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Abstract

Let X be a real normed space, then C(⊆ X) is functionally convex (briefly, F -convex), if T (C) ⊆ R
is convex for all bounded linear transformations T ∈ B(X,R); and K(⊆ X) is functionally closed
(briefly, F -closed), if T (K) ⊆ R is closed for all bounded linear transformations T ∈ B(X,R). We
improve the Krein-Milman theorem on finite dimensional spaces. We partially prove the Chebyshev
60 years old open problem. Finally, we introduce the notion of functionally convex functions. The
function f on X is functionally convex (briefly, F -convex) if epi f is a F -convex subset of X × R.
We show that every function f : (a, b) −→ R which has no vertical asymptote is F -convex.
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1. Introduction

In 1965, L.P. Vlasov defined an approximately convex subset M of a linear normed space X, by
denoting the multivalued mapping which puts into correspondence with each point x ∈ X, the set
Tx of all points y ∈ M which satisfy the condition d(x, y) = d(x,M). Then the set M is called
approximately convex if, for x ∈ X the set Tx is nonempty and convex. He proved that, in Banach
spaces which are uniformly smooth in each direction, each approximately compact and approximately
convex set is convex [12]. Another generalization of convexity defined by Green and Gustin [9]. They
called a set S ⊆ Rn nearly convex, if there is α ∈ (0, 1) such that αx+ (1− α)y ∈ S for all x, y ∈ S.
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Every convex set is nearly convex, while Q, the rational numbers is nearly convex (with α = 1
2
),

which is not convex.
In this work, by defining two notions F -convexity and F -closedness of subsets of Banach spaces, we

improve some basic theorems in functional analysis. The Krein-Milman theorem has been generalized
on finite dimensional spaces. Hence, we show that the set of extreme points of every bounded, F -
convex and F -closed subset of a finite dimensional space is nonempty. Additionally, we partially
prove the famous Chebyshev open problem (which asks whether or not every Chebyshev set in a
Hilbert space is convex?). Hence, we show that, if A is a Chebyshev subset of a Hilbert space and
the metric projection PA is continuous, then A is F -convex. Finally, we introduce the notion of
F -convex functions and improve some results in convexity.

2. Main results

Throughout this paper we assume that X is a real vector space.

Definition 2.1. In a normed space X, we say that K(⊆ X) is m-functionally convex (briefly, m-
F -convex) (for m ∈ N) if for every bounded linear transformation T ∈ B(X,Rm), the set T (K) is
convex. A 1-F -convex set is called F -convex. A subset K of X is called permanently F -convex if K
is m- F -convex, for all m ∈ N.

Proposition 2.2. If T is a bounded linear mapping from a normed space X into a normed space Y ,
and K is F -convex in X, then T (K) is F -convex in Y .

Proof . For g ∈ Y ∗, we have g ◦ T ∈ X∗. So by assumption, g(T (K)) is convex. �

Proposition 2.3. Let A,B be two F -convex subsets of a normed space X and λ be a real number,
then

A+B = {a+ b : a ∈ A, b ∈ B}, λA = {λ.a : a ∈ A}

are F -convex. Moreover, A, the closure of A is F -convex.

Proof . It follows from Proposition 2.2. �

As an example of a big class of F -convex sets, we have next theorem.

Theorem 2.4. Every arcwise connected subset of a normed space X is F -convex.

Proof . Let K be an arcwise connected subset of X and f ∈ X∗. For f(x), f(y) ∈ f(K) and every
λ(0 ≤ λ ≤ 1), there is a continuous function g : [0, 1] −→ K which, g(0) = x and g(1) = y. Since
f ◦ g is continuous, then the intermediate value theorem implies that λf(x) + (1−λ)f(y) = f(g(t0)),
for some t0 ∈ [0, 1]. This completes the proof. �

Definition 2.5. Let X be a normed space and let A ⊆ X. A is functionally closed (briefly, F -
closed), if f(A) is closed for all f ∈ X∗.

