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Abstract

Let X be a real normed space, then C(C X) is functionally convex (briefly, F-convex), if T'(C) C R
is convex for all bounded linear transformations 7" € B(X, R); and K(C X) is functionally closed
(briefly, F-closed), if T(K) C R is closed for all bounded linear transformations T' € B(X, R). We
improve the Krein-Milman theorem on finite dimensional spaces. We partially prove the Chebyshev
60 years old open problem. Finally, we introduce the notion of functionally convex functions. The
function f on X is functionally convex (briefly, F-convex) if epi f is a F-convex subset of X x R.
We show that every function f : (a,b) — R which has no vertical asymptote is F-convex.
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1. Introduction

In 1965, L.P. Vlasov defined an approximately convex subset M of a linear normed space X, by
denoting the multivalued mapping which puts into correspondence with each point x € X, the set
Tz of all points y € M which satisfy the condition d(x,y) = d(z, M). Then the set M is called
approximately convex if, for x € X the set Tz is nonempty and convex. He proved that, in Banach
spaces which are uniformly smooth in each direction, each approximately compact and approximately
convex set is convex [12]. Another generalization of convexity defined by Green and Gustin [9]. They
called a set S C R" nearly convex, if there is a € (0,1) such that ax 4+ (1 —a)y € S for all z,y € S.
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Every convex set is nearly convex, while Q, the rational numbers is nearly convex (with o = %),
which is not convex.

In this work, by defining two notions F-convexity and F-closedness of subsets of Banach spaces, we
improve some basic theorems in functional analysis. The Krein-Milman theorem has been generalized
on finite dimensional spaces. Hence, we show that the set of extreme points of every bounded, F-
convex and F-closed subset of a finite dimensional space is nonempty. Additionally, we partially
prove the famous Chebyshev open problem (which asks whether or not every Chebyshev set in a
Hilbert space is convex?). Hence, we show that, if A is a Chebyshev subset of a Hilbert space and
the metric projection P, is continuous, then A is F-convex. Finally, we introduce the notion of
F-convex functions and improve some results in convexity.

2. Main results
Throughout this paper we assume that X is a real vector space.

Definition 2.1. In a normed space X, we say that K(C X) is m-functionally convex (briefly, m-
F-convex) (for m € N) if for every bounded linear transformation 7" € B(X, R™), the set T'(K) is
convex. A 1-F-convex set is called F-convex. A subset K of X is called permanently F-convex if K
is m- F-convex, for all m € N.

Proposition 2.2. IfT is a bounded linear mapping from a normed space X into a normed space Y,
and K is F-convex in X, then T(K) is F-convex in'Y .

Proof . For g € Y*, we have goT € X*. So by assumption, g(7'(K)) is convex. [J

Proposition 2.3. Let A,B be two F-convex subsets of a normed space X and A be a real number,
then

A+B={a+b:ac Abe B}, M={) a:ac A}
are F-convex. Moreover, A, the closure of A is F-convex.

Proof . It follows from Proposition 2.2] O

As an example of a big class of F-convex sets, we have next theorem.
Theorem 2.4. Every arcwise connected subset of a normed space X is F-convex.

Proof . Let K be an arcwise connected subset of X and f € X*. For f(x), f(y) € f(K) and every
A(0 < A < 1), there is a continuous function ¢ : [0,1] — K which, ¢g(0) = = and ¢(1) = y. Since
f og is continuous, then the intermediate value theorem implies that Af(z)+ (1 —\) f(y) = f(g(to)),
for some ¢ € [0,1]. This completes the proof. [J

Definition 2.5. Let X be a normed space and let A C X. A is functionally closed (briefly, F-
closed), if f(A) is closed for all f € X*.

Note that every compact set is F'-closed. Also, every closed subset of real numbers R is F-closed.
In X = R? the set A= {(x,y):x,y >0} is (non-compact) F-closed whereas, the set A =7Z x Z is
closed but it is not not F-closed (by taking f(x,y) = x 4+ v/2y, the set f(A) is not closed in R). By
taking A = {(z,y) : 1 < 2? +y? < 4} a nonconvex F-closed and F-convex set is obtained. Also, the
set B = {(z,y) 12 €[0,5),y > tan(z)} is a closed convex set which is not F-closed. On the other
hand, A = {(z,y) : 1 < 2? + y* < 4} is a non-closed and F-closed set. The two last examples show
that weakly closed and F-closed sets are different.
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Theorem 2.6. ([7]) If K; and K are disjoint closed convex subsets of a locally convex linear topo-
logical space X, and if K is compact, then there exist constants ¢ and ¢ > 0, and a continuous linear
functional f on X, such that

f(K3) <c—e<c< f(K).
Lemma 2.7. If A is a subset of a Banach space X, then
M /7 (/(4) S w(A).

fex=

Proof . If there exists z in (\;cx. f7'(f(A)) —co(A), then for all f € X*, f(z) € f(A) and =
is outside of ¢o(A). By Theorem [2.6] there exist constants ¢ and ¢ > 0, and a continuous linear
functional f on X, such that

f(eo(A)) <c—e<c< fla)
On the other hand, f(x) € f(A) C f(¢o(A)). This is a contradiction and the proof is completed. O

Corollary 2.8. Let A be an F-closed subset of a Banach space X. Then A is F-convex if and only
if

w(A) = () f(f(A).

fex+

Corollary 2.9. A compact subset A in a Banach space X is convex if and only if A is F-convex
and X* separates A and every element of X — A.

