

Functionally closed sets and functionally convex sets in real Banach spaces

Madjid Eshaghi^a, Hamidreza Reisi Dezaki^{a,*}, Alireza Moazzen^b

^aDepartment of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran ^bKosar University of Bojnord, Bojnord, Iran

(Communicated by Th.M. Rassias)

Abstract

Let X be a real normed space, then $C(\subseteq X)$ is functionally convex (briefly, F-convex), if $T(C) \subseteq \mathbb{R}$ is convex for all bounded linear transformations $T \in B(X, R)$; and $K(\subseteq X)$ is functionally closed (briefly, F-closed), if $T(K) \subseteq \mathbb{R}$ is closed for all bounded linear transformations $T \in B(X, R)$. We improve the Krein-Milman theorem on finite dimensional spaces. We partially prove the Chebyshev 60 years old open problem. Finally, we introduce the notion of functionally convex functions. The function f on X is functionally convex (briefly, F-convex) if epi f is a F-convex subset of $X \times \mathbb{R}$. We show that every function $f: (a, b) \longrightarrow \mathbb{R}$ which has no vertical asymptote is F-convex.

Keywords: Convex set; Chebyshev set; Krein-Milman theorem. 2010 MSC: Primary 39B82; Secondary 39B52.

1. Introduction

In 1965, L.P. Vlasov defined an approximately convex subset M of a linear normed space X, by denoting the multivalued mapping which puts into correspondence with each point $x \in X$, the set Tx of all points $y \in M$ which satisfy the condition d(x, y) = d(x, M). Then the set M is called approximately convex if, for $x \in X$ the set Tx is nonempty and convex. He proved that, in Banach spaces which are uniformly smooth in each direction, each approximately compact and approximately convex set is convex [12]. Another generalization of convexity defined by Green and Gustin [9]. They called a set $S \subseteq \mathbb{R}^n$ nearly convex, if there is $\alpha \in (0, 1)$ such that $\alpha x + (1 - \alpha)y \in S$ for all $x, y \in S$.

^{*}Corresponding author

Email addresses: madjid.eshaghi@gmail.com (Madjid Eshaghi), hamidreza.reisi@gmail.com (Hamidreza Reisi Dezaki), ar.moazzen@yahoo.com (Alireza Moazzen)

Every convex set is nearly convex, while \mathbb{Q} , the rational numbers is nearly convex (with $\alpha = \frac{1}{2}$), which is not convex.

In this work, by defining two notions F-convexity and F-closedness of subsets of Banach spaces, we improve some basic theorems in functional analysis. The Krein-Milman theorem has been generalized on finite dimensional spaces. Hence, we show that the set of extreme points of every bounded, Fconvex and F-closed subset of a finite dimensional space is nonempty. Additionally, we partially prove the famous Chebyshev open problem (which asks whether or not every Chebyshev set in a Hilbert space is convex?). Hence, we show that, if A is a Chebyshev subset of a Hilbert space and the metric projection P_A is continuous, then A is F-convex. Finally, we introduce the notion of F-convex functions and improve some results in convexity.

2. Main results

Throughout this paper we assume that X is a real vector space.

Definition 2.1. In a normed space X, we say that $K(\subseteq X)$ is *m*-functionally convex (briefly, *m*-*F*-convex) (for $m \in \mathbb{N}$) if for every bounded linear transformation $T \in B(X, \mathbb{R}^m)$, the set T(K) is convex. A 1-*F*-convex set is called *F*-convex. A subset K of X is called permanently *F*-convex if K is m-*F*-convex, for all $m \in \mathbb{N}$.

Proposition 2.2. If T is a bounded linear mapping from a normed space X into a normed space Y, and K is F-convex in X, then T(K) is F-convex in Y.

Proof. For $g \in Y^*$, we have $g \circ T \in X^*$. So by assumption, g(T(K)) is convex. \Box

Proposition 2.3. Let A, B be two F-convex subsets of a normed space X and λ be a real number, then

 $A + B = \{a + b : a \in A, b \in B\}, \quad \lambda A = \{\lambda . a : a \in A\}$

are F-convex. Moreover, \overline{A} , the closure of A is F-convex.

Proof. It follows from Proposition 2.2. \Box

As an example of a big class of F-convex sets, we have next theorem.

