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Abstract

In this article, we propose a numerical algorithm for computing price of discrete single and double
barrier option under the Black–Scholes model. In virtue of some general transformations, the partial
differential equations of option pricing in different monitoring dates are converted into simple diffusion
equations. The present method is fast compared to alternative numerical methods presented in
previous papers.
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1. Introduction

Option pricing is one of the most important problems in quantitative finance and many researchers
are involved in it. As a description, down–and–out barrier option is that option which deactivated
(knock–out) if the price of underlying asset touches the predetermined barrier. In practice and with
attention to academic literature, barrier options have been studied under two discrete and continuous
monitoring. In the first case, the price of underlying asset has been checked at predetermined
monitoring dates. The price of underlying assets is usually modeled as geometric Brownian motion
process where the model parameters are constants.

In the present paper, we try to price a down–and–out discrete single and double barrier option on
an underlying asset which is modeled as geometric Brownian motion with constant parameters. In

∗Corresponding author
Email addresses: rfarnoosh@iust.ac.ir (Rahman Farnoosh), h-rezazadeh@kiau.ac.ir ( Hamidreza

Rezazadeh), a_sobhani@aut.ac.ir, a_sobhani@mathdep.iust.ac.ir (Amirhossein Sobhani),
masoud.hasanpour@semnan.ac.ir (Masoud Hassanpour)

Received: June 2016 Revised: April 2017

http://dx.doi.org/10.22075/ijnaa.2017.415.1060


2 Farnoosh, Rezazadeh, Sobhani, Hassanpour

this regard, a set of transformations are applied to correspond partial differential equations (PDEs)
for option price. Afterwards, the obtained PDEs are simply converted to familiar heat equations
whose solutions are as multiple integral forms. Finally, a new numerical method is proposed to
accurately computation these multiple integrals.

This article is managed as follows. In Section 2, the model structure for pricing discrete down–
and–out single and double barrier options is discussed and a recursive method is presented. In
Section 3, a numerical algorithm is proposed to evaluate the multiple integral in section 2. In
addition, we compare the obtained results in the present paper to the alternative numerical methods
in other papers for pricing discrete barrier options like [15] and [17]. At last, obtained conclusions
and remarks are offered in Section 4.

2. Discrete barrier option modeling in the Black–Scholes world model

In this section, we focus on pricing discrete down–and–out call option and both down–and–out, up–
and–out hedging on a underlying stock which could be expired its worth if a lower or upper barrier
touches the continuous path of stock value at predetermined monitoring dates. At first we define
some preliminary concepts. With attention to this fact that the summation of in and out call option
price (in each case down or up) is equal to the price of a simple European call option [20, 21]. Other
kind of barrier options like as down–and–out put option, could be priced using the put call parity
given in[12]. Also we suppose that the price of underlying stock, that we denote it with Xt, is a
Geometric Brownian Motion process, i.e.

dXt = µXtdt+ σXtdWt,

X0 = x0,

where Wt is Wiener process, X0 = x0 is stock price in initial time t = 0 and three deterministic
constant values D, ρ=µ−D and σ, are non–dividend–paying equity, drift and the time independent
instantaneous volatility respectively. For more details about SDEs and its application, especially in
mathematical finance, refer to [14], [8] and [16].

2.1. Black–Scholes PDE for single barrier option pricing

In all over our discussion, we consider 0 = t0 < t1 < . . . < tn < . . . < tN = T the monitoring dates.
The price of down–and–out call barrier option with the strike price K and lower barrier L, that is
active in all monitoring dates tn, is denoted by B(x, t, n) ≡ B(x, t, n;L). So B(x, t, n) satisfy in the
well–known Black–Scholes PDE with relevant initial conditions:

−∂B(x, t, n)

∂t
+ µx

∂B(x, t, n)

∂x
+

1

2
σ2x2

∂2B(x, t, n)

∂2x
− µB(x, t, n) = 0, (2.1)

B(x, t0, 0) = (x−K)1(x≥max(K,L)); n = 0, (2.2)