Proof . If A is a compact convex subset of X, then by Theorem the assertion holds. Conversely,
assume that A is a compact F-convex subset of X. Hence, c0(A) = ;e x- f~'(f(A)). On the other
hand, there is f € X* such that for every € X — A, we have f(A) < f(z). This implies that z is
outside of f~*(f(A)). Thus f~*(f(A)) = A and co(A) = A. I

It follows from the Krein-Milman theorem that if K is a nonempty compact convex subset of a
locally convex space X, then the set of extreme points of K is nonempty [0].

In what follows, we would like to replace “boundedness and F-closedness” instead of “compact-
ness” in Krein-Milman theorem. Indeed, we show that the set of extreme points of every bounded,
F-closed and F-convex subset of a finite dimensional space is nonempty.

Theorem 2.10. Let X be a real Banach space with dimensional n € N. If A is a bounded, F'-closed
and F-convex subset of X, then

c0(A) = eo(Ext(A)) = [ f(F(A).
fexx
Proof . First we prove the assertion for the case n = 2. Obviously, we have
w(Eat(A)) Cw(A) = () F(F(A)). (2.1)

fex=

On the other hand, if there exists ¢ € Ny f~'(f(A)) — (Co(Ext(A)) = B), then f(c) € f(A) for
all f € X* and ¢ does not belong to B. By Hahn-Banach separation theorem, there exists g € X*
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such that g(c) > supp g. By taking sup, g = a = g(ag) and H = g~ !(a), we claim that there exists
z in Ext(A) N H. If ap do not lie in Ext(A), then there are ay,a; € A such that ag = %32, Hence,
2a = 2g(ag) = g(ar) 4+ g(as). This implies that g(a;) = g(az) = « and so, aj,a2 € H. We can
define totally order relation “ <” on H. By this, let a; < ag < ay. Since, AN H C g~ *(g(A)) C R?
and g~'(g(A)) is closed and bounded so sup AN H = a* exists. There is a sequence {h,} C AN H
such that tends to a*. This implies that lim g(h,) = ¢g(a*) = « and so a* is in AN H. If a* do
not lie in Exzt(A), then there are b,c € A so that a* = <. By the above manner, one may show
that b,c € AN H. Assume that b < a* < ¢, but this is a contradiction. Therefore, there exists

x € Ext(A) N H. In this case, we have
g(x) =a = Supg > g(c) > SUp g. (2.2)

Therefore, x does not lie in B, a contradiction.

Suppose that the assertion holds for real Banach spaces with dimension less than n. By the same
reason as the case n = 2, it is sufficient to show that the set Ext(A N H) is nonempty. Note that
the set AN H is a closed and bounded subset of H, On the other hand, the supporting manifold
H is isomorphic to a finite dimensional space with dimension less than n hence the set C = AN H
is an F-closed subset of H. Therefore by the assumption £ = Ext(C) is nonempty. Let e € A
and e ¢ Ext(A), we claim that e ¢ E. Suppose that e is not an extreme point of A, then there
are aj,ap € A such that e = 9% If e ¢ H then e ¢ AN H, hence e ¢ E. If e € H then,
2a = 2g(e) = g(a1) + g(az). This implies that g(a;) = g(as) = a and so, ay,as € AN H C C, hence
E C Ext(A) and so, Ext(A) is non-empty. [

We can not prove the above theorem for infinite dimensional spaces. Hence, it may be happened
in every Banach space.

Remark 2.11. The set A = {(0,z) : 3

<z <1}U{(z,y): 1< 2®+y* <4} is a bounded F-closed
set which is not compact. Note that Ext(A) = {(3,

{( O}U{(x y) : 2*+y* = 4} and co(A) = co(Ext(A)).

Let X be a normed linear space and K be a nonempty subset of X. Note that the set-valued
mapping Py : X — 2K is defined by

Pr(z) ={y € K: ||z —y|| = d(z, K) = inf [lz — K[},

is called the metric projection or best approximation operator. K is called proximinal (semi-
Chebyshev) if Pg(x) contains at least (at most) one element for every x € X. K is said to be
Chebyshev if it is both proximinal and semi-Chebyshev, i.e., Px(z) is singleton for every z € X.
By the nearest point theorem, every nonempty closed convex set in a Hilbert space is Chebyshev.
However, a famous unsolved problem is whether or not every Chebyshev set in a Hilbert space is
convex.