Note that every compact set is F -closed. Also, every closed subset of real numbers R is F -closed.
In X = R2, the set A = {(x, y) : x, y ≥ 0} is (non-compact) F -closed whereas, the set A = Z× Z is
closed but it is not not F -closed (by taking f(x, y) = x+

√
2y, the set f(A) is not closed in R). By

taking A = {(x, y) : 1 ≤ x2 + y2 ≤ 4} a nonconvex F -closed and F -convex set is obtained. Also, the
set B = {(x, y) : x ∈ [0, π

2
), y ≥ tan(x)} is a closed convex set which is not F -closed. On the other

hand, A = {(x, y) : 1 < x2 + y2 ≤ 4} is a non-closed and F -closed set. The two last examples show
that weakly closed and F -closed sets are different.
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Theorem 2.6. ([7]) If K1 and K2 are disjoint closed convex subsets of a locally convex linear topo-
logical space X, and if K1 is compact, then there exist constants c and ε > 0, and a continuous linear
functional f on X, such that

f(K2) ≤ c− ε < c ≤ f(K1).

Lemma 2.7. If A is a subset of a Banach space X, then⋂
f∈X∗

f−1(f(A)) ⊆ co(A).

Proof . If there exists x in
⋂
f∈X∗ f−1(f(A)) − co(A), then for all f ∈ X∗, f(x) ∈ f(A) and x

is outside of co(A). By Theorem 2.6, there exist constants c and ε > 0, and a continuous linear
functional f on X, such that

f(co(A)) ≤ c− ε < c ≤ f(x).

On the other hand, f(x) ∈ f(A) ⊆ f(co(A)). This is a contradiction and the proof is completed. �

Corollary 2.8. Let A be an F -closed subset of a Banach space X. Then A is F -convex if and only
if

co(A) =
⋂
f∈X∗

f−1(f(A)).

Corollary 2.9. A compact subset A in a Banach space X is convex if and only if A is F -convex
and X∗ separates A and every element of X − A.

Proof . If A is a compact convex subset of X, then by Theorem 2.6, the assertion holds. Conversely,
assume that A is a compact F -convex subset of X. Hence, co(A) =

⋂
f∈X∗ f−1(f(A)). On the other

hand, there is f ∈ X∗ such that for every x ∈ X − A, we have f(A) < f(x). This implies that x is
outside of f−1(f(A)). Thus f−1(f(A)) = A and co(A) = A. �

It follows from the Krein-Milman theorem that if K is a nonempty compact convex subset of a
locally convex space X, then the set of extreme points of K is nonempty [6].

In what follows, we would like to replace “boundedness and F -closedness” instead of “compact-
ness” in Krein-Milman theorem. Indeed, we show that the set of extreme points of every bounded,
F -closed and F -convex subset of a finite dimensional space is nonempty.

Theorem 2.10. Let X be a real Banach space with dimensional n ∈ N. If A is a bounded, F -closed
and F -convex subset of X, then

co(A) = co(Ext(A)) =
⋂
f∈X∗

f−1(f(A)).

Proof . First we prove the assertion for the case n = 2. Obviously, we have

co(Ext(A)) ⊆ co(A) =
⋂
f∈X∗

f−1(f(A)). (2.1)

On the other hand, if there exists c ∈
⋂
f∈X∗ f−1(f(A)) − (co(Ext(A)) $ B), then f(c) ∈ f(A) for

all f ∈ X∗ and c does not belong to B. By Hahn–Banach separation theorem, there exists g ∈ X∗
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such that g(c) > supB g. By taking supA g = α = g(a0) and H = g−1(α), we claim that there exists
x in Ext(A) ∩H. If a0 do not lie in Ext(A), then there are a1, a2 ∈ A such that a0 = a1+a2

2
. Hence,

2α = 2g(a0) = g(a1) + g(a2). This implies that g(a1) = g(a2) = α and so, a1, a2 ∈ H. We can
define totally order relation “ ≤ ” on H. By this, let a1 < a0 < a2. Since, A ∩H ⊂ g−1(g(A)) ⊂ R2

and g−1(g(A)) is closed and bounded so supA ∩H = a∗ exists. There is a sequence {hn} ⊂ A ∩H
such that tends to a∗. This implies that lim g(hn) = g(a∗) = α and so a∗ is in A ∩ H. If a∗ do
not lie in Ext(A), then there are b, c ∈ A so that a∗ = b+c

