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Abstract

Let K and X be compact plane sets such that K C X. Let P(K) be the uniform closure of
polynomials on K. Let R(K) be the closure of rational functions K with poles off K. Define
P(X,K) and R(X,K) to be the uniform algebras of functions in C(X) whose restriction to K
belongs to P(K) and R(K), respectively. Let CZ(X, K) be the Banach algebra of functions f in
C(X) such that f|x = 0. In this paper, we show that every nonzero complex homomorphism ¢
on CZ(X, K) is an evaluation homomorphism e, for some z in X\ K. By considering this fact, we
characterize the maximal ideal space of the uniform algebra P(X, K). Moreover, we show that the
uniform algebra R(X, K) is natural.
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1. Introduction

Let A be a commutative Banach algebra. A linear functional ¢ : A — C' is called a complex
homomorphism on A if ¢(fg) = ¢(f)e(g) for all f,g € A. If ¢ is a complex homomorphism on A
and p(f) # 0 for some f € A, then ¢ is called a nonzero complex homomorphism or a multiplicative
linear functional on A. Every complex homomorphism on A is continuous. It is known that if A is
with unit 1, then A has at least a nonzero complex homomorphism and ¢(1) = 1 for each nonzero
complex homomorphism ¢ on A. We denote by M, the set of all nonzero complex homomorphisms
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on A. It is known that M} is a compact (locally compact) Hausdorff space with the Gelfand topology,
if A is with (without) unit [5]. M4 with the Gelfand topology is called the maximal ideal space of A.

Let Q be a locally compact Hausdorff space. We denote by C(2)(C®(2)) the algebra of continuous
(bounded continuous) complex-valued functions on €. For each f € C*(Q), we define

[ flle = sup{[f(w)]: w € QF,

and call it the uniform norm of f on Q. Then (C®(Q),||.||a) is a commutative Banach algebra with
unit 1. We denote by Cy(2) the set of all functions f in C'(£2) which vanish at infinity. Then Cy(X)
is a closed subalgebra of C®(Q2) and Cy(Q2) = C*(Q) = C(Q2), when Q is compact. Note that if
f € Co(Q), then || flla = |f(wo)| for some wy € Q. Also, Cp(2) is without unit if 2 is not compact.

Let Q be a locally compact Hausdorff space and A be a subalgebra of C®(Q2) such that 1 € A
or Cp(2) C A. For each w € Q, the map e, : A — C, defined by e,(f) = f(w), is a nonzero
complex homomorphism on A, which is called the evaluation homomorphism at w on A. Note that,
if A separates the points of €2, then e,,, # e,, whenever wy, ws € Q and wy # ws.

Let X be a compact Hausdorff space and let A be a subalgebra of C'(X) such that A separates
the points of X and let 1 € A. If there is an algebra norm ||.|| on A such that ||1|| =1 and (A4, ||.]|)
is a Banach algebra, then A is called a Banach function algebra on X (under the norm |.||). If the
norm of the Banach function algebra A on X is the uniform norm on X, then A is called a uniform
(function) algebra on X. For example C'(X) is a uniform algebra on X.

Let X be a compact Hausdorff space and let A be a Banach function algebra on X. It is easy to
see that the map ¢ : X — M, defined by () = e,, is continuous and one-to-one. We say that A
is natural, if ¢ is surjective. In this case € is an homeomorphism and we write M4 ~ X.

We know that a Banach function algebra A on X is natural when A is self-adjoint and inverse-
closed. Therefore, C'(X) is natural.

Definition 1.1. Let X be a compact Hausdorff space and let K be a nonempty compact subset of
X. We denote by CZ(X, K) the set of complez-valued functions f on X such that flx = 0. Then
CZ(X,K) is a uniformly closed subalgebra of C(X) which is without unit.

Let K be a compact plane set and let Py(K) and Ry(K) be the algebras of all polynomials
and rational functions in z on K with poles off K, respectively. The uniform closure of Py(K)
and Ry(K) are denoted by P(K) and R(K), respectively, which are uniform algebras on K. P(K)
and R(K) are called polynomial and rational uniform algebra on K, respectively. It is known that
K={2€C:|R(2)| <|R|lx for all R € Ry(K)} and R(K) is natural. The polynomial convex hull
of K is

K ={zeC:|p()| < |]plx for all polynomials p in z}.