Theorem 2.4. Every arcwise connected subset of a normed space X is F-convex.

Proof. Let K be an arcwise connected subset of X and $f \in X^*$. For $f(x), f(y) \in f(K)$ and every $\lambda(0 \leq \lambda \leq 1)$, there is a continuous function $g: [0,1] \longrightarrow K$ which, g(0) = x and g(1) = y. Since $f \circ g$ is continuous, then the intermediate value theorem implies that $\lambda f(x) + (1-\lambda)f(y) = f(g(t_0))$, for some $t_0 \in [0,1]$. This completes the proof. \Box

Definition 2.5. Let X be a normed space and let $A \subseteq X$. A is functionally closed (briefly, F-closed), if f(A) is closed for all $f \in X^*$.

Note that every compact set is *F*-closed. Also, every closed subset of real numbers \mathbb{R} is *F*-closed. In $X = \mathbb{R}^2$, the set $A = \{(x, y) : x, y \ge 0\}$ is (non-compact) *F*-closed whereas, the set $A = \mathbb{Z} \times \mathbb{Z}$ is closed but it is not not *F*-closed (by taking $f(x, y) = x + \sqrt{2}y$, the set f(A) is not closed in \mathbb{R}). By taking $A = \{(x, y) : 1 \le x^2 + y^2 \le 4\}$ a nonconvex *F*-closed and *F*-convex set is obtained. Also, the set $B = \{(x, y) : x \in [0, \frac{\pi}{2}), y \ge \tan(x)\}$ is a closed convex set which is not *F*-closed. On the other hand, $A = \{(x, y) : 1 < x^2 + y^2 \le 4\}$ is a non-closed and *F*-closed set. The two last examples show that weakly closed and *F*-closed sets are different.

$$f(K_2) \le c - \epsilon < c \le f(K_1).$$

Lemma 2.7. If A is a subset of a Banach space X, then

$$\bigcap_{f \in X^*} f^{-1}(f(A)) \subseteq \overline{co}(A).$$

Proof. If there exists x in $\bigcap_{f \in X^*} f^{-1}(f(A)) - \overline{co}(A)$, then for all $f \in X^*$, $f(x) \in f(A)$ and x is outside of $\overline{co}(A)$. By Theorem 2.6, there exist constants c and $\epsilon > 0$, and a continuous linear functional f on X, such that

$$f(\overline{co}(A)) \le c - \epsilon < c \le f(x).$$

On the other hand, $f(x) \in f(A) \subseteq f(\overline{co}(A))$. This is a contradiction and the proof is completed. \Box

Corollary 2.8. Let A be an F-closed subset of a Banach space X. Then A is F-convex if and only if

$$\overline{co}(A) = \bigcap_{f \in X^*} f^{-1}(f(A)).$$

Corollary 2.9. A compact subset A in a Banach space X is convex if and only if A is F-convex and X^* separates A and every element of X - A.

Proof. If A is a compact convex subset of X, then by Theorem 2.6, the assertion holds. Conversely, assume that A is a compact F-convex subset of X. Hence, $\overline{co}(A) = \bigcap_{f \in X^*} f^{-1}(f(A))$. On the other hand, there is $f \in X^*$ such that for every $x \in X - A$, we have f(A) < f(x). This implies that x is outside of $f^{-1}(f(A))$. Thus $f^{-1}(f(A)) = A$ and $\overline{co}(A) = A$. \Box

It follows from the Krein-Milman theorem that if K is a nonempty compact convex subset of a locally convex space X, then the set of extreme points of K is nonempty [6].

In what follows, we would like to replace "boundedness and F-closedness" instead of "compactness" in Krein-Milman theorem. Indeed, we show that the set of extreme points of every bounded, F-closed and F-convex subset of a finite dimensional space is nonempty.

