Convergence Theorems of Iterative Approximation for Finding Zeros of Accretive Operator and Fixed Points Problems

V. Dadashia,*, S. Ghafari ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Islamic Azad University-Sari Branch, Sari, Iran.
${ }^{b}$ Department of Mathematics, Islamic Azad University-Sari Branch, Sari, Iran.

Abstract

In this paper we propose and studied a new composite iterative scheme with certain control conditions for viscosity approximation for a zero of accretive operator and fixed points problems in a reflexive Banach space with weakly continuous duality mapping. Strong convergence of the sequence $\left\{x_{n}\right\}$ defined by the new introduced iterative sequence is proved. The main results improve and complement the corresponding results of [1, 4, 10].

Keywords: Accretive operator, Fixed points, Composite iterative schemes, Resolvent operator. 2000 MSC: Primary 47H06, 47H09 Secondary 47H10 46E35.

1. Introduction and preliminaries

Let C be a nonempty closed convex subset of a real Banach space E with E^{*} be dual space of E and the value of $x^{*} \in E^{*}$ will be denoted by $\left\langle x^{*}, x\right\rangle$. The normalized duality mapping J from E into the family of nonempty w^{*}-compact subsets of its dual E^{*} is defined by

$$
\begin{equation*}
J(x)=\left\{x^{*} \in E^{*}:\left\langle x^{*}, x\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\} \tag{1.1}
\end{equation*}
$$

for each $x \in E$ [5]. Recall that a mapping $T: C \rightarrow C$ is called nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C$ and a self-mapping $f: C \rightarrow C$ is a contraction on C if there exists a constant $\alpha \in(0,1)$ such that $\|f(x)-f(y)\| \leq \alpha\|x-y\|$ for all $x, y \in C$. The set of all fixed points of T is denoted by $F(T)$, that is $F(T)=\{x \in C \mid x=T x\}$ and we use Π_{C} to denote the collection of all contractions on C , that is $\Pi_{C}=\{f: C \rightarrow C \mid f$ is a contraction with a constant $\alpha\}$. Note that each $f \in \Pi_{C}$ has a unique fixed point in C, and for any fixed element $x_{0} \in C$, Picard's iteration

[^0]$x_{n+1}=f^{n}\left(x_{0}\right)$ converges strongly to a unique fixed point of f. However, a simple example shows that Picard's iteration cannot be used in the case of nonexpansive mappings.

An operator $A: E \rightarrow E$ is said to be accretive if for each $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in G p h(A)$ there exists a $j \in J\left(x_{2}-x_{1}\right)$ such that $\left\langle y_{2}-y_{1}, j\right\rangle \geq 0$. An accretive operator A is m-accretive if $R(I+r A)=E$ for each $r \geq 0$. The set of zeros of A is denoted by $N(A)=A^{-1}(0)=\{z \in D(A): 0 \in A z\}$ it is always assumed that A is accretive and $N(A)$ is nonempty. For each $r \geq 0$, we denote by J_{r} the resolvent of A, that is $J_{r}=(I+r A)^{-1}$. Note that, if A is m-accretive, then $J_{r}: E \rightarrow E$ is a nonexpansive mapping and $F\left(J_{r}\right)=N(A)$ for all $r \geq 0$.

In 2008 Jung 9 introduced a new composite iterative scheme for a nonexpansive mapping T as follows:

$$
\left\{\begin{array}{l}
x_{1}=x \in C \tag{1.2}\\
y_{n}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) T x_{n}, \quad n \geq 1, \\
x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} T y_{n}, \quad n \geq 1,
\end{array}\right.
$$

where $f \in \Pi_{C}$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset[0,1]$. He proved the strong convergence of the sequence $\left\{x_{n}\right\}$ defined by (1.2) under suitable conditions of the control parameters $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ and asymptotic regularity on $\left\{x_{n}\right\}$ in a reflexive Banach space with a uniformly Gateaux differentiable norm together with the assumption that every weakly compact convex subset of E has the fixed point property for nonexpansive mappings.

On the other hand, He, Xu and $\mathrm{He}[8$ introduced an iteration scheme for viscosity approximation for a zero of accretive operator and fixed points problems in a reflexive Banach space with weakly continuous duality mapping as follows:

$$
\left\{\begin{array}{l}
x_{1}=x \in C \tag{1.3}\\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} T J_{r_{n}} x_{n}, \quad n \geq 1
\end{array}\right.
$$

where $f \in \Pi_{C}, J_{r_{n}}$ is the resolvent of A and T is nonexpansive mapping. They proved that $\left\{x_{n}\right\}$ strongly convergence to a zero of accretive operator and fixed points problems under some control conditions on $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$.