In fact, K is the union of K and the bounded components of C\K . The set K is called polynomially
convex if K = K. Tt is known that P(K) = R(K) and P(K) is isometricall isomorphic to P(K).
Also, Mp((k) is homeomorphic to K. In fact, if © € Mp(k), then there exists a unique z € K such
that o(f) = limy,—e0 pn(2), where f € P(K) is the uniform limit of the sequence of polynomials
{pn}>2,. For more details, see [1].

Definition 1.2. Let K and X be nonempty compact plane set such that K C X. We define the
algebras Py(X, K), Ro(X,K), P(X,K) and R(X, K) as the following:

P(X,K):={feC(X) : flx € Rh(K)},

Ro(X,K) :={feC(X) : flk € Ro(K)},
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PX,K):={feC(X) : flx € P(K)},
R(X,K):={f € O(X) : flx € R(K)}.

Clearly, P(X,K) and R(X, K) are the uniform closure of Py(X,K) and Ro(X, K), respectively.
P(X,K) and R(X,K) are called extended polynomial and rational uniform algebras on X (with
respect to K ), respectively. We take A(X,K) = {f € C(X) : flx € A(K)}, where A(K) =
{f € C(K) : f} is analytic on interior of K}. It is easy to show that P(X,K), R(X,K) and
A(X, K) are uniform algebras on X. We know that A(X, K) is natural [1]. A(X, K) is called
extended analytic uniform algebra on X (with respect to K ). Note that if K is finite then Py(X, K) =
Ro(X,K) =C(X) and so P(X,K) = R(X,K) = A(X, K) = C(X). Hence, we may assume that K
is infinite. Moreover, Py(X, K) = Py(X), Ro(X,K) = Ry(X), P(X,K) = P(X), R(X,K) = R(X)
and A(X, K) = A if X\K is finite.

In 2007, T. G. Honary and S. Moradi determined the maximal ideal space of the certain subal-
gebras of A(X, K) [2]. Next, they studied the uniform approximation by polynomials, rationals and
analytic functions in these uniform algebras and also extended Vitushkin’s theorem and Hartogs-
Rozental theorem [3].

We intend to characterize of nonzero complex homomorphisms on P(X, K) and prove that
R(X, K) is natural.

In Section 2, we prove that for every nonzero complex homomorphism ¢ on Cy(£2), there exists
a unique w € { such that ¢ = e,,, where € is a locally compact Hausdorff space.

In Section 3, we assume that X is a compact Hausdorff space and K is a nonempty compact
subset of X and show that (CZ(X, K), ||.||x) is isometrically isomorphic to (Co(X\K), ||.||x\x) and
characterize nonzero complex homomorphisms on CZ (X, K).

In Sections 4 and Sections 5, we assume that K and X are compact plane sets such that K C X
and characterize nonzero complex homomorphisms on P(X, K) and prove that R(X, K) is natural.

2. Nonzero Complex Homomorphisms on Cy(€2)

Let € be a locally compact Hausdorff space with topology 7. Then for each w € €2, the evaluation
map e, : Cy(2) — C'is a nonzero complex homomorphism on Cy(€2). If 2 is compact, then Cy(§2) =
C(€2) and so every nonzero complex homomorphism on C(€2) is an evaluation homomorphism. Now,
we assume that {2 is not compact. Set 1o, := Q U {00}, such that co & €. Define the topology 7.
on (. by

Too :=TU{QL\S : S CQand S is a compact set in(2,7)}.

So Q4 is a compact Hausdorff space with the topology 7., and 7 = {QNW : W € 7.}. The
topological space Q,, (with topology 7.,) is called one point compactification of 2 (with topology 7).
Throughout this section we assume that €2 is a locally compact Hausdorff space which is not
compact and ., := QU {00} is the one point compactification of €.
For characterizing of nonzero complex homomorphism on Cy(£2), we need the following lemma.

Lemma 2.1. (i) If g € Cy(2) and goo : Qoo — C' is defined by

oty = {10 e

then goo € C(Qao) and ||goolla.. = llglla-
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(i) If f € C(Qs) and g : Q@ — C' is defined by
g(w) = f(w) = f(0),
then g € Co(Q), llglle < [[fllow. + 1f(c0)] and f = goo.
(iii) If U : Cy(2) — C(Qs) is defined by V(g) = goo, then ¥ is an isometrical homomorphism

from (Co(Q), ||-lle) into (C(Qs0), ||-la.) and Y(Cy(2)) = My, where My, is the mazimal ideal
{f€CQu) = f(o0) =0} in C(Q).