2
. By the above manner, one may show

that b, c ∈ A ∩ H. Assume that b < a∗ < c, but this is a contradiction. Therefore, there exists
x ∈ Ext(A) ∩H. In this case, we have

g(x) = α = sup
A
g ≥ g(c) > sup

B
g. (2.2)

Therefore, x does not lie in B, a contradiction.
Suppose that the assertion holds for real Banach spaces with dimension less than n. By the same

reason as the case n = 2, it is sufficient to show that the set Ext(A ∩ H) is nonempty. Note that
the set A ∩ H is a closed and bounded subset of H, On the other hand, the supporting manifold
H is isomorphic to a finite dimensional space with dimension less than n hence the set C = A ∩H
is an F -closed subset of H. Therefore by the assumption E = Ext(C) is nonempty. Let e ∈ A
and e 6∈ Ext(A), we claim that e 6∈ E. Suppose that e is not an extreme point of A, then there
are a1, a2 ∈ A such that e = a1+a2

2
. If e 6∈ H then e 6∈ A ∩ H, hence e 6∈ E. If e ∈ H then,

2α = 2g(e) = g(a1) + g(a2). This implies that g(a1) = g(a2) = α and so, a1, a2 ∈ A ∩H ⊆ C, hence
E ⊂ Ext(A) and so, Ext(A) is non-empty. �

We can not prove the above theorem for infinite dimensional spaces. Hence, it may be happened
in every Banach space.

Remark 2.11. The set A = {(0, x) : 1
2
≤ x ≤ 1} ∪ {(x, y) : 1 < x2 + y2 ≤ 4} is a bounded F -closed

set which is not compact. Note that Ext(A) = {(1
2
, 0}∪{(x, y) : x2+y2 = 4} and co(A) = co(Ext(A)).

Let X be a normed linear space and K be a nonempty subset of X. Note that the set-valued
mapping PK : X −→ 2K is defined by

PK(x) = {y ∈ K : ‖x− y‖ = d(x,K) = inf
k∈K
‖x− k‖},

is called the metric projection or best approximation operator. K is called proximinal (semi-
Chebyshev) if PK(x) contains at least (at most) one element for every x ∈ X. K is said to be
Chebyshev if it is both proximinal and semi-Chebyshev, i.e., PK(x) is singleton for every x ∈ X.
By the nearest point theorem, every nonempty closed convex set in a Hilbert space is Chebyshev.
However, a famous unsolved problem is whether or not every Chebyshev set in a Hilbert space is
convex.

If A ⊆ X and x ∈ PA(x), it is always true that x ∈ PA(λx+ (1− λ)x), for λ ∈ (1,∞). That is, x
is a solar point in A for x, if x ∈ PA(y), for every y in the half-line R = {λx+ (1− λ)x : λ ≥ 0}. A
set A is said to be a Sun in X, if for each x ∈ X −A, the set PA(x) contains a solar point for x (the
half-line R is then a ray of the sun which passes through x).

Proposition 2.12. (Suns, [2]) Let A be a closed set in a Hilbert space. Then the following assertions
are equivalent:
(i) A is convex;
(ii) A is a Sun;
(iii) the metric projection PA is nonexpansive.
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A more flexible notion than that of a Sun is that of an approximately convex set, [2]. We call
A ⊆ X approximately convex if, for any closed norm ball D ⊆ X disjoint from A, there exists a
closed ball D′ ⊇ D disjoint from A with arbitrary large radius. Every Sun is approximately convex.

For a closed set A in a Banach space X some sufficient conditions for existence of proximal points
are proved. For instance:

1) X is reflexive and the norm is (sequentially) Kadec-Klee, (see [3, 5, 10]);

2) X has the Radon-Nikodym property [8] and A is bounded (see [3]);

3) X has norm closed and boundedly relatively weakly compact, (see [4]).

Now, we are ready to prove the following theorem which can be consider as a partially proof for
Chebyshev open problem.

Theorem 2.13. let X be a Banach space if A ⊆ X is a Chebyshev set and the metric projection PA
is continuous, then A is F -convex.