B(x, tn, n) = B(x, tn, n− 1)1(x≥L); n = 1, 2, . . . , N − 1, (2.3)

where B(x, tn, n− 1) is defined as B(x, tn, n− 1) := limt→t−nB(x, t, n− 1) and 1(x≥L) is characteristic
function. Keeping away from making other symbols, we attempt to infer a way to reach the suitable
option pricing for discrete barrier in monitoring dates.
Afterwards, we solve this PDE with a new method which is suitable for this kind of equations and
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compare it with other implemented methods applied in [9]. After applying the following transforms
in each separate time interval:

B(x, t, n) = B(Z, t, n), Z = ln
(x
L

)
, k = ln

(
K

L

)
, (2.4)

and rearranging (2.1), based on well–known converter B(Z, t, n), a new PDE is concluded:

−∂B
∂t

+m
∂B
∂Z

+
σ2

2

∂2B
∂Z2

− µB = 0, (2.5)

that m = µ−σ2/2, and according to the last conversion the initial condition (2.2) and (2.3) converts
to following condition:

B(Z, t0, 0) = L(eZ − ek)1(Z≥δ), δ = max {k, 0} (2.6)

B(Z, tn, n) = B(Z, tn, n− 1)1(Z≥0), n = 1, 2, . . . , N − 1. (2.7)

By following transform

B(Z, t, n) = eαZ+βtg(Z, t, n), n = 0, 1, 2, . . . , N − 1, (2.8)

where αandβ are defined as

α = −m
σ2
, β = αm+ α2σ

2

2
− µ, (2.9)

we reach the Heat equation

−∂g
∂t

+ C2 ∂
2g

∂Z2
= 0, C2 =

σ2

2
, n = 0, 1, 2, . . . , N − 1. (2.10)

In addition, the initial conditions (2.6) and (2.7) convert to following

g(Z, t0, 0) = Le−α0Z(eZ − ek)1(Z≥δ), δ = max {k, 0}, (2.11)

g(Z, tn, n) = g(Z, tn, n− 1)1(Z≥0), 1 ≤ n ≤ N − 1 (2.12)

which has unique analytical solution in each time interval [tn, tn+1] (see[19]):

g(Z, t, n) = L

∫ ∞
0

Sn(Z − ξ, t− tn)e−αξ(eξ − ek)1(ξ≥δ)dξ , n = 0, (2.13)

g(Z, t, n) =

∫ ∞
0

Sn(Z − ξ, t− tn)g(ξ, tn, n− 1)1(ξ≥0)dξ , n = 1, 2, . . . , N − 1. (2.14)

In above equality kernel S(Z, t), is the normal distribution function N
(

0,
√

4C2t
)

Sn(Z, t) =
1√

4πC2t
exp

(
−Z2

4C2t

)
, n = 0, 1, 2, . . . , N − 1. (2.15)

According to the concluded results, the price of the discrete barrier option at monitoring dates tn,
can be calculated by following theorem.

Theorem 2.1. The price of down–and–out discrete barrier call option with stock price x, strike
price K, and barrier level L, at monitoring dates tn+1, are evaluated as follow

B(x, tn+1, n) = g
(
ln(

x

L
), tn+1, n

)
exp{αln(

x

L
) + βtn+1}, n = 0, 1, 2, . . . , N − 1, (2.16)

where the constants α and β are defined in (2.9) and g(., tn+1, n) is evaluated recursively in (2.13)
and (2.14).
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2.2. Black–Scholes PDE for double barrier option pricing

In this subsection, the price of down–and–out and up–and–out call double barrier option with
the Strike price K, the constant lower and upper barrier L1 and L2, is denoted by DB(x, t, n) ≡
DB(x, t, n, L1, L2). The double barrier option price DB(x, t, n), under the Black–Scholes world frame-
work satisfy in the well–known Black–Scholes PDE

−∂DB(x, t, n)

∂t
+ µx

∂DB(x, t, n)

∂x
+

1

2
σ2x2

∂2DB(x, t, n)