Theorem 2.10. Let X be a real Banach space with dimensional $n \in \mathbb{N}$. If A is a bounded, F-closed and F-convex subset of X, then

$$\overline{co}(A) = \overline{co}(Ext(A)) = \bigcap_{f \in X^*} f^{-1}(f(A)).$$

Proof. First we prove the assertion for the case n = 2. Obviously, we have

$$\overline{co}(Ext(A)) \subseteq \overline{co}(A) = \bigcap_{f \in X^*} f^{-1}(f(A)).$$
(2.1)

On the other hand, if there exists $c \in \bigcap_{f \in X^*} f^{-1}(f(A)) - (\overline{co}(Ext(A)) \stackrel{\circ}{=} B)$, then $f(c) \in f(A)$ for all $f \in X^*$ and c does not belong to B. By Hahn–Banach separation theorem, there exists $g \in X^*$

such that $g(c) > \sup_B g$. By taking $\sup_A g = \alpha = g(a_0)$ and $H = g^{-1}(\alpha)$, we claim that there exists x in $Ext(A) \cap H$. If a_0 do not lie in Ext(A), then there are $a_1, a_2 \in A$ such that $a_0 = \frac{a_1+a_2}{2}$. Hence, $2\alpha = 2g(a_0) = g(a_1) + g(a_2)$. This implies that $g(a_1) = g(a_2) = \alpha$ and so, $a_1, a_2 \in H$. We can define totally order relation " \leq " on H. By this, let $a_1 < a_0 < a_2$. Since, $A \cap H \subset g^{-1}(g(A)) \subset \mathbb{R}^2$ and $g^{-1}(g(A))$ is closed and bounded so $\sup A \cap H = a^*$ exists. There is a sequence $\{h_n\} \subset A \cap H$ such that tends to a^* . This implies that $\lim g(h_n) = g(a^*) = \alpha$ and so a^* is in $A \cap H$. If a^* do not lie in Ext(A), then there are $b, c \in A$ so that $a^* = \frac{b+c}{2}$. By the above manner, one may show that $b, c \in A \cap H$. Assume that $b < a^* < c$, but this is a contradiction. Therefore, there exists $x \in Ext(A) \cap H$. In this case, we have

$$g(x) = \alpha = \sup_{A} g \ge g(c) > \sup_{B} g.$$
(2.2)

Therefore, x does not lie in B, a contradiction.

Suppose that the assertion holds for real Banach spaces with dimension less than n. By the same reason as the case n = 2, it is sufficient to show that the set $Ext(A \cap H)$ is nonempty. Note that the set $\overline{A} \cap H$ is a closed and bounded subset of H, On the other hand, the supporting manifold H is isomorphic to a finite dimensional space with dimension less than n hence the set $C = \overline{A} \cap H$ is an F-closed subset of H. Therefore by the assumption E = Ext(C) is nonempty. Let $e \in A$ and $e \notin Ext(A)$, we claim that $e \notin E$. Suppose that e is not an extreme point of A, then there are $a_1, a_2 \in A$ such that $e = \frac{a_1+a_2}{2}$. If $e \notin H$ then $e \notin \overline{A} \cap H$, hence $e \notin E$. If $e \in H$ then, $2\alpha = 2g(e) = g(a_1) + g(a_2)$. This implies that $g(a_1) = g(a_2) = \alpha$ and so, $a_1, a_2 \in A \cap H \subseteq C$, hence $E \subset Ext(A)$ and so, Ext(A) is non-empty. \Box

We can not prove the above theorem for infinite dimensional spaces. Hence, it may be happened in every Banach space.

Remark 2.11. The set $A = \{(0, x) : \frac{1}{2} \le x \le 1\} \cup \{(x, y) : 1 < x^2 + y^2 \le 4\}$ is a bounded *F*-closed set which is not compact. Note that $Ext(A) = \{(\frac{1}{2}, 0\} \cup \{(x, y) : x^2 + y^2 = 4\}$ and $\overline{co}(A) = \overline{co}(Ext(A))$.

Let X be a normed linear space and K be a nonempty subset of X. Note that the set-valued mapping $P_K: X \longrightarrow 2^K$ is defined by

$$P_K(x) = \{ y \in K : ||x - y|| = d(x, K) = \inf_{k \in K} ||x - k|| \},\$$

is called the metric projection or best approximation operator. K is called proximinal (semi-Chebyshev) if $P_K(x)$ contains at least (at most) one element for every $x \in X$. K is said to be Chebyshev if it is both proximinal and semi-Chebyshev, i.e., $P_K(x)$ is singleton for every $x \in X$. By the nearest point theorem, every nonempty closed convex set in a Hilbert space is Chebyshev. However, a famous unsolved problem is whether or not every Chebyshev set in a Hilbert space is convex.