In this paper, inspired and motivated by the above iterative schemes, we introduced and studied a new composite iterative scheme as follows:

$$
\left\{\begin{array}{l}
y_{n}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) T J_{r_{n}} x_{n} \tag{1.4}\\
x_{n+1}=\beta_{n} T y_{n}+\left(1-\beta_{n}\right) y_{n}
\end{array}\right.
$$

where $f \in \Pi_{C},\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset[0,1], J_{r_{n}}$ is the resolvent of A and T is nonexpansive mapping. The main results improve and complement the corresponding results of [1, 4, 10].

By a gauge function φ we mean a continuous strictly increasing function $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ such that $\varphi(0)=0$ and $\varphi(t) \rightarrow+\infty$ as $t \rightarrow+\infty$. Let E^{*} be the dual space of E. The duality mapping $J_{\varphi}: E \rightarrow 2^{E^{*}}$ associated to a gauge function φ is defined by

$$
J_{\varphi}(x)=\left\{x^{*} \in E^{*}:\left\langle x^{*}, x\right\rangle=\|x\| \varphi(\|x\|),\left\|x^{*}\right\|=\varphi(\|x\|)\right\}, \quad \forall x \in E .
$$

In particular, the duality mapping with the gauge function $\varphi(t)=t$, denoted by J, is referred to as the normalized duality mapping. Clearly, there holds the relation $J_{\varphi}(x)=\frac{\varphi(\|x\|)}{\|x\|} J(x)$ for all $x \neq 0$. Browder [2] initiated the study of certain classes of nonlinear operators by means of the duality mapping J_{φ}. Following Browder [2], we say that a Banach space E has a weakly continuous duality mapping if there exists a gauge φ for which the duality mapping $J_{\varphi}(x)$ is single-valued and continuous from the weak topology to the weak* topology, that is, for any $\left\{x_{n}\right\}$ with $x_{n} \rightharpoonup x$, the
sequence $\left\{J_{\varphi}\left(x_{n}\right)\right\}$ converges weakly* to $J_{\varphi}(x)$. It is known that l^{p} has a weakly continuous duality mapping with a gauge function $\varphi(t)=t^{p-1}$ for all $1<p<+\infty$. Set

$$
\begin{equation*}
\phi(t)=\int_{0}^{t} \varphi(\tau) d \tau, \quad \forall t \geq 0 \tag{1.5}
\end{equation*}
$$

then

$$
\begin{equation*}
J_{\varphi}(x)=\partial \phi(\|x\|), \quad \forall x \in E \tag{1.6}
\end{equation*}
$$

where ∂ denotes the subdifferential in the sense of convex analysis that for each $x \in X$ such that $f(x) \in \mathbb{R}$, the subdifferential of f at x defined by $\partial f(x)=\left\{x^{*} \in X^{*} \mid f(y)-f(x) \geq\left\langle x^{*}, y-x\right\rangle \forall x \in\right.$ $X\}$. The next lemma is an immediate consequence of the subdifferential inequality.
Lemma 1.1. Assume that E has a weakly continuous duality map J_{φ} with gauge φ. Then, for each $x, y \in E$, one has

$$
\begin{equation*}
\phi(\|x+y\|) \leq \phi(\|x\|)+\left\langle y, J_{\varphi}(x+y)\right\rangle . \tag{1.7}
\end{equation*}
$$

Lemma 1.2. [11] Assume that $\left\{\alpha_{n}\right\}$ is a sequence of nonnegative real numbers such that $\alpha_{n+1} \leq$ $\left(1-\gamma_{n}\right) \alpha_{n}+\sigma_{n} \gamma_{n}, n \geq 1$, where $\left\{\gamma_{n}\right\} \subseteq(0,1)$ and $\left\{\sigma_{n}\right\}$ is a sequence in \mathbb{R} such that
(i) $\lim _{n \rightarrow \infty} \gamma_{n}=0$ and $\sum_{n=1}^{\infty} \gamma_{n}=\infty$,
(ii) $\lim \sup _{n \rightarrow \infty} \sigma_{n} \leq 0$ or $\sum_{n=1}^{\infty}\left|\sigma_{n} \gamma_{n}\right|<\infty$.

Then $\lim _{n \rightarrow \infty} \alpha_{n}=0$.
Lemma 1.3. [3] For $\lambda>0, \mu>0$ and $x \in E$,

$$
J_{\lambda} x=J_{\mu}\left(\frac{\mu}{\lambda} x+\left(1-\frac{\mu}{\lambda}\right) J_{\lambda} x\right) .
$$

Lemma 1.4. [6] Let E be a reflexive Banach space, C a nonempty closed convex subset of E and $T: C \rightarrow E$ a nonexpansive mapping. Suppose that E admits a weakly sequentially continuous duality mapping. Then the mapping $I-T$ is demiclosed on C, where I is the identity mapping, i.e., if $x_{n} \rightharpoonup x$ and $\left\|x_{n}-T x_{n}\right\| \rightarrow 0$, then $x=T x$.