Proof . If A is not F -convex, then there exists a linear functional f ∈ X∗ such that f(A) is not
convex. Then there are a1, a2 ∈ A and λ ∈ (0, 1) such that f(λa1 + (1 − λ)a2) is not in f(A).
Therefore, by taking x = λa1 + (1− λ)a2 and K

.
= Ker(f), x− a is outside of K for all a ∈ A. Since

the quotient space X
K

is isomorphic to R, then there exists x0 ∈ X −K such that

X

K
' K⊥ = {αx0 : α ∈ R}.

This implies that there is λa ∈ R for all a ∈ A such that x − a = λax0. By assumption A is a
Chebyshev set, then there exists a unique a0 ∈ A such that

‖x− a0‖ = d(x,A) = inf
a∈A
‖x− a‖ = inf

a∈A
|λa|‖x0‖.

On the other hand, ‖x−a0‖ = |λ0|‖x0‖ for some λ0 ∈ R−{0} and then 0 < |λ0| ≤ |λa| for all a ∈ A.
Thus for every α which |α| < |λ0|, we have

∀a ∈ A;x− a 6= αx0.

.
Also, we have

‖x− a‖ ≥ ‖x− a0‖ = |λ0|‖x0‖
.
= r

for all a ∈ A, then Br(x) ∩A = {a0} and Br(x) ∩A = ∅. This is contrary to continuouity of PA. �

Remark 2.14. The converse of the above mentioned theorem is not true. For example, if A =
R×R−{(x, y) : |x| ≤ 1, y ≥ 0} is a closed F -convex subset of X = R×R which is not a Chebyshev
set. Hence, every point on the nonnegative part of the y-axis has two nearest point in A.

Theorem 2.15. Every Chebyshev and approximately convex set in a Hilbert space is F -convex.

Proof . In the process of the proof of Theorem 2.13, we prove that if A is not F -convex then there
are a1, a2 ∈ A and an element x ∈ X − A, between them and r > 0 such that Br(x) ∩ A = ∅. But
B2d(x,a1)(x) ∩ A 6= ∅, then A is not approximately convex. �
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Definition 2.16. ([7]) Let X be a real vector space and let f be a mapping from X into R. The
epigraph of f is the subset of X × R defined by

epif := {(x, r) ∈ X × R : f(x) ≤ r}.

The function f on X is convex if and only if epi f is a convex subset of X ×R. In what follows,
we define the notion of functionally convex (F -convex) functions.

Definition 2.17. The function f on X is F -convex if epi f is a F -convex subset of X × R.

Theorem 2.18. If f : (a, b) −→ R is continuous then f is F -convex.

Proof . Let (x1, r1) and (x2, r2) be two members of epi f . By joining point (x1, r1) to (x1, f(x1)) and
(x2, r2) to (x2, f(x2)), we find a path which joins two members of epi f . So, epi f is a path-connected
subset of X × R and by Theorem 2.4, epi f is a F -convex subset. �

Theorem 2.19. Every bounded function f : (a, b) −→ R is F–convex.

Proof . There is M ≥ 0 so that for all x ∈ (a, b), |f(x)| ≤ M . If (x1, r) and (x2, s) are elements
of epi(f) then the path

C = {(x1, t) : r ≤ t ≤M}+ {(t,M) : x1 ≤ t ≤ x2}+ {(x2, t) : s ≤ t ≤M}

joines this two points of epi(f). This means that the epigragh of the function is path-connected. So,
it is F–convex. �

One may verify that the Dirichlet function is F -convex. If the function f : I −→ R is not F -
convex then there exists x0 ∈ I such that f(xo) =∞. Since, in this case there is a linear functional φ
and elements (x1, r1) and (x2, r2) in epi f and λ ∈ (0, 1) such that φ(λx1+(1−λ)x2, λr1+(1−λr2))

.
=

φ(x0, r0) do not belong to the image of epi f under the linear functional φ. This implies that f(x0) > r
for all r ≥ r0.

By applying Proposition 2.3, if f, g : X −→ R are two F -convex functions and α ∈ R, then f + g
and αf also are F -convex.
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