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Abstract

Let K and X be compact plane sets such that K ⊆ X. Let P (K) be the uniform closure of
polynomials on K. Let R(K) be the closure of rational functions K with poles off K. Define
P (X,K) and R(X,K) to be the uniform algebras of functions in C(X) whose restriction to K
belongs to P (K) and R(K), respectively. Let CZ(X,K) be the Banach algebra of functions f in
C(X) such that f |K = 0. In this paper, we show that every nonzero complex homomorphism ϕ
on CZ(X,K) is an evaluation homomorphism ez for some z in X\K. By considering this fact, we
characterize the maximal ideal space of the uniform algebra P (X,K). Moreover, we show that the
uniform algebra R(X,K) is natural.
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1. Introduction

Let A be a commutative Banach algebra. A linear functional ϕ : A −→ C is called a complex
homomorphism on A if ϕ(fg) = ϕ(f)ϕ(g) for all f, g ∈ A. If ϕ is a complex homomorphism on A
and ϕ(f) 6= 0 for some f ∈ A, then ϕ is called a nonzero complex homomorphism or a multiplicative
linear functional on A. Every complex homomorphism on A is continuous. It is known that if A is
with unit 1, then A has at least a nonzero complex homomorphism and ϕ(1) = 1 for each nonzero
complex homomorphism ϕ on A. We denote by MA the set of all nonzero complex homomorphisms
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on A. It is known that MA is a compact (locally compact) Hausdorff space with the Gelfand topology,
if A is with (without) unit [5]. MA with the Gelfand topology is called the maximal ideal space of A.

Let Ω be a locally compact Hausdorff space. We denote by C(Ω)(Cb(Ω)) the algebra of continuous
(bounded continuous) complex-valued functions on Ω. For each f ∈ Cb(Ω), we define

‖f‖Ω = sup{|f(w)| : w ∈ Ω},

and call it the uniform norm of f on Ω. Then (Cb(Ω), ||.||Ω) is a commutative Banach algebra with
unit 1. We denote by C0(Ω) the set of all functions f in C(Ω) which vanish at infinity. Then C0(X)
is a closed subalgebra of Cb(Ω) and C0(Ω) = Cb(Ω) = C(Ω), when Ω is compact. Note that if
f ∈ C0(Ω), then ‖f‖Ω = |f(w0)| for some w0 ∈ Ω. Also, C0(Ω) is without unit if Ω is not compact.

Let Ω be a locally compact Hausdorff space and A be a subalgebra of Cb(Ω) such that 1 ∈ A
or C0(Ω) ⊆ A. For each w ∈ Ω, the map ew : A −→ C, defined by ew(f) = f(w), is a nonzero
complex homomorphism on A, which is called the evaluation homomorphism at w on A. Note that,
if A separates the points of Ω, then ew1 6= ew2 whenever w1, w2 ∈ Ω and w1 6= w2.

Let X be a compact Hausdorff space and let A be a subalgebra of C(X) such that A separates
the points of X and let 1 ∈ A. If there is an algebra norm ‖.‖ on A such that ‖1‖ = 1 and (A, ‖.‖)
is a Banach algebra, then A is called a Banach function algebra on X (under the norm ‖.‖). If the
norm of the Banach function algebra A on X is the uniform norm on X, then A is called a uniform
(function) algebra on X. For example C(X) is a uniform algebra on X.

Let X be a compact Hausdorff space and let A be a Banach function algebra on X. It is easy to
see that the map ε : X −→ MA defined by ε(x) = ex, is continuous and one-to-one. We say that A
is natural, if ε is surjective. In this case ε is an homeomorphism and we write MA ≈ X.

We know that a Banach function algebra A on X is natural when A is self-adjoint and inverse-
closed. Therefore, C(X) is natural.

Definition 1.1. Let X be a compact Hausdorff space and let K be a nonempty compact subset of
X. We denote by CZ(X,K) the set of complex-valued functions f on X such that f |K = 0. Then
CZ(X,K) is a uniformly closed subalgebra of C(X) which is without unit.

Let K be a compact plane set and let P0(K) and R0(K) be the algebras of all polynomials
and rational functions in z on K with poles off K, respectively. The uniform closure of P0(K)
and R0(K) are denoted by P (K) and R(K), respectively, which are uniform algebras on K. P (K)
and R(K) are called polynomial and rational uniform algebra on K, respectively. It is known that
K = {z ∈ C : |R(z)| ≤ ‖R‖K for all R ∈ R0(K)} and R(K) is natural. The polynomial convex hull
of K is

K̂ = {z ∈ C : |p(z)| < ‖p‖K for all polynomials p in z}.