Let D be a subset of C. Then $Q: C \rightarrow D$ is called a retraction from C onto D if $Q(x)=x$ for all $x \in D$. A retraction $Q: C \rightarrow D$ is said to be sunny if $Q(Q x+t(x-Q x))=Q x$ for all $x \in C$ and $t \geq 0$ whenever $Q x+t(x-Q x) \in C$. A subset D of C is said to be a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction of C onto D. In a smooth Banach space E, it is known ([7] p. 48) that $Q: C \rightarrow D$ is a sunny nonexpansive retraction if and only if the following condition holds:

$$
\langle x-Q(x), J(z-Q(x))\rangle \leq 0 \quad x \in C, x \in D
$$

Lemma 1.5. [12] Let E be a reflexive Banach space and have a weakly continuous duality map J with gauge φ. Let C be a closed convex subset of E and let $T: C \rightarrow C$ be a nonexpansive mapping. Fix $u \in C$ and $t \in(0,1)$. Let $x_{t} \in C$ be the unique solution in C to equation $x_{t}=t u+(1-t) T x_{t}$. Then T has a fixed point if and only if $\left\{x_{t}\right\}$ remains bounded as $t \rightarrow 0^{+}$, and in this case, $\left\{x_{t}\right\}$ converges as $t \rightarrow 0^{+}$strongly to a fixed point of T. If we define $Q: C \rightarrow F(T)$ by $Q(u):=\lim _{t \rightarrow 0} x_{t}, u \in C$, then $Q(u)$ solves the variational inequality

$$
\langle u-Q(u), J(Q(u)-p)\rangle \leq 0 \quad u \in C, p \in F(T)
$$

where Q is the sunny nonexpansive retraction from C onto $F(T)$.

Lemma 1.6. [8] Let E be a reflexive Banach space and have a weakly continuous duality map J with gauge φ. Let C be a closed convex subset of E and let $T: C \rightarrow C$ be a nonexpansive mapping, $f \in \Pi_{C}$. Let $z_{t} \in C$ be the unique solution in C to equation $z_{t}=t f\left(z_{t}\right)+(1-t) T z_{t}, t \in(0,1)$. Then T has a fixed point if and only if $\left\{z_{t}\right\}$ remains bounded as $t \rightarrow 0^{+}$, and in this case, $\left\{z_{t}\right\}$ converges as $t \rightarrow 0^{+}$strongly to a fixed point of T. If we define $Q: \Pi_{C} \rightarrow F(T)$ by $Q(f):=\lim _{t \rightarrow 0} z_{t}, f \in \Pi_{C}$; then $Q(f)$ is a solution of the variational inequality

$$
\langle(I-f) Q(f), J(Q(f)-p)\rangle \leq 0, \quad p \in F(T)
$$

where Q is the sunny nonexpansive retraction from C onto $F(T)$.

2. Main Results

In this section, we prove several strong convergence theorems of the iterative scheme (1.4).
Theorem 2.1. Let E be a real reflexive Banach space and have a weakly continuous duality map J_{φ} with gauge φ and A a m-accretive maps in E such that $C=\overline{D(A)}$ is convex. let $T: C \rightarrow C$ be a nonexpansive mapping with $F=F(T) \cap N(A) \neq \emptyset$ and $f: C \rightarrow C$ a fixed contraction mapping with contract constant α. Suppose that $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset(0,1), r_{n} \in \mathbb{R}^{+}$which satisfy the following conditions:

$$
\text { (C1) } \lim _{\mathrm{n} \rightarrow \infty} \alpha_{\mathrm{n}}=0, \quad \sum_{\mathrm{n}=1}^{\infty} \alpha_{\mathrm{n}}=\infty,
$$

(C2) $\lim _{\mathrm{n} \rightarrow \infty} \frac{\beta_{\mathrm{n}}}{\alpha_{\mathrm{n}}}=0$,
(C3) $\lim _{n \rightarrow \infty} r_{n}=r, r \in \mathbb{R}^{+}$.
Let $x_{1} \in C$ be chosen arbitrarily and $\left\{x_{n}\right\}$ be a sequence generated by (1.4) Suppose that $\sum_{n=1}^{\infty} \sup \left\{\left\|T J_{r_{n+1}} z-T J_{r_{n}} z\right\| ; z \in B\right\}<\infty$ for any bounded subset B of C. If $\left\{x_{n}\right\}$ is asymptotic regular, then $\left\{x_{n}\right\}$ converges strongly to $p \in F$, where p is the unique solution of the variational inequality

$$
\begin{equation*}
\langle(I-f)(p), J(p-q)\rangle \leq 0, \quad q \in F . \tag{2.1}
\end{equation*}
$$