If AC X and T € Ps(z), it is always true that T € P4(Az + (1 — \)T), for A € (1,00). That is, T
is a solar point in A for z, if T € Pa(y), for every y in the half-line R={ Az + (1 —-A\)Z: A >0}. A
set A is said to be a Sun in X, if for each z € X — A, the set P4(x) contains a solar point for = (the
half-line R is then a ray of the sun which passes through z).

Proposition 2.12. (Suns, [2]) Let A be a closed set in a Hilbert space. Then the following assertions
are equivalent:

(1) A is convex;

(79) A is a Sun;

(7ii) the metric projection P, is nonexpansive.
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A more flexible notion than that of a Sun is that of an approximately convex set, [2]. We call
A C X approzimately conver if, for any closed norm ball D C X disjoint from A, there exists a
closed ball D' O D disjoint from A with arbitrary large radius. Every Sun is approximately convex.

For a closed set A in a Banach space X some sufficient conditions for existence of proximal points
are proved. For instance:

1) X is reflexive and the norm is (sequentially) Kadec-Klee, (see [3], [, [10]);
2) X has the Radon-Nikodym property [8] and A is bounded (see [3]);
3) X has norm closed and boundedly relatively weakly compact, (see [4]).

Now, we are ready to prove the following theorem which can be consider as a partially proof for
Chebyshev open problem.

Theorem 2.13. let X be a Banach space if A C X is a Chebyshev set and the metric projection Py
18 continuous, then A is F-conver.

Proof . If A is not F-convex, then there exists a linear functional f € X* such that f(A) is not
convex. Then there are a;,a2 € A and A € (0,1) such that f(Aa; + (1 — A)ag) is not in f(A).
Therefore, by taking © = Aa; + (1 — X)as and K = Ker(f), x — a is outside of K for all a € A. Since
the quotient space % is isomorphic to R, then there exists g € X — K such that

X
?:Klz{axo:aeﬂ%}.
This implies that there is A, € R for all @ € A such that x — a = A\,xg. By assumption A is a

Chebyshev set, then there exists a unique ag € A such that

lz = aol| = d(x, A) = int [l —al| = inf [Ad[[lo].

On the other hand, ||z — ag|| = |Ao|||zo|| for some Ay € R—{0} and then 0 < |[A\g| < |A,| for all a € A.
Thus for every o which |a] < ||, we have

Ya € A;x — a # axg.

Also, we have
|z = all = [l = aol| = [Aol[lzol| = r

for all @ € A, then B,(x) N A = {ap} and B,(x) N A = @. This is contrary to continuouity of P. [J

Remark 2.14. The converse of the above mentioned theorem is not true. For example, if A =
RxR—A{(z,y):|z|] <1,y >0} is a closed F-convex subset of X = R x R which is not a Chebyshev
set. Hence, every point on the nonnegative part of the y-axis has two nearest point in A.

Theorem 2.15. Every Chebyshev and approrimately convez set in a Hilbert space is F'-convez.

Proof . In the process of the proof of Theorem we prove that if A is not F-convex then there
are aj,as € A and an element x € X — A, between them and r > 0 such that B,(z) N A = @. But
Bsd(z,a)(x) VA # @, then A is not approximately convex. [J
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Definition 2.16. ([7]) Let X be a real vector space and let f be a mapping from X into R. The
epigraph of f is the subset of X x R defined by

epif == {(z,r) € X xR : f(z) <r}.

The function f on X is convex if and only if epi f is a convex subset of X x R. In what follows,
we define the notion of functionally convex (F-convex) functions.

Definition 2.17. The function f on X is F-convex if epi f is a F-convex subset of X x R.
Theorem 2.18. If f : (a,b) — R is continuous then f is F-conver.

Proof . Let (x1,7r1) and (22, 72) be two members of epi f. By joining point (z1,71) to (z1, f(x1)) and
(x9,79) to (z2, f(x2)), we find a path which joins two members of epi f. So, epi f is a path-connected
subset of X x R and by Theorem [2.4] epi f is a F-convex subset. []

Theorem 2.19. FEwvery bounded function f : (a,b) — R is F-convex.

Proof . There is M > 0 so that for all x € (a,b), |f(z)| < M. If (z1,7) and (x9, s) are elements
of epi(f) then the path

C={(z1,t) :r <t < M}+{({t,M): 21 <t <xo}+ {(x2,8) : s <t < M}

joines this two points of epi(f). This means that the epigragh of the function is path-connected. So,
it is F—convex. [J

One may verify that the Dirichlet function is F-convex. If the function f : I — R is not F-
convex then there exists zy € I such that f(x,) = co. Since, in this case there is a linear functional ¢
and elements (x1,71) and (z2,72) inepi f and A € (0, 1) such that ¢p(Az1+ (1 —A)za, Arp+(1—Arg)) =
¢(xo,70) do not belong to the image of epi f under the linear functional ¢. This implies that f(zq) > r
for all r > rgq.

By applying Proposition 2.3] if f, g : X — R are two F-convex functions and o € R, then f+g¢
and «af also are F-convex.
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