In fact, K̂ is the union of K and the bounded components of C\K . The set K is called polynomially

convex if K̂ = K. It is known that P (K̂) = R(K̂) and P (K) is isometricall isomorphic to P (K̂).

Also, MP ((K) is homeomorphic to K̂. In fact, if ϕ ∈ MP (K), then there exists a unique z ∈ K̂ such
that ϕ(f) = limn→∞ pn(z), where f ∈ P (K) is the uniform limit of the sequence of polynomials
{pn}∞n=1. For more details, see [1].

Definition 1.2. Let K and X be nonempty compact plane set such that K ⊆ X. We define the
algebras P0(X,K), R0(X,K), P (X,K) and R(X,K) as the following:

P0(X,K) := {f ∈ C(X) : f |K ∈ P0(K)},

R0(X,K) := {f ∈ C(X) : f |K ∈ R0(K)},



On the Maximal Ideal Space of the Extended ...3 (2012) No. 2,1-12 3

P (X,K) := {f ∈ C(X) : f |K ∈ P (K)},

R(X,K) := {f ∈ C(X) : f |K ∈ R(K)}.

Clearly, P (X,K) and R(X,K) are the uniform closure of P0(X,K) and R0(X,K), respectively.
P (X,K) and R(X,K) are called extended polynomial and rational uniform algebras on X (with
respect to K), respectively. We take A(X,K) = {f ∈ C(X) : f |K ∈ A(K)}, where A(K) =
{f ∈ C(K) : f} is analytic on interior of K}. It is easy to show that P (X,K), R(X,K) and
A(X,K) are uniform algebras on X. We know that A(X,K) is natural [1]. A(X,K) is called
extended analytic uniform algebra on X (with respect to K). Note that if K is finite then P0(X,K) =
R0(X,K) = C(X) and so P (X,K) = R(X,K) = A(X,K) = C(X). Hence, we may assume that K
is infinite. Moreover, P0(X,K) = P0(X), R0(X,K) = R0(X), P (X,K) = P (X), R(X,K) = R(X)
and A(X,K) = A if X\K is finite.

In 2007, T. G. Honary and S. Moradi determined the maximal ideal space of the certain subal-
gebras of A(X,K) [2]. Next, they studied the uniform approximation by polynomials, rationals and
analytic functions in these uniform algebras and also extended Vitushkin’s theorem and Hartogs-
Rozental theorem [3].

We intend to characterize of nonzero complex homomorphisms on P (X,K) and prove that
R(X,K) is natural.

In Section 2, we prove that for every nonzero complex homomorphism ϕ on C0(Ω), there exists
a unique w ∈ Ω such that ϕ = ew, where Ω is a locally compact Hausdorff space.

In Section 3, we assume that X is a compact Hausdorff space and K is a nonempty compact
subset of X and show that (CZ(X,K), ‖.‖X) is isometrically isomorphic to (C0(X\K), ‖.‖X\K) and
characterize nonzero complex homomorphisms on CZ(X,K).

In Sections 4 and Sections 5, we assume that K and X are compact plane sets such that K ⊆ X
and characterize nonzero complex homomorphisms on P (X,K) and prove that R(X,K) is natural.

2. Nonzero Complex Homomorphisms on C0(Ω)

Let Ω be a locally compact Hausdorff space with topology τ . Then for each w ∈ Ω, the evaluation
map ew : C0(Ω) −→ C is a nonzero complex homomorphism on C0(Ω). If Ω is compact, then C0(Ω) =
C(Ω) and so every nonzero complex homomorphism on C0(Ω) is an evaluation homomorphism. Now,
we assume that Ω is not compact. Set Ω∞ := Ω ∪ {∞}, such that ∞ 6∈ Ω. Define the topology τ∞
on Ω∞ by

τ∞ := τ ∪ {Ω∞\S : S ⊆ Ω and S is a compact set in(Ω, τ)}.

So Ω∞ is a compact Hausdorff space with the topology τ∞ and τ = {Ω ∩ W : W ∈ τ∞}. The
topological space Ω∞ (with topology τ∞) is called one point compactification of Ω (with topology τ).

Throughout this section we assume that Ω is a locally compact Hausdorff space which is not
compact and Ω∞ := Ω ∪ {∞} is the one point compactification of Ω.

For characterizing of nonzero complex homomorphism on C0(Ω), we need the following lemma.