Proof . First, we note that by Lemma 1.6 with the contraction f and $T J_{r_{n}}: E \rightarrow C$ nonexpansive mapping instead of a mapping T , there exists the unique solution p of a variational inequality

$$
\langle(I-f)(p), J(p-q)\rangle \leq 0, \quad q \in F
$$

where $p=\lim _{t \rightarrow 0} z_{t}$ and z_{t} is defined by $z_{t}=t f\left(z_{t}\right)+(1-t) T J_{r}\left(z_{t}\right)$ for each $r>0$ and $0<t<1$. Second, we claim that $\left\{x_{n}\right\}$ is bounded. Indeed, take an arbitrary fixed $p \in F$ so using the definition of $\left\{x_{n}\right\}$, we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\left(1-\beta_{n}\right) y_{n}+\beta_{n} T y_{n}-p\right\| \\
& \leq\left(1-\beta_{n}\right)\left\|y_{n}-p\right\|+\beta_{n}\left\|T y_{n}-p\right\| \\
& \leq\left(1-\beta_{n}\right)\left\|y_{n}-p\right\|+\beta_{n}\left\|y_{n}-p\right\| \\
& =\left\|y_{n}-p\right\| .
\end{aligned}
$$

and hence by the definition of $\left\{y_{n}\right\}$, we obtain

$$
\begin{aligned}
\left\|y_{n}-p\right\| & =\left\|\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) T J_{r_{n}} x_{n}-p\right\| \\
& =\left\|\alpha_{n}\left(f\left(x_{n}\right)-f(p)\right)+\alpha_{n}(f(p)-p)+\left(1-\alpha_{n}\right)\left(T J_{r_{n}} x_{n}-p\right)\right\| \\
& \leq \alpha_{n}\left\|f\left(x_{n}\right)-f(p)\right\|+\alpha_{n}\|f(p)-p\|+\left(1-\alpha_{n}\right)\left\|T J_{r_{n}} x_{n}-p\right\| \\
& \leq \alpha \alpha_{n}\left\|x_{n}-p\right\|+\alpha_{n}\|f(p)-p\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\| \\
& =\left(1-(1-\alpha) \alpha_{n}\right)\left\|x_{n}-p\right\|+\alpha_{n}\|f(p)-p\| \\
& \leq \max \left\{\left\|x_{n}-p\right\|+\frac{1}{1-\alpha}\|f(p)-p\|\right\} .
\end{aligned}
$$

By induction on n, we obtain that $\left\|x_{n}-p\right\| \leq \max \left\{\frac{\|f(p)-p\|}{1-\alpha},\left\|x_{1}-p\right\|\right\}$ for all $n \in \mathbb{N}$ and all $p \in F(T)$. Hence, the sequence $\left\{x_{n}\right\}$ is bounded and so $\left\{y_{n}\right\},\left\{T x_{n}\right\}$, and $\left\{f\left(x_{n}\right)\right\}$ are bounded sequences. From (C2), we can assume, without loss of generality, that $\beta_{n} \leq \alpha_{n}$ for each $n \geq 1$. By (C1) and the definition of $\left\{x_{n}\right\}$, we have

$$
\left\|x_{n+1}-y_{n}\right\|=\beta_{n}\left\|T y_{n}-y_{n}\right\| \rightarrow 0, n \rightarrow \infty
$$

and hence asymptotic regularity of $\left\{x_{n}\right\}$ implies that

$$
\begin{equation*}
\left\|x_{n}-y_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\| \rightarrow 0, n \rightarrow \infty \tag{2.2}
\end{equation*}
$$

Then, from (C1) and (2.2) we obtain

$$
\begin{align*}
\left\|y_{n}-T J_{r_{n}} y_{n}\right\| & =\left\|\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) T J_{r_{n}} x_{n}-T J_{r_{n}} y_{n}\right\| \\
& =\left\|\alpha_{n}\left(f\left(x_{n}\right)-T J_{r_{n}} x_{n}\right)+T J_{r_{n}} x_{n}-T J_{r_{n}} y_{n}\right\| \\
& \leq \alpha_{n}\left\|f\left(x_{n}\right)-T J_{r_{n}} x_{n}\right\|+\left\|x_{n}-y_{n}\right\| \rightarrow 0, n \rightarrow \infty . \tag{2.3}
\end{align*}
$$

From Lemma 1.3 and (C3), we get

$$
\begin{align*}
\left\|T J_{r_{n}} y_{n}-T J_{r} y_{n}\right\| & \leq\left\|J_{r_{n}} y_{n}-J_{r} y_{n}\right\| \\
& =\left\|J_{r}\left(\frac{r}{r_{n}} y_{n}+\left(1-\frac{r}{r_{n}}\right) J_{r_{n}} y_{n}\right)-J_{r} y_{n}\right\| \\
& \leq\left\|\left(\frac{r}{r_{n}} y_{n}+\left(1-\frac{r}{r_{n}}\right) J_{r_{n}} y_{n}\right)-y_{n}\right\| \\
& =\left|1-\frac{r}{r_{n}}\right|\left\|J_{r_{n}} y_{n}-y_{n}\right\| \rightarrow 0, \quad n \rightarrow \infty . \tag{2.4}
\end{align*}
$$