Proof .
(i) To prove the continuity of g, at oo, take € > 0. Since g € Cp(€2), there exists a compact
subset S of ) such that

gO\S) C{zeC : |z] <e}. (1)
Clearly, 2,,\'S is an open set in Q. and 0o € Q. \S. Since g,.(00) = 0 and g,, = g on 2, we have
Io(\S) C{z € C : |z <€},

by (1). Therefore, g is continuous at co. Let wg € € and take £ > 0. Since g is continuous at wy,
there exists an open set U in {2 with wy € €2 such that

gU) C{zeC : [z—g(wo)| <e}.  (2)
Clearly, U is an open set in 2. Since wy € €2 and g, = g on €2, we have
9o(U) C{z€C : |z — goolwy)| < €},

by (2). It follows that g, is continuous at wg. Therefore, go, € C(Quo).
Now, we show that ||geo|lo., = [lg]la- Since ||g|la = |g(wy)| for some w; € Q, goo(00) = 0 and
Joo = g On €, we have

9llaw = lg(wi)] = llglle-

(ii) Since the topological space €2 is a subspace of the topological space Q, g = f — foo on Q and
f € C(Qy), we have g € C(Q2). Take ¢ > 0. Continuity of f at co implies that there exists a compact
set S in €2 such that

f(Q\S) C{z € C : |z— f(o0)| <€} (3)
If we Q\S, then w € Q,\S and so

lg(w)] = |f(w) = f(o0)| <,
by (3). Therefore, g € Cy(£2). Also, g = f and

lglle < [[flle + [f (o),

by the definition of g.

(iii) Clearly, ¥ is a homomorphism. Also, ¥ is an isometry by (i). If g € Cy(€2), then go € C(Q),
Joo(00) = 0 by (i) and so ¥(g) = goo € Mwo.

Conversely, if f € M, then f € C(Qy) and f(oo) = 0. Define g = f|qg. It follows that g € Cy(Q?),
by (ii). Since f(oco) =0 and f|q = g, we have f = go, = ¥(g). Hence, (iii) holds. O
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Definition 2.2. Let g € Co(Q2). The map goo : Qoo —> C' defined by

sl = {750 mE

0 w = 00,

1s called the standard extension of g on 2.

Theorem 2.3. If v is a nonzero complex homomorphism on Cy(S2), then there ezists a unique w € <)
such that ¢ = e,, on Cy(Q).

Proof . Define the map ¢ : C(Q) — C by
O(f) = e(fla)-

It is easy to see that ¢ is a complex homomorphism on Cy(f2). Since ¢ is a nonzero complex

homomorphism on C(Q), there exists h € Cy(€2) such that (h) # 0. Let hy be the standard
extension of h on . Then ho € C(Qs) and h = helq, by part (i) of Lemma 2.1. Therefore,

Y(hoo) = @(h) # 0.

It follows that % is a nonzero complex homomorphism on C(€),). Therefore, there exists w € Q
such that ¢ (f) = f(w) for all f € C(2). We claim that w # oco. If w = oo, then ¥ (f) = f(oc0) for
all f € C(Qy). Now, let g € Cp(2) and let g, be the standard extension of g on Q.. By part (i) of
Lemma 2.1, goo € C(Q2s). Therefore, 1¥(g) = ¥(goo) = goo(00) = 0. So 1» = 0 on Cp(R2). Hence, our
claim is justified.
Let g € Cy(2) and let g, be the standard extension of g on Q.. Now, we have
2(9) = ¥(9oo) = goo(w) = g(w) = €w(g).

Therefore ¢ = e,, on Cp(§2). O

3. Nonzero Complex Homomorphisms on CZ (X, K)

Throughout of this section we assume that X is a compact Hausdorff space and K is a nonempty
compact subset of X. Since X\K is an open set in X, we conclude that X\ K with the subspace
topology is a locally compact Hausdorff space.

Lemma 3.1. (i) CZ(X, K) separates the points of X\ K.