Lemma 2.1. (i) If g ∈ C0(Ω) and g∞ : Ω∞ −→ C is defined by

g∞(w) =

{
g(w)

0

w ∈ Ω

w =∞,
then g∞ ∈ C(Ω∞) and ‖g∞‖Ω∞ = ‖g‖Ω.



4 Moradi, Honary, Alimohammadi

(ii) If f ∈ C(Ω∞) and g : Ω −→ C is defined by

g(w) = f(w)− f(∞),

then g ∈ C0(Ω), ‖g‖Ω ≤ ‖f‖Ω∞ + |f(∞)| and f = g∞.

(iii) If Ψ : C0(Ω) −→ C(Ω∞) is defined by Ψ(g) = g∞, then Ψ is an isometrical homomorphism
from (C0(Ω), ‖.‖Ω) into (C(Ω∞), ‖.‖Ω∞) and Ψ(C0(Ω)) = M∞, where M∞ is the maximal ideal
{f ∈ C(Ω∞) : f(∞) = 0} in C(Ω∞).

Proof .
(i) To prove the continuity of g∞ at ∞, take ε > 0. Since g ∈ C0(Ω), there exists a compact

subset S of Ω such that

g(Ω\S) ⊆ {z ∈ C : |z| < ε}. (1)

Clearly, Ω∞\S is an open set in Ω∞ and ∞ ∈ Ω∞\S. Since g∞(∞) = 0 and g∞ = g on Ω, we have

g∞(Ω∞\S) ⊆ {z ∈ C : |z| < ε},

by (1). Therefore, g∞ is continuous at ∞. Let w0 ∈ Ω and take ε > 0. Since g is continuous at w0,
there exists an open set U in Ω with w0 ∈ Ω such that

g(U) ⊆ {z ∈ C : |z − g(w0)| < ε}. (2)

Clearly, U is an open set in Ω∞. Since w0 ∈ Ω and g∞ = g on Ω, we have

g∞(U) ⊆ {z ∈ C : |z − g∞(w0)| < ε},

by (2). It follows that g∞ is continuous at w0. Therefore, g∞ ∈ C(Ω∞).
Now, we show that ‖g∞‖Ω∞ = ‖g‖Ω. Since ‖g‖Ω = |g(w1)| for some w1 ∈ Ω, g∞(∞) = 0 and

g∞ = g on Ω, we have

‖g‖Ω∞ = |g(w1)| = ‖g‖Ω.

(ii) Since the topological space Ω is a subspace of the topological space Ω∞, g = f − f∞ on Ω and
f ∈ C(Ω∞), we have g ∈ C(Ω). Take ε > 0. Continuity of f at∞ implies that there exists a compact
set S in Ω such that

f(Ω∞\S) ⊆ {z ∈ C : |z − f(∞)| < ε}. (3)

If w ∈ Ω\S, then w ∈ Ω∞\S and so

|g(w)| = |f(w)− f(∞)| < ε,

by (3). Therefore, g ∈ C0(Ω). Also, g∞ = f and

‖g‖Ω ≤ ‖f‖Ω + |f(∞)|,

by the definition of g.
(iii) Clearly, Ψ is a homomorphism. Also, Ψ is an isometry by (i). If g ∈ C0(Ω), then g∞ ∈ C(Ω∞),
g∞(∞) = 0 by (i) and so Ψ(g) = g∞ ∈M∞.
Conversely, if f ∈ M∞, then f ∈ C(Ω∞) and f(∞) = 0. Define g = f |Ω. It follows that g ∈ C0(Ω),
by (ii). Since f(∞) = 0 and f |Ω = g, we have f = g∞ = Ψ(g). Hence, (iii) holds. �
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Definition 2.2. Let g ∈ C0(Ω). The map g∞ : Ω∞ −→ C defined by

g∞(w) =

{
g(w)

0

w ∈ Ω

w =∞,

is called the standard extension of g on Ω∞.

Theorem 2.3. If ϕ is a nonzero complex homomorphism on C0(Ω), then there exists a unique w ∈ Ω
such that ϕ = ew on C0(Ω).

Proof . Define the map ψ : C(Ω∞) −→ C by

ψ(f) = ϕ(f |Ω).

It is easy to see that ψ is a complex homomorphism on C0(Ω). Since ϕ is a nonzero complex
homomorphism on C(Ω∞), there exists h ∈ C0(Ω) such that ψ(h) 6= 0. Let h∞ be the standard
extension of h on Ω∞. Then h∞ ∈ C(Ω∞) and h = h∞|Ω, by part (i) of Lemma 2.1. Therefore,

ψ(h∞) = ϕ(h) 6= 0.