Therefore, (2.3) and (2.4) imply that

$$
\left\|y_{n}-T J_{r} y_{n}\right\| \leq\left\|y_{n}-T J_{r_{n}} y_{n}\right\|+\left\|T J_{r_{n}} y_{n}-T J_{r} y_{n}\right\| \rightarrow 0 \quad, \quad n \rightarrow \infty
$$

Now, we prove that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle f(p)-p, J_{\varphi}\left(y_{n}-p\right)\right\rangle \leq 0, \quad p \in F \tag{2.5}
\end{equation*}
$$

Take a subsequence $\left\{y_{n_{k}}\right\}$ of $\left\{y_{n}\right\}$ such that

$$
\limsup _{n \rightarrow \infty}\left\langle f(p)-p, J_{\varphi}\left(y_{n}-p\right)\right\rangle=\lim _{k \rightarrow \infty}\left\langle f(p)-p, J_{\varphi}\left(y_{n_{k}}-p\right)\right\rangle .
$$

Since E is reflexive, we may further assume that $y_{n_{k}} \rightharpoonup \bar{y}$. Moreover, since $\left\|y_{n}-T J_{r} y_{n}\right\| \rightarrow 0$ and demicloseness of $I-T J_{r} y_{n}$ and using Lemma 1.4 we know that $\bar{y} \in F\left(T J_{r}\right)$. Hence, by Lemma 1.5 we get

$$
\limsup _{n \rightarrow \infty}\left\langle f(p)-p, J_{\varphi}\left(y_{n}-p\right)\right\rangle=\left\langle f(p)-p, J_{\varphi}(\bar{y}-p)\right\rangle \leq 0
$$

Finally, we claim that $\left\{x_{n}\right\}$ strongly convergence to p. Indeed, we have

$$
\begin{align*}
\phi\left(\left\|y_{n}-p\right\|\right) & =\phi\left(\left\|\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) T J_{r_{n}} x_{n}-p\right\|\right) \\
& =\phi\left(\left\|\alpha_{n}\left(f\left(x_{n}\right)-f(p)\right)+\alpha_{n}(f(p)-p)+\left(1-\alpha_{n}\right)\left(T J_{r_{n}} x_{n}-p\right)\right\|\right) \\
& \leq \phi\left(\alpha_{n}\left\|f\left(x_{n}\right)-f(p)\right\|+\alpha_{n}\|f(p)-p\|+\left(1-\alpha_{n}\right)\left\|T J_{r_{n}} x_{n}-p\right\|\right) \\
& \leq \phi\left(\alpha \alpha_{n}\left\|x_{n}-p\right\|+\alpha_{n}\|f(p)-p\|+\left(1-\alpha_{n}\right)\left\|T J_{r_{n}} x_{n}-p\right\|\right) \\
& \leq \phi\left(\alpha \alpha_{n}\left\|x_{n}-p\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|\right)+\alpha_{n}\left\langle f(p)-p, J_{\varphi}\left(y_{n}-p\right)\right\rangle \\
& =\left(1-(1-\alpha) \alpha_{n}\right) \phi\left(\left\|x_{n}-p\right\|\right)+\alpha_{n}\left\langle f(p)-p, J_{\varphi}\left(y_{n}-p\right)\right\rangle \tag{2.6}
\end{align*}
$$

and also

$$
\begin{align*}
\phi\left(\left\|x_{n+1}-p\right\|\right) & =\phi\left(\left\|\left(1-\beta_{n}\right) y_{n}+\beta_{n} T y_{n}-p\right\|\right) \\
& =\phi\left(\left\|\beta_{n}\left(T y_{n}-p\right)+\left(1-\beta_{n}\right)\left(y_{n}-p\right)\right\|\right) \\
& =\phi\left(\left\|\beta_{n}\left(T y_{n}-T(p)\right)+\beta_{n}(T(p)-p)+\left(1-\beta_{n}\right)\left(y_{n}-p\right)\right\|\right) \\
& \leq \phi\left(\left\|\beta_{n}\left(T y_{n}-T(p)\right)+\left(1-\beta_{n}\right)\left(y_{n}-p\right)\right\|\right)+\beta_{n}\left\langle T(p)-p, J_{\varphi}\left(x_{n+1}-p\right)\right\rangle \\
& \leq \phi\left(\beta_{n}\left\|y_{n}-p\right\|+\left(1-\beta_{n}\right)\left\|y_{n}-p\right\|\right)+\beta_{n}\left\langle T(p)-p, J_{\varphi}\left(x_{n+1}-p\right)\right\rangle \\
& =\phi\left(\left\|y_{n}-p\right\|\right)+\beta_{n}\left\langle T(p)-p, J_{\varphi}\left(x_{n+1}-p\right)\right\rangle . \tag{2.7}
\end{align*}
$$