If $A \subseteq X$ and $\overline{x} \in P_A(x)$, it is always true that $\overline{x} \in P_A(\lambda x + (1 - \lambda)\overline{x})$, for $\lambda \in (1, \infty)$. That is, \overline{x} is a solar point in A for x, if $\overline{x} \in P_A(y)$, for every y in the half-line $R = \{\lambda x + (1 - \lambda)\overline{x} : \lambda \ge 0\}$. A set A is said to be a *Sun* in X, if for each $x \in X - A$, the set $P_A(x)$ contains a solar point for x (the half-line R is then a *ray* of the sun which passes through x).

Proposition 2.12. (Suns, [2]) Let A be a closed set in a Hilbert space. Then the following assertions are equivalent:

(i) A is convex;

- (ii) A is a Sun;
- (iii) the metric projection P_A is nonexpansive.

A more flexible notion than that of a Sun is that of an approximately convex set, [2]. We call $A \subseteq X$ approximately convex if, for any closed norm ball $D \subseteq X$ disjoint from A, there exists a closed ball $D' \supseteq D$ disjoint from A with arbitrary large radius. Every Sun is approximately convex.

For a closed set A in a Banach space X some sufficient conditions for existence of proximal points are proved. For instance:

- 1) X is reflexive and the norm is (sequentially) Kadec-Klee, (see [3, 5, 10]);
- 2) X has the Radon-Nikodym property [8] and A is bounded (see [3]);
- 3) X has norm closed and boundedly relatively weakly compact, (see [4]).

Now, we are ready to prove the following theorem which can be consider as a partially proof for Chebyshev open problem.

Theorem 2.13. *let* X *be a Banach space if* $A \subseteq X$ *is a Chebyshev set and the metric projection* P_A *is continuous, then* A *is* F-convex.

Proof. If A is not F-convex, then there exists a linear functional $f \in X^*$ such that f(A) is not convex. Then there are $a_1, a_2 \in A$ and $\lambda \in (0, 1)$ such that $f(\lambda a_1 + (1 - \lambda)a_2)$ is not in f(A). Therefore, by taking $x = \lambda a_1 + (1 - \lambda)a_2$ and $K \doteq \text{Ker}(f)$, x - a is outside of K for all $a \in A$. Since the quotient space $\frac{X}{K}$ is isomorphic to \mathbb{R} , then there exists $x_0 \in X - K$ such that

$$\frac{X}{K} \simeq K^{\perp} = \{ \alpha x_0 : \alpha \in \mathbb{R} \}.$$

This implies that there is $\lambda_a \in \mathbb{R}$ for all $a \in A$ such that $x - a = \lambda_a x_0$. By assumption A is a Chebyshev set, then there exists a unique $a_0 \in A$ such that

$$||x - a_0|| = d(x, A) = \inf_{a \in A} ||x - a|| = \inf_{a \in A} |\lambda_a| ||x_0||$$

On the other hand, $||x - a_0|| = |\lambda_0| ||x_0||$ for some $\lambda_0 \in \mathbb{R} - \{0\}$ and then $0 < |\lambda_0| \le |\lambda_a|$ for all $a \in A$. Thus for every α which $|\alpha| < |\lambda_0|$, we have

$$\forall a \in A; x - a \neq \alpha x_0.$$

Also, we have

$$||x - a|| \ge ||x - a_0|| = |\lambda_0| ||x_0|| \doteq r$$

for all $a \in A$, then $\overline{B_r(x)} \cap A = \{a_0\}$ and $B_r(x) \cap A = \emptyset$. This is contrary to continuouity of P_A . \Box

Remark 2.14. The converse of the above mentioned theorem is not true. For example, if $A = \mathbb{R} \times \mathbb{R} - \{(x, y) : |x| \le 1, y \ge 0\}$ is a closed *F*-convex subset of $X = \mathbb{R} \times \mathbb{R}$ which is not a Chebyshev set. Hence, every point on the nonnegative part of the *y*-axis has two nearest point in *A*.

Theorem 2.15. Every Chebyshev and approximately convex set in a Hilbert space is F-convex.

