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Abstract

Using a Bessel generalized translation, we obtain an analog of Titchmarsh’s theorem for the Bessel
transform for functions satisfying the Lipschitz condition in the space Lp,α(R+), where α > −1

2
and

1 < p ≤ 2.
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1. Introduction and preliminaries

Integral transforms and their inverses (e.g., the Bessel transform) are widely used to solve various
problems in calculus, mechanics, mathematical physics, and computational mathematics (see [3, 4,
5, 6, 7]).

E. C. Titchmarsh ([4], Theorem 85) proved that if f(x) in the space L2(R) such that ‖f(x+h)−
f(x)‖L2(R) = O(hα) as h −→ 0 and α ∈ (0, 1) if, and only if

∫
|λ|≥r |f̂(λ)|2dλ = O(r−2α) as r −→ +∞,

where f̂ stands for the Fourier transform of f .
In this paper we try, among other things, to explore the validity of this theorem in case of the

Bessel transform in the space Lp,α(R+).
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Let Lp,α = Lp,α(R+); (α > −1
2
, 1 < p ≤ 2), is the Banach space of measurable functions f(t) on

R+ with the norm

‖f‖p,α =

(∫ ∞
0

|f(t)|pt2α+1dt

)1/p

.

Let

B =
d2

dt2
+

(2α + 1)

t

d

dt

be the Bessel differential operator. For α ≥ −1
2
, we introduce the Bessel normalized function of the

first kind jα defined by

jα(z) = Γ(α + 1)
∞∑
n=0

(−1)n

n!Γ(n+ α + 1)

(z
2

)2n
,

where Γ is the gamma-function (see[2]).
The function y = jα(z) satisfies the differential equation

By + y = 0

with the initial conditions y(0) = 1 and y′(0) = 0. jα(z) is a function infinitely differentiable, even,
and, moreover entire analytic.

Lemma 1.1. The following inequality is true

|1− jα(x)| ≥ c,

with x ≥ 1, where c > 0 is a certain constant.

Proof . The asymptotic formulas for the Bessel function imply that jα(x) −→ 0 as x −→ ∞.
Consequently, a number x0 > 0 exists such that with x ≥ x0 the inequality |jα(x)| ≤ 1

2
is true. Let

m = minx∈[1,x0] |1− jα(x)|. With x ≥ 1, we get the inequality

|1− jα(x)| ≥ c,

where c = min(1
2
,m). �

In Lp,α, consider the Bessel generalized translation Th (see [2]) defined by

Thf(t) = cα

∫ π

0

f(
√
t2 + h2 − 2th cosϕ) sin2α ϕdϕ,

where

cα =

(∫ π

0

sin2α ϕdϕ

)−1
=

Γ(α + 1)

Γ(1
2
)Γ(α + 1

2
)
.

It is easy to see that
T0f(t) = f(t).

The Bessel transform is defined by the following integral transform [1, 2, 8]

FB(f)(λ) =

∫ ∞
0

f(t)jα(λt)t2α+1dt, λ ∈ R+.

The inverse Bessel transform is given by the formula

f(t) = (2αΓ(α + 1))−2
∫ ∞
0

FB(f)(λ)jα(λt)λ2p+1dλ.

We now formulate some properties of the Bessel generalized translation (see [1, 2]):
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1.
Thjα(λt) = jα(λh)jα(λt)

2. Th is selfadjoint: if f(t) is a continuous function in L1,α and g(t) is a continuous, even, and
bounded function on R then∫ ∞

0

(Thf(t))g(t)t2α+1dt =

∫ ∞
0

f(t)(Thg(t))t2α+1dt,

Thf(t) = Ttf(h).

The following relation connects the Bessel generalized translation and Bessel transform

FB(Thf)(λ) = jα(λh)FB(f)(λ).

We have the Hausdorff-Young inequality

‖FB(f)‖q,α ≤ C‖f‖p,α, (1.1)

where C is a positive constant and 1
p

+ 1
q

= 1.

2. Main Result

In this section we give the main result of this paper. We need first to define (β, γ, p)-Bessel Lipschitz
class.

Definition 2.1. Let β > 0 and γ > 0. A function f ∈ Lp,α is said to be in the (β, γ, p)-Bessel
Lipschitz class, denoted by Lip(β, γ, p), if

‖Thf(t)− f(t)‖p,α = O

(
hβ

(log 1
h
)γ

)
, as h −→ 0.

Theorem 2.2. Let f(x) belong to Lip(β, γ, p). Then∫ ∞
r

|FB(f)(λ)|qλ2α+1dλ = O

(
r−qβ

(log 1
h
)qγ

)
as r −→ +∞,

where 1
p

+ 1
q

= 1.