It follows that ψ is a nonzero complex homomorphism on C(Ω∞). Therefore, there exists w ∈ Ω∞
such that ψ(f) = f(w) for all f ∈ C(Ω∞). We claim that w 6=∞. If w =∞, then ψ(f) = f(∞) for
all f ∈ C(Ω∞). Now, let g ∈ C0(Ω) and let g∞ be the standard extension of g on Ω∞. By part (i) of
Lemma 2.1, g∞ ∈ C(Ω∞). Therefore, ψ(g) = ϕ(g∞) = g∞(∞) = 0. So ψ ≡ 0 on C0(Ω). Hence, our
claim is justified.

Let g ∈ C0(Ω) and let g∞ be the standard extension of g on Ω∞. Now, we have

ϕ(g) = ψ(g∞) = g∞(w) = g(w) = ew(g).

Therefore ϕ = ew on C0(Ω). �

3. Nonzero Complex Homomorphisms on CZ(X,K)

Throughout of this section we assume that X is a compact Hausdorff space and K is a nonempty
compact subset of X. Since X\K is an open set in X, we conclude that X\K with the subspace
topology is a locally compact Hausdorff space.

Lemma 3.1. (i) CZ(X,K) separates the points of X\K.

(ii) If g ∈ C0(X\K) and g0 : X −→ C is defined by

g0(x) =

{
g(x)

0

x ∈ X\K
x ∈ K,

then g0 ∈ CZ(X,K).

(iii) If f ∈ CZ(X,K) and g = f |X\K, then g ∈ C0(X\K).
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Proof . (i) Let x1, x2 ∈ X\K with x1 6= x2. There exists f ∈ C(X) such that f(x) = 0 for all
x ∈ K∪{x1}. and f(x2) = 1, by the Urysohn’s lemma. Therefore, f ∈ CZ(X,K) and f(x1) 6= f(x2).
So (i) holds.
(ii) Since g0|K = 0, it is enough to show that g0 ∈ C(X).
We first assume that x0 ∈ X with g0(x) 6= 0. Thus, x0 ∈ X\K. Take ε > 0. Since g : X\K −→ C
is continuous in x0, there exists an open set W0 in X with x0 ∈ W0 such that |g(x)− g(x0)| < ε, for
all x ∈ W0. If U0 = W0 ∩ (X\K), then U0 is an open set in X with x0 ∈ U0 and

|g0(x)− g0(x0)| = |g(x)− g(x0)| < ε,

for all x ∈ U . Therefore, g0 is continuous at x0.
We now assume x0 ∈ X with g0(x0) = 0. Take ε > 0. If S = {x ∈ X : |g0(x)| ≥ ε}, then S is a
compact set in X, S ⊆ X\K and x0 6∈ S. Therefore, there exists an open set V0 in X with x0 ∈ V0

such that V0 ∩ S = ∅. It follows that

|g0(x)− g0(x0)| = |g(x0)| < ε,

for all x ∈ V0. Therefore, g0 is continuous at x0. Consequently, g0 ∈ C(X) and (ii) holds.
(iii) Clearly, g ∈ C(X\K). Take ε > 0 and set

S = {x ∈ X : |f(x)| ≥ ε}.

Since f ∈ C(X) and f |K = 0, S is a compact set in X and S ⊆ X\K. So S is a compact set in
X\K and |g(x)| < ε for all x ∈ (X\K)\S. Therefore, g ∈ C0(X\K) and (iii) holds. �

Theorem 3.2. The map Φ : CZ(X,K) −→ C0(X\K) defined by Φ(f) = f |X\K, is an isometrical
isomorphism from (CZ(X,K), ||.||X) onto (C0(X\K), ||.||X\K).

Proof . Part (ii) of Lemma 3.1 implies that Φ is well-defined. Clearly, Φ is an homomorphism. Let
f ∈ CZ(X,K). Then, f ∈ C(X) and f |K = 0. Therefore,

‖Φ(f)‖X\K = ‖f |X\K‖X\K = ‖f‖X\K = ‖f‖X .

Thus Φ is an isometry.
Now, we show that Φ is surjective. Let g ∈ C0(X\K). Define the complex-valued function g0 on

X by

g0(x) =

{
g(x)

0

x ∈ X\K
x ∈ K.

By part (i) of Lemma 3.1, g0 ∈ CZ(X\K). Definition of Φ implies that Φ(g0) = g0|K = g. Thus Φ
is surjective. �

Theorem 3.3. Let A = CZ(X,K).

