion about automatic continuity of derivations and the related subjects, the reader
is referred to [3) [4, 13, O, 16] and [I7]. Various works on derivations, higher derivations and their
generalizations can be found in [T}, 2, [5, 12} 10} [7, 6, 14] and [11].

Proposition 1.1. Let {D,}2, be a local higher derivation from a Banach algebra 2 into itself with
Dy = 1. Then there is a sequence {A,}5°, of local derivations on 2 such that

(n+1)Dypi1 = ZAkz—HDn k

for each non-negative integer n.

Proof . Let a be an element of 2. Since {D,,}>°, is a local higher derivation, there is a continuous
higher derivation {d,,}>>, such that D,(a) = d,,(a) for each non-negative integer n.

We use induction on n. For n = 0 we have D;(a) = dy1(a) = da1(Do(a)) = dg1Do(a). Thus if
Ay A — A is defined by A;(a) = d, for each a € 2, then A, is a local derivation on .

Now suppose that Ay is defined and is a local derivation for k < n. We can inductively assume
that for each a € A and each k£ < n there is a derivation d, : 2 — 2, defined by 0, = kdy i —
S G0is1da 1, such that Ag(a) = = di(a).

Putting A,y1 = (n+1)Dyyq — Ak—f—an 1, we show that the well- deﬁned mapping A1 is
a local derivation on 2. To see this, suppose that dgni1 = (N4 1)dant1 — Y po L5 Jk+1dgn—r. Clearly,
Api1(a) = 04 pn41(a). We show that 6,11 is a derivation. For z,y € 2 we have
n—1
5a,n+1 (xy) = (n + 1)da n+1 xy Z dq Ft1dan— k(xy)
k=0
n+1 n—1 n—k
= (n + 1) Z da,k(x) a,n+1— k Z (Sa k41 (Z da,é(x)da,nkf(y)> .
k=0 =0

Now we have

n+1 n—1 n—k
5a,n+1(xy) = Z(n+ 1)da,k:(x) a,n+1— k Z(Sa k+1< da,ﬂ('r)da,n—k—f(y)>

k=0 = /=0
n+1 n—1 n—k
- Z(k +n+1-— k)da,k($>da,n+1fk(y) Z a,k+1 (Z daf anké(l/)) .
k=0 k=0 =0
Since g1, . . . , 04, are derivations,
n+1 n+1
5(1 n+1 xy Z kda k a n—l—l—k(y) + Z da,k(x) (n +1- k)da,n+l—k(y)
n—1 n—k
- [Oakt1(dae(2))dan—k—e(y) + dae(7)dak+1(dan—r—e(y))] -
k=0 ¢=0
Writing
n+1 n—1 n—k
K = dea,k< ) a,n+1— k 5(1 k:+1 da,n—k—f(y)a
k=0 ¢=0
n+1 n—1 n—k
L= S dsl)n 41— Bamir ) = 303 du)usr (i o(9))

i
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we have 0,n41(zy) = K + L. Let us compute K and L. In the summation ZZ;& — (;C we have
0 <k+{<mnandk # n. Thus if we put r = k+£ then we can write it as the form > 7" (>, ..
Putting ¢ = r — k we indeed have

n+1
K = Z kda,k( ) a,n+1— k Z Z a k-‘,—l a T—k(J;))da,n—T(y)
k= r=0 0<k<r,k#n
n+1 n—1 r
= dea,k(*x) a,n+1— k szak+1 a,r— k an r Zéak+1 a,n— k ))y
k=0 r=0 k=0

Putting r + 1 instead of k in the first summation we have

n—1
K+ Z Oak1(dan—r(7))y
k=0
n n—1 r
= > 0+ Va1 (0)danr(y) — Oa 1 (dar—4())dan—r (y)
- =0 k=0
n—1
= Z (r+1)dapsr (v Z Oa k41 (da,r—( ))] dan—r(y) + (0 + 1)dapi1(2)y.
r=0

By our assumption (r + 1)dg,41(2) = > 1 _g dapt1(dar—i(z)) for r =0,...,n — 1. We can therefore
deduce that

K —

(n + 1 an+1 Z(Sa k+1 an k ))] Yy = 5a,n+1($)y'

By a similar argument we have

L=z

(7’L+1 an+1 Z5ak+1 a,n— k ))] :x(sa,n—i-l(y)-

Thus
bant1(2y) = K+ L = 64ny1(2)y + 20041 (y)-

Whence 6,41 is a derivation on 2(. 0J

Theorem 1.2. Each local higher derivation {D,}>,, with Dy = I, from a C*-algebra 2 into itself
1s a higher derivation.

Proof . Proposition implies the existence of sequence {A,}°°, of local derivations such that
(n+1)Dpy1 = > p_o Ak+1Dpg. The famous theorem of Johnson [8] now guarantees that A, are
derivations.

To see that {A,}5°, is a higher derivation, let a,b € 2 and n be a non-negative integer. We use
induction on n. For n = 0 we have Dy(ab) = ab = Dy(a)Dy(b). Let us assume that

k

Dy(ab) = D;(a)Dy_i(b)

=0
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for £k < n. Thus we have

(n+ 1)Dpya(ab) = Y Agy1Dyp(ab)
k=0

n n—k
= Z Ak+1 Z Di(a)Dn—k—i(b>
k=0 i=0

= Z A1 Dy—j—i(a) | Di(b)
k=0

+ Z D;(a) (Z AkJranki(b)) .

Using our assumption, we can write

n

(n+1)Dpya(ab) = Y (n—i+1)D,_i11(a)Di(b)

=0

£ Di@)(n =i+ 1)Doiia (0

— Z iDi(a)Dpiq_i(b) + Z(n +1—4)D;(a)Dyt1-4(D)

n+1

= (n+1) Z Dy(a)Dys1-1(b).

O

Corollary 1.3. Each local higher derivation {D,}2, with Dy = I, from a C*-algebra 2 into itself
15 automatically continuous.

Proof . We can inductively prove that each D, is continuous. Clearly, Dy = I is continuous. Let
Dy, be continuous for £ < n. A beautiful theorem of Sakai [I5] states that each derivation on a C*-
algebra is automatically continuous. Thus A,,’s of Proposition [I.1] are continuous. This implies that
Dy = #1 ZZ:O Agi1D, i to be continuous as a linear combination of compositions of continuous
operators. [
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