Substituting (2.6) into (2.7), we obtain

$$
\begin{aligned}
\phi\left(\left\|x_{n+1}-p\right\|\right) \leq & \left(1-\alpha_{n}(1-\alpha)\right) \phi\left(\left\|x_{n}-p\right\|\right)+\alpha_{n}\left\langle f(p)-p, J_{\varphi}\left(y_{n}-p\right)\right\rangle \\
& +\beta_{n}\left\langle T(p)-p, J_{\varphi}\left(x_{n+1}-p\right)\right\rangle \\
= & \left(1-\alpha_{n}(1-\alpha)\right) \phi\left(\left\|x_{n}-p\right\|\right) \\
& +\alpha_{n}(1-\alpha)\left[\frac{\left\langle f(p)-p, J_{\varphi}\left(y_{n}-p\right)\right\rangle}{1-\alpha}+\frac{\beta_{n}}{\alpha_{n}} \frac{\left\langle T(p)-p, J_{\varphi}\left(x_{n+1}-p\right)\right\rangle}{1-\alpha}\right] \\
= & \left(1-\gamma_{n}\right) \phi\left(\left\|x_{n}-p\right\|\right)+\sigma_{n} \gamma_{n},
\end{aligned}
$$

where $\gamma_{n}=\alpha_{n}(1-\alpha)$ and $\sigma_{n}=\left[\frac{\left\langle f(p)-p, J_{\varphi}\left(y_{n}-p\right)\right\rangle}{1-\alpha}+\frac{\beta_{n}}{\alpha_{n}} \frac{\left\langle T(p)-p, J_{\varphi}\left(x_{n+1}-p\right)\right\rangle}{1-\alpha}\right]$. Then, (C2) and 2.5) imply that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \sigma_{n} & \leq \limsup _{n \rightarrow \infty} \frac{\left\langle f(p)-p, J_{\varphi}\left(y_{n}-p\right)\right\rangle}{1-\alpha}+\limsup _{n \rightarrow \infty} \frac{\beta_{n}}{\alpha_{n}} \frac{\left\langle T(p)-p, J_{\varphi}\left(x_{n+1}-p\right)\right\rangle}{1-\alpha} \\
& \leq \limsup _{n \rightarrow \infty} \frac{\beta_{n}}{\alpha_{n}} \frac{\|T(p)-p\|\left\|x_{n+1}-p\right\|}{1-\alpha}=0,
\end{aligned}
$$

and using Lemma 1.2, $\left\{x_{n}\right\}$ convergence strongly to $p \in F$.
Theorem 2.2. Let E be a real reflexive Banach space and have a weakly continuous duality map J_{φ} with gauge φ and A a m-accretive maps in E such that $C=\overline{D(A)}$ is convex. Let $T: C \rightarrow C$ be a nonexpansive mapping with $F=F(T) \cap N(A) \neq \emptyset$ and $f: C \rightarrow C$ a fixed contraction mapping with
contract constant α. Suppose that $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset[0,1], r_{n} \in \mathbb{R}^{+}$which satisfy in conditions (C1), (C2), (C3) and

$$
\text { (C4) } \sum_{\mathrm{n}=1}^{\infty}\left|\alpha_{\mathrm{n}+1}-\alpha_{\mathrm{n}}\right|<\infty
$$

(C5) $\sum_{\mathrm{n}=1}^{\infty}\left|\beta_{\mathrm{n}+1}-\beta_{\mathrm{n}}\right|<\infty$.
Let $x_{1} \in C$ be chosen arbitrarily and $\left\{x_{n}\right\}$ be a sequence generated by 1.4. Suppose that $\sum_{n=1}^{\infty} \sup \left\{\left\|T J_{r_{n+1}} z-T J_{r_{n}} z\right\| ; z \in B\right\}<\infty$ for any bounded subset B of C, then $\left\{x_{n}\right\}$ converges strongly to $p \in F$, where p is the unique solution of the variational inequality (2.1).