(i) If x ∈ X\K and ex : A −→ C is defined by ex(f) = f(x), then ex ∈MA.

(ii) If x1, x2 ∈ X\K with x1 6= x2, then ex1 6= ex2.

(iii) If ψ ∈MA, there exists a unique x ∈ X such that ψ = ex.
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Proof . (i) Clearly, ex is a complex homomorphism on A. Since x ∈ X\K, there exists f1 ∈ C(X)
such that f1|K = 0 and f1(x) = 1, by the Uryshon’s lemma. Hence, f1 ∈ CZ(X,K) and ex(f1) =
1 6= 0. Therefore, ex ∈MA.
(ii) Since A separates the points of X\K, there is f ∈ A such that f(x1) 6= f(x2) and so ex1(f) 6=
ex2(f). Thus ex1 6= ex2 .
(iii) Define the map Φ : A −→ C0(X\K) by Φ(f) = f |X\K . Then Φ is an isometrical isomorphism
from (A, ‖.‖X) onto (C0(X\K), ‖.‖X), by Theorem 3.2. Therefore, ψoΦ−1 is a complex homomor-
phism on C0(X\K). Since ψ ∈ MA, there exists f0 ∈ A\{0} such that ψ(f0) 6= 0. If g0 = Φ(f0),
then g0 ∈ C0(X\K), g0 6≡ 0 and (ψoΦ−1)(g0) = ψ(f0) 6= 0. Therefore, ψoΦ−1 ∈MC0(X\K). It follows
that there exists x ∈ X\K such that (ψoΦ−1)(g) = g(x) for all g ∈ C0(X\K), by Theorem 2.3.
Let f ∈ A. Set g = f |X\K . Therefore, g ∈ C0(X\K) by part (iii) of Lemma 3.1 and Φ(f) = g by
Theorem 3.2. Also, we have

ψ(f) = ψ(Φ−1(g)) = (ψoΦ−1)(g)

= g(x) = f(x) = ex(f).

Hence ψ = ex. �

4. Nonzero Complex Homomorphisms on P (X,K)

Let X and K be compact plane sets such that K ⊆ X. We intend to characterize of the nonzero
complex homomorphisms on uniform algebra P (X,K). If K is finite, then P (X,K) = C(K) and so

P (X,K) is natural. If K = X, then P (X,K) = P (X) and so MP (X,K) ≈ K̂. We now study the
cases in which K is infinite and X\K is nonempty.

Lemma 4.1. Let X be a compact plane set. If K is an infinite compact subset of X, then

P0(X,K) = P0(X)⊕ CZ(X,K).

Proof . The case K = X is trivial. We assume that X\K 6= ∅. If p is a polynomial in z
and g ∈ CZ(X,K), then p|X + g ∈ P (X,K). Let f ∈ P0(X,K). Then, f ∈ C(X) and there
exists a polynomial p in z such that f |K = p|K . Define the complex-valued function g on X by
g(z) = f(z)− p(z). Clearly, g ∈ CZ(X,K) and f = p|X + g. Thus

P0(X,K) = P0(X) + CZ(X,K).

If f ∈ P0(X) ∩ CZ(X,K), then f ∈ C(X) and there exists a polynomial p in z with f = p|X such
that p|K = 0. It follows that p ≡ 0, since K is an infinite subset of C. Therefore, f = 0 and this
completes the proof. �

Lemma 4.2. Let X be a compact plane set and let K be an infinite compact subset of X such that
X\K is nonempty.

(i) If f ∈ P (X,K), if {pn}∞n=1 is a sequence of polynomials in z and if {gn}∞n=1 is a sequence in

CZ(X,K) with limn→∞ ‖pn + gn − f‖X = 0, then there exists g ∈ C(K̂) such that g|K = f |K
and limn→∞ ‖pn − g‖K̂ = 0.

(ii) If f ∈ P (X,K), if {pn}∞n=1 and {qn}∞n=1 are sequences of polynomials in z, if {gn}∞n=1 and
{hn}∞n=1 are sequences in CZ(X,K) with limn→∞ ‖pn + gn − f‖X = 0 and if limn→∞ ‖qn +

hn − f‖X = 0, then the sequences {pn}∞n=1 and {qn}∞n=1 are uniformly convergence on K̂ and

limn→∞ pn(λ) = limn→∞ qn(λ) for all λ ∈ K̂.
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Proof . (i) Since gn|K = 0 for all n ∈ N, we have

lim
n→∞

‖pn − f‖K = 0. (1)

Therefore, {pn}∞n=1 is uniformly convergence on K. Since ‖p‖K = ‖p‖K̂ for each polynomial p in z,

we concloud that {pn}∞n=1 is uniformly convergence on K̂. Thus, there exists g ∈ C(K̂) such that

lim
n→∞

‖pn − g‖K̂ = 0. (2)

Now, we have f |K = g|K by (1) and (2).