(i7) If g € Co(X\K) and go : X — C' is defined by

~ fg(=) r e X\K
go(x) = { 0 v €K,

then go € CZ(X, K).

(iii) If f € CZ(X,K) and g = f|x\k, then g € Co(X\K).
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Proof . (i) Let z1,25 € X\K with z1 # x5. There exists f € C(X) such that f(z) = 0 for all
r € KU{x}. and f(z3) = 1, by the Urysohn’s lemma. Therefore, f € CZ(X, K) and f(x1) # f(x2).
So (i) holds.

(ii) Since go|x = 0, it is enough to show that gy € C'(X).

We first assume that xy € X with go(z) # 0. Thus, xy € X\K. Take ¢ > 0. Since g : X\K — C
is continuous in xg, there exists an open set Wy in X with zq € W) such that |g(x) — g(zo)| < €, for
all z € Wy. If Uy = Wy N (X\K), then Uy is an open set in X with zg € Uy and

190(x) = go(wo)| = lg(x) — g(xo)| <,

for all x € U. Therefore, gq is continuous at z.

We now assume zg € X with go(zg) = 0. Takee > 0. If S ={z € X : |go(z)| > €}, then S is a
compact set in X, S C X\K and zg € S. Therefore, there exists an open set Vy in X with zg € V}
such that Vo NS = (. It follows that

[90(z) — go(z0)| = |g(z0)| <&,

for all x € V4. Therefore, go is continuous at zy. Consequently, gy € C'(X) and (ii) holds.
(iii) Clearly, g € C(X\K). Take € > 0 and set

S={zxeX : |f(x)] >e}.

Since f € C(X) and f|x = 0, S is a compact set in X and S C X\K. So S is a compact set in
X\K and |g(z)| < € for all x € (X\K)\S. Therefore, g € Co(X\K) and (iii) holds. O

Theorem 3.2. The map ® : CZ(X,K) — Co(X\K) defined by ®(f) = f|x\k, is an isometrical
isomorphism from (CZ(X, K),||.||x) onto (Co(X\K), ||-||x\x)-

Proof . Part (ii) of Lemma 3.1 implies that ® is well-defined. Clearly, ® is an homomorphism. Let
feCZ(X,K). Then, f € C(X) and f|x = 0. Therefore,

IPCHevie = I bxviellxve = 1Ll = 171 x-

Thus ® is an isometry.
Now, we show that ® is surjective. Let g € Cyp(X\K). Define the complex-valued function gy on
X by

~ fg(=) r e X\K
9ol) = { 0 v € K.

By part (i) of Lemma 3.1, go € CZ(X\K). Definition of ® implies that ®(gy) = go|x = g. Thus ®
is surjective. [J

Theorem 3.3. Let A=CZ(X, K).
(i) If v € X\K and e, : A — C is defined by e,(f) = f(z), then e, € M.

(i1) If x1, 29 € X\K with x1 # xa, then e,, # e,.

(iii) If b € M4, there ezists a unique x € X such that ¢ = e,.
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~J

Proof . (i) Clearly, e, is a complex homomorphism on A. Since x € X\ K, there exists f; € C(X
such that f1|x = 0 and fi(z) = 1, by the Uryshon’s lemma. Hence, f; € CZ(X,K) and e,(f;) =
1 #£ 0. Therefore, e, € M 4.

(i) Since A separates the points of X\ K, there is f € A such that f(z1) # f(z2) and so e, (f) #
ez, (f). Thus e,, # e,,.

(iii) Define the map ® : A — Co(X\K) by ®(f) = f|x\k. Then ® is an isometrical isomorphism
from (A4, ||.]|x) onto (Co(X\K),|.|lx), by Theorem 3.2. Therefore, 1)o®~! is a complex homomor-
phism on Cy(X\K). Since 1 € My, there exists fo € A\{0} such that ¢(fy) # 0. If go = ®(fo),
then gy € Co(X\K), go #Z 0 and (Yo®1)(g0) = ¢(fo) # 0. Therefore, o®' € Mcyx\k). It follows
that there exists z € X\K such that (Yo® 1)(g) = g(x) for all g € Cy(X\K), by Theorem 2.3.
Let f € A. Set g = f|x\k. Therefore, g € Co(X\K) by part (iii) of Lemma 3.1 and ®(f) = g by
Theorem 3.2. Also, we have

O(f) = (@ Hg)) = (Yod ") (g)

Hence ¢ = e,. [J

4. Nonzero Complex Homomorphisms on P(X, K)

Let X and K be compact plane sets such that K C X. We intend to characterize of the nonzero
complex homomorphisms on uniform algebra P(X, K). If K is finite, then P(X, K) = C(K) and so
P(X,K) is natural. If K = X, then P(X,K) = P(X) and so Mpxx) ~ K. We now study the
cases in which K is infinite and X\ K is nonempty.