Proof . From the definition of $\left\{y_{n}\right\}$ for each $n \in \mathbb{N}$ we have

$$
\begin{align*}
\left\|y_{n}-y_{n-1}\right\|= & \left\|\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) T J_{r_{n}} x_{n}-\alpha_{n-1} f\left(x_{n-1}\right)-\left(1-\alpha_{n-1}\right) T J_{r_{n-1}} x_{n-1}\right\| \\
\leq & \alpha_{n}\left\|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right\|+\left(1-\alpha_{n}\right)\left\|T J_{r_{n}} x_{n}-T J_{r_{n-1}} x_{n-1}\right\| \\
& +\left\|f\left(x_{n-1}\right)\left(\alpha_{n}-\alpha_{n-1}\right)-\left(\alpha_{n}-\alpha_{n-1}\right) T J_{r_{n-1}} x_{n-1}\right\| \\
\leq & \alpha \alpha_{n}\left\|x_{n}-x_{n-1}\right\|+\left(1-\alpha_{n}\right)\left\|T J_{r_{n}} x_{n}-T J_{r_{n-1}} x_{n-1}\right\| \\
& +\left|\alpha_{n}-\alpha_{n-1}\right|\left\|f\left(x_{n-1}\right)-T J_{r_{n-1}} x_{n-1}\right\| \\
\leq & \alpha \alpha_{n}\left\|x_{n}-x_{n-1}\right\|+\left(1-\alpha_{n}\right)\left\|T J_{r_{n}} x_{n}-T J_{r_{n}} x_{n-1}\right\| \\
& +\left(1-\alpha_{n}\right)\left\|T J_{r_{n}} x_{n-1}-T J_{r_{n-1}} x_{n-1}\right\| \\
& +\left|\alpha_{n}-\alpha_{n-1}\right|\left\|f\left(x_{n-1}\right)-T J_{r_{n-1}} x_{n-1}\right\| \\
\leq & \alpha \alpha_{n}\left\|x_{n}-x_{n-1}\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-x_{n-1}\right\| \\
& +\left(1-\alpha_{n}\right)\left\|T J_{r_{n}} x_{n-1}-T J_{r_{n-1}} x_{n-1}\right\| \\
& +\left|\alpha_{n}-\alpha_{n-1}\right|\left\|f\left(x_{n-1}\right)-T J_{r_{n-1}} x_{n-1}\right\| \\
\leq & \left(1-(1-\alpha) \alpha_{n}\right)\left\|x_{n}-x_{n-1}\right\|+\left\|T J_{r_{n}} x_{n-1}-T J_{r_{n-1}} x_{n-1}\right\| \\
& +\left|\alpha_{n}-\alpha_{n-1}\right|\left\|f\left(x_{n-1}\right)-T J_{r_{n-1}} x_{n-1}\right\|, \tag{2.8}
\end{align*}
$$

and from the definition of $\left\{x_{n}\right\}$ for each $n \in \mathbb{N}$ we have

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\|= & \left\|\left(\left(1-\beta_{n}\right) y_{n}+\beta_{n} T y_{n}\right)-\left(\left(1-\beta_{n-1}\right) y_{n-1}+\beta_{n-1} T y_{n-1}\right)\right\| \\
\leq & \left(1-\beta_{n}\right)\left\|y_{n}-y_{n-1}\right\|+\beta_{n}\left\|T y_{n}-T y_{n-1}\right\| \\
& +\left\|\left(\beta_{n-1}-\beta_{n}\right) y_{n-1}+T y_{n-1}\left(\beta_{n}-\beta_{n-1}\right)\right\| \\
= & \left(1-\beta_{n}\right)\left\|y_{n}-y_{n-1}\right\|+\beta_{n}\left\|T y_{n}-T y_{n-1}\right\|+\left|\beta_{n}-\beta_{n-1}\right|\left\|T y_{n-1}-y_{n-1}\right\| \\
\leq & \left(1-\beta_{n}\right)\left\|y_{n}-y_{n-1}\right\|+\beta_{n}\left\|y_{n}-y_{n-1}\right\|+\left|\beta_{n}-\beta_{n-1}\right|\left\|T y_{n-1}-y_{n-1}\right\| \\
= & \left\|y_{n}-y_{n-1}\right\|+\left|\beta_{n}-\beta_{n-1}\right|\left\|T y_{n-1}-y_{n-1}\right\| . \tag{2.9}
\end{align*}
$$

Substituting (2.8) into (2.9), we obtain

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\| \leq & \left(1-(1-\alpha) \alpha_{n}\right)\left\|x_{n}-x_{n-1}\right\|+M\left(\left|\alpha_{n}-\alpha_{n-1}\right|+\left|\beta_{n}-\beta_{n-1}\right|\right) \\
& +\left\|T J_{r_{n}} x_{n-1}-T J_{r_{n-1}} x_{n-1}\right\| \\
= & \left(1-\gamma_{n}\right)\left\|x_{n}-x_{n-1}\right\|+\mu_{n}
\end{aligned}
$$

where

$$
M=\max \left\{\sup _{n}\left\|f\left(x_{n-1}\right)-T J_{r_{n-1}} x_{n-1}\right\|, \sup _{n}\left\|T y_{n-1}-y_{n-1}\right\|\right\}
$$

and

$$
\mu_{n}=M\left(\left|\alpha_{n}-\alpha_{n-1}\right|+\left|\beta_{n}-\beta_{n-1}\right|\right)+\left\|T J_{r_{n}} x_{n-1}-T J_{r_{n-1}} x_{n-1}\right\|, \quad n \geq 2 .
$$