Proof. In the process of the proof of Theorem 2.13, we prove that if A is not F-convex then there are $a_1, a_2 \in A$ and an element $x \in X - A$, between them and r > 0 such that $B_r(x) \cap A = \emptyset$. But $B_{2d(x,a_1)}(x) \cap A \neq \emptyset$, then A is not approximately convex. \Box

Definition 2.16. ([7]) Let X be a real vector space and let f be a mapping from X into \mathbb{R} . The epigraph of f is the subset of $X \times \mathbb{R}$ defined by

 $epif := \{(x, r) \in X \times \mathbb{R} : f(x) < r\}.$

The function f on X is convex if and only if epi f is a convex subset of $X \times \mathbb{R}$. In what follows, we define the notion of functionally convex (*F*-convex) functions.

Definition 2.17. The function f on X is F-convex if epi f is a F-convex subset of $X \times \mathbb{R}$.

Theorem 2.18. If $f : (a, b) \longrightarrow \mathbb{R}$ is continuous then f is F-convex.

Proof. Let (x_1, r_1) and (x_2, r_2) be two members of epi f. By joining point (x_1, r_1) to $(x_1, f(x_1))$ and (x_2, r_2) to $(x_2, f(x_2))$, we find a path which joins two members of epi f. So, epi f is a path-connected subset of $X \times \mathbb{R}$ and by Theorem 2.4, epi f is a F-convex subset. \Box

Theorem 2.19. Every bounded function $f:(a,b) \longrightarrow \mathbb{R}$ is *F*-convex.

Proof. There is $M \ge 0$ so that for all $x \in (a, b)$, $|f(x)| \le M$. If (x_1, r) and (x_2, s) are elements of epi(f) then the path

$$C = \{(x_1, t) : r \le t \le M\} + \{(t, M) : x_1 \le t \le x_2\} + \{(x_2, t) : s \le t \le M\}$$

joines this two points of epi(f). This means that the epigraph of the function is path-connected. So, it is F–convex. \Box

One may verify that the Dirichlet function is F-convex. If the function $f: I \longrightarrow \mathbb{R}$ is not Fconvex then there exists $x_0 \in I$ such that $f(x_o) = \infty$. Since, in this case there is a linear functional ϕ and elements (x_1, r_1) and (x_2, r_2) in epi f and $\lambda \in (0, 1)$ such that $\phi(\lambda x_1 + (1 - \lambda)x_2, \lambda r_1 + (1 - \lambda r_2)) \doteq$ $\phi(x_0, r_0)$ do not belong to the image of epi f under the linear functional ϕ . This implies that $f(x_0) > r$ for all $r \geq r_0$.

By applying Proposition 2.3, if $f, g: X \longrightarrow \mathbb{R}$ are two F-convex functions and $\alpha \in \mathbb{R}$, then f + gand αf also are *F*-convex.

References

- D. Aliprantis and C. Border, Infinite dimensional analysis, 2th. edition, Springer, 1999.
- [2] J.M. Browein and S. Lewis Adrian, Convex analysis and nonlinear optimization, Springer-Verlag, New York, 2005.
- [3] J.M. Borwein and S.P. Fitzpatrick, Existence of nearest points in Banach spaces, Canad. J. Math. 61 (1989) 702 - 720.
- J.M. Borwein, J.S. Treiman and Q.J. Zhu, Partially smooth variational principles and applications, Nonlinear [4]Anal. 35 (1999) 1031-1059.
- [5]J.M. Borwein and Q.J. Zhu, Techniques of variational analysis: An introduction, CMS Books in Mathematics, Springer-Verlog, 2005. J.B. Conway, A Course in functionall analysis, Springer-verlag, 1985.
- N. Dunford and J.T. Schwartz, *Linear operators*, Part 1, Interscience, New York, 1958. $\begin{bmatrix} 7\\ 8 \end{bmatrix}$
- M. Fabin, P. Hahala, P. Hajek, J. Pelan, V. Montesinos and V. Zizler, Functional analysis and infinite-dimensional geometry, Springer-Verlag, New York, 2001.
- J.W. Green and W. Gustin, Quasiconvex sets, Canadian J. Math. 2 (1950) 489–507.
- [10] R.S. Lau, Almost Chebyshev subsets in reflexive Banach spaces, Indiana Univ. Math. J. 2 (1978) 791–795.
 [11] E. Zeidler, Nonlinear functional analysis and its applications I: Fixed point theorems, Springer-Verlog New York,
- 1986.
- [12] L. P. Vlasov, Approximative properties of sets in normed linear spaces, Russian. Math. Surveys 28 (1973) 1–66.