Lemma 4.1. Let X be a compact plane set. If K is an infinite compact subset of X, then
Py(X,K)=F(X)® CZ(X,K).

Proof . The case K = X is trivial. We assume that X\K # (. If p is a polynomial in z
and g € CZ(X,K), then p|x +¢g € P(X,K). Let f € Py(X,K). Then, f € C(X) and there
exists a polynomial p in z such that f|x = p|x. Define the complex-valued function g on X by
g(z) = f(2) = p(2). Clearly, g € CZ(X,K) and f = p|x + g. Thus

Py(X,K) = By(X) + CZ(X, K).

If fe PR(X)NCZ(X,K), then f € C(X) and there exists a polynomial p in z with f = p|x such
that p|x = 0. It follows that p = 0, since K is an infinite subset of C. Therefore, f = 0 and this
completes the proof. [J

Lemma 4.2. Let X be a compact plane set and let K be an infinite compact subset of X such that
X\ K is nonempty.

(i) If f € P(X,K), if {pa}2, is a sequence of polynomials in z and if {g,}5°, is a sequence in
CZ(X, K) with im0 |[pn + gn — fllx = 0, then there exists g € C(K) such that g|x = f|x
and lim,,_, ||pn — gl z = 0.

(i) If f € P(X,K), if {pn}>2, and {q.}32, are sequences of polynomials in z, if {g,}5°, and
{hn}o2 are sequences in CZ(X, K) with lim, o ||pn + g0 — fllx = 0 and if lim,, o0 ||gn +
hn — fllx = 0, then the sequences {pn}>>, and {q,}3>, are uniformly convergence on K and
lim,, oo Pr(A) = limy, o0 gu(A) for all X € K.
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Proof . (i) Since g,,|x = 0 for all n € N, we have
Jim {|p, = fllx = 0. (1)

Therefore, {p,}7>; is uniformly convergence on K. Since ||p||x = ||p||; for each polynomial p in z,
we concloud that {p,}°°; is uniformly convergence on K. Thus, there exists g € C (K) such that

lim {lp, =gz =0 (2)

Now, we have f|x = g|x by (1) and (2).
(ii) There exists g,h € C(K) with f|x = g|k = h|k such that

lim {lp, = gllg = lim g = Allz =0 (3)
Therefore,

lim ||pn — qnllx = 0. (4)
n—o0

Since ||p||x = 0 implies that ||p||z = 0 for each polynomial p in z, we concloud that
Tim |[pn = gllz =0,

by (4). Thus, g = h and s0 lim, e pu(A) = lim,_e0 gn(A) for each A € K, by (3). O

Theorem 4.3. Let X be a compact plane set and let K be an infinite compact subset of X such that
X\ K is nonempty.

(i) If \ € K and the map Ey : P(X,K) — C defined by
Ex(f) = lim p,(X),

where {p, }°°, is a sequence of polynomials in z, and if {g,}22, is a sequence in CZ (X, K) such
that hmn_>C>o lonlx + gn — fllx =0, then Ex € Mpx k), Ex(p|x) = p(A) for each polynomial p
inz, Ex(g9) =0 forallg € CZ(X, K) and E\(p|x + g) = p(\) for each polynomial p in z and
for each g € CZ(X, K).

(’1,’1,) [f)\1,>\2 € X with )\1 7& )\2, then EL\1 7& E)\Q.

Proof . (i) By Lemma 4.2, E, is well-defined. Clearly, F) is a complex homomorphism on X and
E\(1) = 1. Therefore, E) € Mp(x k).

Let p is a polynomial in z. Set p,, = pand g, = 0, for eachn € N. Then lim,, ., ||pn+9.—p||x = 0.
Therefore,

Ex(plx) = lim pa(X) = p(}).