Hence

$$
\sum_{n=2}^{\infty} \mu_{n} \leq M \sum_{n=2}^{\infty}\left(\left|\alpha_{n}-\alpha_{n-1}\right|+\left|\beta_{n}-\beta_{n-1}\right|\right)+\sum_{n=2}^{\infty} \sup \left\{\left\|T J_{r_{n}} z-T J_{r_{n-1}} z\right\|: z \in\left\{x_{k}\right\}\right\}<\infty
$$

Therefore Lemma 1.2 implies that $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$. Hence $\left\{x_{n}\right\}$ is asymptotic regular, then by Theorem 2.1 the proof is complete.

Corollary 2.3. Let E be a real reflexive Banach space and have a weakly continuous duality map J_{φ} with gauge φ and A a m-accretive maps in E such that $C=\overline{D(A)}$ is convex. Let $T: C \rightarrow C$ be a nonexpansive mapping with $F=F(T) \cap N(A) \neq \emptyset$ and $f: C \rightarrow C$ a fixed contraction mapping with contract constant α. Suppose that $\left\{\alpha_{n}\right\} \subset[0,1], r_{n} \in \mathbb{R}^{+}$which satisfy in conditions (C1), (C3) and (C4). Let $x_{1} \in C$ be chosen arbitrarily and $\left\{x_{n}\right\}$ be a sequence generated by

$$
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) T J_{r_{n}} x_{n} .
$$

Suppose that $\sum_{n=1}^{\infty} \sup \left\{\left\|T J_{r_{n+1}} z-T J_{r_{n}} z\right\| ; z \in B\right\}<\infty$ for any bounded subset B of C, then $\left\{x_{n}\right\}$ converges strongly to $p \in F$, where p is the unique solution of the variational inequality (2.1).

Proof . It is sufficient that assume $\beta_{n}=0$ in Theorem 2.2.
Corollary 2.4. Let E be a real reflexive Banach space and have a weakly continuous duality map J_{φ} with gauge φ and A a m-accretive maps in E such that $C=\overline{D(A)}$ is convex. Let $N(A) \neq \emptyset$ and $f: C \rightarrow C$ a fixed contraction mapping with contract constant α. Suppose that $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset[0,1]$, $r_{n} \in \mathbb{R}^{+}$which satisfy in conditions (C1)-(C5). Let $x_{1} \in C$ be chosen arbitrarily and $\left\{x_{n}\right\}$ be a sequence generated by

$$
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) J_{r_{n}} x_{n} .
$$

Suppose that $\sum_{n=1}^{\infty} \sup \left\{\left\|J_{r_{n+1}} z-J_{r_{n}} z\right\| ; z \in B\right\}<\infty$ for any bounded subset B of C, then $\left\{x_{n}\right\}$ converges strongly to $p \in F$, where p is the unique solution of the variational inequality

$$
\langle(I-f)(p), J(p-q)\rangle \leq 0, \quad q \in N(A)
$$

Proof. It is sufficient that assume $T=I$ in Theorem 2.2,

3. Acknowledgment

Vahid Dadashi and Sobhan Ghafari are supported by the Islamic Azad University-Sari Branch.

References

[1] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal., 67(2007), 2350-2360.
[2] F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Mathematische Zeitschrift, 100(1967), 201-225.
[3] R.E. Bruck and G.B. Passty, Almost convergence of the infinite product of resolvents in Banach spaces, Nonlinear Anal., 3(1979), 279-282.
[4] R. Chen and Z. Zhu, Viscosity approximation method for accretive operator in Banach spaces, Nonlinear Anal., 69(2008), 1356-1363.
[5] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Mathematics and Its Applications of Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990, vol 62.
[6] K. Goebeland W.A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, UK, 1990.
[7] K. Goebel and S. Reich, Uniform Convexity, in: Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York, Basel, 1984.
[8] X.F. He, Y.C. Xu and Z. He, Iterative approximation for a zero of accretive operator and fixed points problems in Banach space, Applied Mathematics and Computation, 217(2011), 4620-4626.
[9] J.S. Jung. Convergence on composite iterative schemes for nonexpansive mappings in Banach space, Fixed Point Theory and Appl. 14(2008), Article ID 167535.
[10] A. Moudafi, Viscosity approximation methods for fixed point problems, J. Math. Anal. Appl., 241(2000), 46-55.
[11] H. K. Xu, Iterative algorithm for nonlinear operators, J. London. Math. Soc., 2(2002), 240-256.
[12] H.K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl., 314(2006), 631-643.

[^0]: *Corresponding author
 Email addresses: vahid.dadashi@iausari.ac.ir (V. Dadashi), Sobhanghafari@gmail.com (S. Ghafari)