(ii) There exists g, h ∈ C(K̂) with f |K = g|K = h|K such that

lim
n→∞

‖pn − g‖K̂ = lim
n→∞

‖qn − h‖K̂ = 0. (3)

Therefore,

lim
n→∞

‖pn − qn‖K = 0. (4)

Since ‖p‖K = 0 implies that ‖p‖K̂ = 0 for each polynomial p in z, we concloud that

lim
n→∞

‖pn − q‖K̂ = 0,

by (4). Thus, g = h and so limn→∞ pn(λ) = limn→∞ qn(λ) for each λ ∈ K̂, by (3). �

Theorem 4.3. Let X be a compact plane set and let K be an infinite compact subset of X such that
X\K is nonempty.

(i) If λ ∈ K̂ and the map Eλ : P (X,K) −→ C defined by

Eλ(f) = lim
n→∞

pn(λ),

where {pn}∞n=1 is a sequence of polynomials in z, and if {gn}∞n=1 is a sequence in CZ(X,K) such
that limn→∞ ‖pn|X + gn − f‖X = 0, then Eλ ∈MP (X,K), Eλ(p|X) = p(λ) for each polynomial p
in z, Eλ(g) = 0 for all g ∈ CZ(X,K), and Eλ(p|X + g) = p(λ) for each polynomial p in z and
for each g ∈ CZ(X,K).

(ii) If λ1, λ2 ∈ X with λ1 6= λ2, then Eλ1 6= Eλ2.

Proof . (i) By Lemma 4.2, Eλ is well-defined. Clearly, Eλ is a complex homomorphism on X and
Eλ(1) = 1. Therefore, Eλ ∈MP (X,K).

Let p is a polynomial in z. Set pn = p and gn = 0, for each n ∈ N . Then limn→∞ ‖pn+gn−p‖X = 0.
Therefore,

Eλ(p|X) = lim
n→∞

pn(λ) = p(λ).

Let g ∈ CZ(X,K). Set pn = 0 and gn = g for each n ∈ N . Then limn→∞ ‖pn + gn − g‖X = 0.
Therefore,

Eλ(g) = lim
n→∞

pn(λ) = 0.

Let p be a polynomial in z and g ∈ CZ(X,K). Set pn = p and gn = g for each n ∈ N . Then
limn→∞ ‖pn + gn − (p+ g)‖X = 0. Therefore,

Eλ(p|X + g) = lim
n→∞

pn(λ) = p(λ).
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(ii) The coordinate function Z : C −→ C, defined by Z(z) = z, is a polynomial in z. Therefore,

Eλ(Z|X) = Z(λ) = λ for all λ ∈ K̂, by (i). Thus,

Eλ1(Z|X) = λ1 6= λ2 = Eλ2(Z|X),

and so Eλ1 6= Eλ2 . �

Theorem 4.4. Let X be a compact plane set and let K be an infinite compact subset of X such that
X\K is nonempty. Let ϕ ∈MP (X,K)

(i) If ϕ(g) = 0 for each g ∈ CZ(X,K), then there exists a unique λ ∈ K̂ such that ϕ = Eλ.

(ii) If ϕ(g) 6= 0 for some g ∈ CZ(X,K), then there exists a unique λ ∈ X\K such that ϕ = eλ,
where eλ is the evaluation homomorphism on P (X,K) at λ.

Proof . (i) Define the map η : P (X) −→ C by η(f) = ϕ(f). Clearly, η is a complex homomorphism
on P (X). Since 1 ∈ P (X) and η(1) = ϕ(1) = 1, we have η ∈ MP (X). It follows that there exists

λ ∈ X̂ such that η(p|X) = p(λ) for each polynomial p in z. We claim that λ ∈ K̂. If λ ∈ X̂\K̂, there
exist a polynomial q in z such that ‖q‖K < |q(λ)|. There exists f ∈ C(X) such that f |K = q|K and
‖f‖X = ‖q‖K , by Tietze extension theorem [4;Theorem 20.4]. Clearly, f ∈ P0(X,K). By Lemma
3.1, there exists a polynomial q1 in z and a function g ∈ CZ(X,K) such that f = q1|X + g. Since
g|K = 0, we have f |K = q1|K and so q1|K = q|K . Infiniteness of K implies that q1 = q on C and so
q1(λ) = q(λ). Since η(q1|X) = q1(λ), we have

|q(λ)| = |q1(λ)| = |η(q1|X)| = |ϕ(q1|X)|
= |ϕ(q1|X) + ϕ(g)| = |ϕ(q1|X + g)|
= |ϕ(f)| ≤ ‖f‖X = ‖q‖K .