Let g € CZ(X,K). Set p, = 0 and g, = g for each n € N. Then lim, . ||pn + 9. — g|[x = 0.
Therefore,

Ex(g) = lim p,(X) = 0.
Let p be a polynomial in z and ¢ € CZ(X,K). Set p, = p and g, = ¢ for each n € N. Then
lim, o0 [|[Pn + 9 — (P + g)||x = 0. Therefore,

Ex(plx +9) = lim p,(A) = p(\).
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(ii) The coordinate function Z : C — C, defined by Z(z) = z, is a polynomial in z. Therefore,
E\(Z|x) = Z(\) = A or all A € K, by (i). Thus,

E>\1(Z|X) =M F#F A= E>\2(Z|X)7
and so Ey, # E),. O

Theorem 4.4. Let X be a compact plane set and let K be an infinite compact subset of X such that
X\K is nonempty. Let ¢ € Mpx k)

(i) If p(g) = 0 for each g € CZ(X,K), then there exists a unique X € K such that ¢ = E).

(i1) If ©(g) # 0 for some g € CZ(X, K), then there exists a unique A € X\K such that ¢ = e,
where ey is the evaluation homomorphism on P(X, K) at \.

Proof . (i) Define the map n: P(X) — C by n(f) = ¢(f). Clearly, n is a complex homomorphism
on P(X). Since 1 € P(X) and 7(1) = ¢(1) = 1, we have n € Mp(x). It follows that there exists

A € X such that 5(p|x) = p()\) for each polynomial p in z. We claim that A € K. If A € X\ K, there
exist a polynomial ¢ in z such that ||¢||x < |¢(\)|. There exists f € C(X) such that f|x = ¢|x and
| fllx = llgllx, by Tietze extension theorem [4;Theorem 20.4]. Clearly, f € Py(X, K). By Lemma
3.1, there exists a polynomial ¢; in z and a function ¢ € CZ (X, K) such that f = ¢;|x + ¢. Since
glxk = 0, we have f|x = q1|x and so ¢1|k = ¢|k. Infiniteness of K implies that ¢; = ¢ on C' and so
@1(A\) = q(N). Since n(q1]x) = ¢1(N), we have

g = laN)] = In(ai]x)] = e(alx)]
= |p(qlx) +0(9)] = le(a]x + 9)|
= (O < Ifllx = llallx-

This contradiction shows that our claim is justified. Now, we prove that ¢ = E\. Let f € Py(X, K).
By Lemma 4.1, there exist a polynomial p in z and a function g € CZ(X, K) such that f = p|x +g¢.
Since p|x € P(X) and ¢(g) = 0, we have

o(f) = ¢lplx +9) = eblx)+¢(9)
= n(plx) = p(\) = Ex(f).

Now, let f € P(X,K). There exists a sequence {f,}>°; in Py(X, K) such that f = lim, . f, in
(P(X,K),||-|lx). By continuity of ¢ and E) on (P(X, K),|.||x), we have

Thus ¢ = FE).

(ii) Define the map ¢ : CZ(X, K) — C by ¢¥(g) = ¢(g). Clearly, ¢ is a complex homomorphism
on CZ(X,K). By hypothesis, ¥(go) # 0. Therefore, v € Mcy(x k). It follows that there exists
A € X\K such that

p(g) = ¥(g) = g(N),

for each g € CZ (X, K), by part (iii) of Theorem 3.3. We now define the map n : P(X) — C by
n(f) = ¢(f). Clearly, n € Mp(x). It follows that there exists w € X such that n(p|x) = p(w) for each
polynomial p in z. We show that A = w. Since A € X\ K, there exists a function ¢g; in CZ (X, K)
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such that g1(A\) = 1 by Urysohn’s lemma. Let p be a polynomial in z. Then p|xg; € CZ(X, K).
Therefore,

p(plxg1) = (Plxg)(A) = p(A)g1(A) = p(A).
On the other hand, p|x € P(X) and so we have

p(plxg) = »plx)e(or) = n(plx)¥(9:)
= pw)g () = p(w).
Therefore, p(A) = p(w). Consequently, A\ = w. Thus, there exists A € X\ K such that ¢(g) = g()\)
for each g € CZ(X, K) and ¢(p|x) = p(A) for each polynomial p in z.