Proof . Suppose that f ∈ Lip(β, γ, p). Then we have

‖Thf(t)− f(t)‖p,α = O

(
hβ

(log 1
h
)γ

)
, as h −→ 0.

If λ ∈ [ 1
h
, 2
h
] then λh ≥ 1 and Lemma 1.1 implies that

1 ≤ 1

cq
|1− jα(λh)|q.
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According to Lemma 1.1, we obtain that∫ 2/h

1/h

|FB(f)(λ)|qλ2α+1dλ ≤ 1

cq

∫ 2/h

1/h

|1− jα(λh)|q|FB(f)(λ)|qλ2α+1dλ

≤ 1

cq

∫ ∞
0

|1− jα(λh)|q|FB(f)(λ)|qλ2α+1dλ

≤ K‖Thf(x)− f(x)‖qp,α

= O

(
hqβ

(log 1
h
)qγ

)
for all r > 0. Thus there exists C1 > 0 such that∫ 2r

r

|FB(f)(λ)|qλ2α+1dλ ≤ C1
r−qβ

(log r)qγ
.

Furthermore, we have∫ ∞
r

|FB(f)(λ)|qλ2α+1dλ =
∞∑
i=0

∫ 2i+1r

2ir

|FB(f)(λ)|qλ2α+1dλ

≤ C1

∞∑
i=0

(2ir)−qβ

(log 2ir)qγ

≤ C1

∞∑
i=0

(2ir)−qβ

(log r)qγ

≤ C2
r−qβ

(log r)qγ
.

This proves that ∫ ∞
r

|FB(f)(λ)|qλ2α+1dλ = O

(
r−qβ

(log r)qγ

)
as r −→∞,

which proves the theorem. �

Definition 2.3. A function f ∈ Lp,α is said to be in the ψ-Dini Lipschitz class, denoted by Lip(p, ψ),
if

‖Thf(x)− f(x)‖p,α = O

(
ψ(h)

(log 1
h
)γ

)
γ > 0, as h −→ 0,

where

1. ψ(t) is a continuous increasing function on [0,∞),

2. ψ(ts) ≤ ψ(t)ψ(s) for all s, t ∈ [0,∞).

Theorem 2.4. Let f ∈ Lp,α and let ψ be a fixed function satisfying the conditions of Definition 2.3,
if f(x) belong to Lip(p, ψ). Then∫ ∞

r

|FB(f)(λ)|qλ2α+1dλ = O(ψ(r−q)(log r)−qγ) as r −→ +∞.
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Proof . Assume that f ∈ Lip(p, ψ). Then we have

‖Thf(x)− f(x)‖p,α = O

(
ψ(h)

(log 1
h
)γ

)
as h −→ 0.

If λ ∈ [ 1
h
, 2
h
] then hλ ≥ 1, then the following inequalities can be derived from (1.1) and from

similar reasoning as in the proof of Theorem 2.2, so that we obtain∫ 2/h

1/h

|FB(f)(λ)|qλ2α+1dλ ≤ 1

cq

∫ 2/h

1/h

|1− jα(hλ)|q|FB(f)(λ)|qλ2α+1dλ

≤ 1

cq

∫ +∞

0

|1− jα(hλ)|q|FB(f)(λ)|qλ2α+1dλ

=
1

cq
‖Thf(x)− f(x)‖qp,α

= O

(
ψ(hq)

(log 1
h
)qγ

)
.

Thus there exists then a positive constant C1 such that∫ 2r

r

|FB(f)(λ)|qλ2α+1dλ ≤ C1
ψ(r−q)

(log r)qγ
.

So that∫ ∞
r

|FB(f)(λ)|qλ2α+1dλ =

[∫ 2r

r

+

∫ 4r

2r

+

∫ 8r

4r

+ · · ·
]
|FB(f)(λ)|qλ2α+1dλ

≤ C1
ψ(r−q)

(log r)qγ
+ C1

ψ((2r)−q)

(log 2r)qγ
+ C1

ψ((4r)−q)

(log 4r)qγ
+ · · ·

≤ C1
ψ(r−q)

(log r)qγ
+ C1

ψ((2r)−q)

(log r)qγ
+ C1

ψ((4r)−q)

(log r)qγ
+ · · ·

≤ C1
ψ(r−q)

(log r)qγ
(1 + ψ(2−q) + (ψ(2−q))2 + (ψ(2−q))3 + · · ·

≤ C1K1
ψ(r−q)

(log r)qγ
,

where K1 = (1− ψ(2−q))−1 since Definition 2.3 it follows that ψ(2−q) < 1. Then∫ +∞

r

|FB(f)(λ)|qλ2α+1dλ = O
(
ψ(r−q)(log r)−qγ

)
as r −→ +∞

which proves the theorem. �
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