This contradiction shows that our claim is justified. Now, we prove that ϕ = Eλ. Let f ∈ P0(X,K).
By Lemma 4.1, there exist a polynomial p in z and a function g ∈ CZ(X,K) such that f = p|X + g.
Since p|X ∈ P (X) and ϕ(g) = 0, we have

ϕ(f) = ϕ(p|X + g) = ϕ(p|X) + ϕ(g)

= η(p|X) = p(λ) = Eλ(f).

Now, let f ∈ P (X,K). There exists a sequence {fn}∞n=1 in P0(X,K) such that f = limn→∞ fn in
(P (X,K), ‖.‖X). By continuity of ϕ and Eλ on (P (X,K), ‖.‖X), we have

ϕ(f) = lim
n→∞

ϕ(fn) = lim
n→∞

Eλ(fn) = Eλ(f).

Thus ϕ = Eλ.
(ii) Define the map ψ : CZ(X,K) −→ C by ψ(g) = ϕ(g). Clearly, ψ is a complex homomorphism
on CZ(X,K). By hypothesis, ψ(g0) 6= 0. Therefore, ψ ∈ MCZ(X,K). It follows that there exists
λ ∈ X\K such that

ϕ(g) = ψ(g) = g(λ),

for each g ∈ CZ(X,K), by part (iii) of Theorem 3.3. We now define the map η : P (X) −→ C by

η(f) = ϕ(f). Clearly, η ∈MP (X). It follows that there exists w ∈ X̂ such that η(p|X) = p(w) for each
polynomial p in z. We show that λ = w. Since λ ∈ X\K, there exists a function g1 in CZ(X,K)
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such that g1(λ) = 1 by Urysohn’s lemma. Let p be a polynomial in z. Then p|Xg1 ∈ CZ(X,K).
Therefore,

ϕ(p|Xg1) = (p|Xg1)(λ) = p(λ)g1(λ) = p(λ).

On the other hand, p|X ∈ P (X) and so we have

ϕ(p|Xg1) = ϕ(p|X)ϕ(g1) = η(p|X)Ψ(g1)

= p(w)g1(λ) = p(w).

Therefore, p(λ) = p(w). Consequently, λ = w. Thus, there exists λ ∈ X\K such that ϕ(g) = g(λ)
for each g ∈ CZ(X,K) and ϕ(p|X) = p(λ) for each polynomial p in z.
Now, we show that ϕ = eλ. Let f ∈ P0(X,K). By Lemma 4.1, there exist a polynomial p in z and
a function g in CZ(X,K) such that f = p|X + g. Then

ϕ(f) = ϕ(p|X) + ϕ(g) = p(λ) + g(λ)

= f(λ) = eλ(f).

The density of P0(X,K) in (P (X,K), ‖.‖X) and continuity of ϕ and eλ on P (X,K), imply that
ϕ(f) = eλ(f) for each f ∈ P (X,K). Thus, ϕ = eλ. �

5. Maximal Ideal Space of R(X,K)

Let X and K be compact plane sets such that K ⊆ X. In this section, we show that the uniform
algebra R(X,K) is natural. If K = X or K is finite then R(X,K) is natural, since R(X,K) = R(X)
or R(X,K) = C(X), respectively. Therefore, R(X,K) is natural.
For proving the naturality of R(X,K) in the case where X\K is nonempty and K is infinite, we
need the following lemma.

Lemma 5.1. Let X and K be compact plane sets such that K ⊆ X, X\K nonempty, and K is
infinite. If λ ∈ X\K and q if is a polynomial in z, then there exists h ∈ P0(X,K) such that
h|K = q|K and h(λ) = 1.

Proof . By Urysohn’s lemma, there exists h0 ∈ C(X) such that h0|K = 0 and h0(λ) = 1. Define the
function h : X −→ C by

h(z) = q(z) + [1− q(λ)]h0(z) (z ∈ X).

Then h ∈ P0(X,K), h|K = q|K and h(λ) = 1. �

Theorem 5.2. Let X and K be compact plane sets such that K ⊆ X. If X\K is nonempty and K
is infinite, then R(X,K) is natural.