Now, we show that ¢ = e,. Let f € Py(X, K). By Lemma 4.1, there exist a polynomial p in z and
a function g in CZ (X, K) such that f = p|x + g. Then

e(f) = »plx)+elg) =pA) +9(N)
= f(A) =exlf)

The density of Py(X,K) in (P(X, K),||.||x) and continuity of ¢ and ey on P(X, K), imply that
o(f) =ex(f) for each f € P(X, K). Thus, p =e). O

5. Maximal Ideal Space of R(X, K)

Let X and K be compact plane sets such that K C X. In this section, we show that the uniform
algebra R(X, K) is natural. If K = X or K is finite then R(X, K) is natural, since R(X, K) = R(X)
or R(X, K) = C(X), respectively. Therefore, R(X, K) is natural.

For proving the naturality of R(X, K) in the case where X\ K is nonempty and K is infinite, we
need the following lemma.

Lemma 5.1. Let X and K be compact plane sets such that K C X, X\K nonempty, and K is
infinite. If A € X\K and q if is a polynomial in z, then there exists h € Py(X,K) such that
hlk = q|x and h(X) = 1.

Proof . By Urysohn’s lemma, there exists hy € C(X) such that hg|x = 0 and ho(A) = 1. Define the
function h : X — C by

h(z) = q(2) + [1 = q(N)]ho(2) (2 € X).
Then h € Py(X, K), hlk = q|x and h(X\) = 1. O

Theorem 5.2. Let X and K be compact plane sets such that K C X. If X\K is nonempty and K
is infinite, then R(X, K) is natural.

Proof . Let ¢ € Mp(x k). Define the map ¢ : P(X,K) — C by ¥(f) = ¢(f) (f € P(X,K)).
Clearly, 9 is a complex homomorphism on P(X, K). Since ¢(1) = ¢(1) =1, so ¥ € Mp(x k).

We first suppose that ¢(g) = 0 for all ¢ € CZ(X, K). Therefore, there exists A € K such that
Y(plx + g) = p(A), for each polynomial p in z and each g € CZ(X, K), by part (i) of Theorem 4.4.
If f € Ro(X, K), then there exist two polynomials p and ¢ in z such that

W) £0 . fz) =P
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for all z € K. Since q|x, q|xf € Po(X, K), we have

olalxf) = olglx)e(f) = ¥(qx)e(f)
= q(Np(f).

On the other hand, (¢|x f)|x = p|x. Therefore,

wlalxf) =v(alxf) = p(\).

We claim that A € K. If A € K \K, the compactness of K in C implies that there exist two
polynomials p; and ¢; in z without any common zero on C' and with ¢;(z) # 0 for each z € K such
that

Pr [p1(A)]
aN)#0 ”q1”K< (M)

By Tietze extension theorem, we can extend £, to a function f; € C'(X) such that

b1
[ fillx = [[=lx-
q1

Since ¢1|x fi1 € C(X) and ¢1(z) f1(z) = p1(2) for each z € K, so q1|x f1 € Po(X, K). It follows that

a(N)e(fi) = pi(N),

by the above argument. Therefore,

O _
(N lo(fOl < llellll fullx

P
= [[fillx ==l
q1

This contradiction shows that our claim is justified. Therefore, ¢(f) = f(A) = ex(f) for each
[ € Ro(X,K). By the density of Ry(X,K) in (R(X,K),|.||x) and continuity of ¢ and e, on
R(X, K), we conclude that o(f) = e(f) for each f € R(X, K).

We now suppose that there exists g; € CZ(X, K) such that ¢(g1) # 0. It follows that there exists
A € xz\K such that ¥(f) = f(\) for each f € P(X,K). If f € Ry(X, K), then there exist two
polynomials p and ¢ in z without any common zeros such that ¢(z) # 0 and f(z) = f}% for each

z € K. By Lemma 5.1, there exists h € Py(X, K) such that h|x = ¢|x and h(\) = 1. Clearly,
fh € Py(X, K). Therefore,

e(f) = o(H)h(A) = e(f)v(h)
= o(f)e(h) =(fh)
= P(fh) = (fR)(N)
= fO)RA) = f(N)
= ex(f).

Since Ro(X, K) is dense in (R(X, K).||.||x) and the map ¢ and ey are continuous on R(X, K), we
conclude that ¢(f) = ex(f) for each f € R(X, K). Consequently, the uniform algebra R(X, K) is
natural. [J
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