Proof . Let ϕ ∈ MR(X,K). Define the map ψ : P (X,K) −→ C by ψ(f) = ϕ(f) (f ∈ P (X,K)).
Clearly, ψ is a complex homomorphism on P (X,K). Since ψ(1) = ϕ(1) = 1, so ψ ∈MP (X,K).

We first suppose that ϕ(g) = 0 for all g ∈ CZ(X,K). Therefore, there exists λ ∈ K̂ such that
ψ(p|X + g) = p(λ), for each polynomial p in z and each g ∈ CZ(X,K), by part (i) of Theorem 4.4.
If f ∈ R0(X,K), then there exist two polynomials p and q in z such that

q(z) 6= 0 , f(z) =
p(z)

q(z)
,
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for all z ∈ K. Since q|X , q|Xf ∈ P0(X,K), we have

ϕ(q|Xf) = ϕ(q|X)ϕ(f) = ψ(q|X)ϕ(f)

= q(λ)ϕ(f).

On the other hand, (q|Xf)|K = p|K . Therefore,

ϕ(q|Xf) = ψ(q|Xf) = p(λ).

We claim that λ ∈ K. If λ ∈ K̂\K, the compactness of K in C implies that there exist two
polynomials p1 and q1 in z without any common zero on C and with q1(z) 6= 0 for each z ∈ K such
that

q1(λ) 6= 0 , ‖p1

q1

‖K <
|p1(λ)|
|q1(λ)|

.

By Tietze extension theorem, we can extend p1
q1
|K to a function f1 ∈ C(X) such that

‖f1‖X = ‖p1

q1

‖K .

Since q1|Xf1 ∈ C(X) and q1(z)f1(z) = p1(z) for each z ∈ K, so q1|Xf1 ∈ P0(X,K). It follows that

q1(λ)ϕ(f1) = p1(λ),

by the above argument. Therefore,

|p1(λ)|
|q1(λ)|

= |ϕ(f1)| ≤ ‖ϕ‖‖f1‖X

= ‖f1‖X = ‖p1

q1

‖K .

This contradiction shows that our claim is justified. Therefore, ϕ(f) = f(λ) = eλ(f) for each
f ∈ R0(X,K). By the density of R0(X,K) in (R(X,K), ‖.‖X) and continuity of ϕ and eλ on
R(X,K), we conclude that ϕ(f) = eλ(f) for each f ∈ R(X,K).
We now suppose that there exists g1 ∈ CZ(X,K) such that ϕ(g1) 6= 0. It follows that there exists
λ ∈ x\K such that ψ(f) = f(λ) for each f ∈ P (X,K). If f ∈ R0(X,K), then there exist two

polynomials p and q in z without any common zeros such that q(z) 6= 0 and f(z) = p(z)
q(z)

for each

z ∈ K. By Lemma 5.1, there exists h ∈ P0(X,K) such that h|K = q|K and h(λ) = 1. Clearly,
fh ∈ P0(X,K). Therefore,

ϕ(f) = ϕ(f)h(λ) = ϕ(f)ψ(h)

= ϕ(f)ϕ(h) = ϕ(fh)

= ψ(fh) = (fh)(λ)

= f(λ)h(λ) = f(λ)

= eλ(f).

Since R0(X,K) is dense in (R(X,K).‖.‖X) and the map ϕ and eλ are continuous on R(X,K), we
conclude that ϕ(f) = eλ(f) for each f ∈ R(X,K). Consequently, the uniform algebra R(X,K) is
natural. �



12 Moradi, Honary, Alimohammadi

References

[1] T. W. Gamelin, Uniform Algebras Chelesea Publishing Company, New York, 1984.
[2] T. G. Honary and S. Moradi, On the maximal ideal space of extended analytic Lipschitz algebras, Quaestiones

Mathematicae, 30 (2007) 349–353.
[3] T. G. Honary and S. Moradi, Uniform approximation by polynomials, rationals and analytic functions, Bull.

Austral Math. Soc., 77 (2008) 387–399.
[4] W. Rudin, Real and Complex Analysis, 3th ed. Mc Grow-Hill, New York, 1987.
[5] W. Zelazko, Banach Algebras, Elsevier, Amsterdom, 1973.


	 Introduction
	 Nonzero Complex Homomorphisms on C0() 
	 Nonzero Complex Homomorphisms on CZ(X,K)
	 Nonzero Complex Homomorphisms on P(X,K)
	 Maximal Ideal Space of R(X,K)