∂2x
− µDB(x, t, n) = 0, (2.17)

with these initial conditions

DB(x, t0, 0) = (x−K)1(L2≥x≥max(K,L1)); n = 0, (2.18)

DB(x, tn, n) = DB(x, tn, n− 1)1(L2≥x≥L1); n = 1, 2, . . . , N − 1, (2.19)

where DB(x, tn, n− 1) is defined as DB(x, tn, n− 1) := limt→t−nDB(x, t, n− 1). By applying following
transform

D̄B(x̄, t, n) = DB(Z, t, n), Z = ln(
x̄

L1

), k = ln(
K

L1

) (2.20)

and rewriting PDE (2.17) and initial conditions (2.18), based on DB(Z, t, n), we have

−∂DB
∂t

+m
∂DB
∂Z

+
σ2

2

∂2DB
∂Z2

− µDB = 0, (2.21)

DB(Z, t0, 0) = L1(e
Z − ek)1

(ln(
L2
L1

)≥Z≥δ), δ = max {k, 0} (2.22)

DB(Z, tn, n) = DB(Z, tn, n− 1)1
(ln(

L2
L1

)≥Z≥0), n = 1, 2, . . . , N − 1, (2.23)

where m = µ− σ2/2. Another conversion as follow is done in each time interval

DB(Z, t, n) = eαZ+βtg(Z, t, n), n = 0, 1, 2, . . . , N − 1, (2.24)

which α and β are defined by (2.9). After rewriting PDE (2.21) respect to g(Z, t, n), we obtain the
Heat equation:

−∂g
∂t

+ C2 ∂
2g

∂Z2
= 0, C2 =

σ2

2
, n = 0, 1, 2, . . . , N − 1, (2.25)

also the initial conditions (2.22) and (2.23) convert to following

g(Z, t0, 0) = L1e
−α0Z(eZ − ek)1

(ln(
L2
L1

)≥Z≥δ), δ = max {k, 0}, (2.26)

g(Z, tn, n) = g(Z, tn, n− 1)1
(ln(

L2
L1

)≥Z≥0). (2.27)

These are as well–known second order PDEs which have unique analytical solution in each time
interval [tn, tn+1] as follows [19]

g(Z, t, n) = L1

∫ ∞
0

Sn(Z − ξ, t− tn)e−αξ(eξ − ek)1
(ln(

L2
L1

)≥ξ≥δ)dξ, n = 0, (2.28)

g(Z, t, n) =

∫ ∞
0

Sn(Z − ξ, t− tn)g(ξ, tn, n− 1)1
(ln(

L2
L1

)≥ξ≥0)dξ, n = 1, 2, . . . , N − 1. (2.29)

According to the obtained results, the price of the discrete double barrier option at monitoring dates
tn, is given in a theorem.
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Theorem 2.2. The price of down–and–out, up–and–out double discrete barrier call option with
stock price x, strike price K, and barrier levels L1 and L2, at monitoring dates tn+1, are evaluated
as follows

DB(x, tn+1, n) = g

(
ln(

x

L1

), tn+1, n

)
exp{αln(

x

L1

) + βtn+1}, n = 0, 1, 2, . . . , N − 1, (2.30)

where the constants α and β are defined in (2.9) and g(., tn+1, n) is evaluated recursively by (2.28)
and (2.29).

3. Numerical algorithm and some numerical results

In this section, a fast numerical algorithm for computing price of double and single barrier option with
discrete monitoring dates, based on romberg numerical integration method, is presented. Assume that
stock price Z0 is given, we intend to evaluate g(Z0, t, N) as the price of discrete double barrier option.
Recursive formula (2.13) shows that for this purpose, dependent on numerical integration method
that is implemented, we must evaluate g(., tN , N − 1) in adequate points belong to [0,∞) but S
function has exponential decay property and its maximum occurs in Z0, so we could consider integral
over finite interval IN−1 = [0, Z0 + l] instead of [0,∞) where l is chosen as large enough constant.
In similar way to compute g(ξ, tN , N − 1) where ξ ∈ [0, Z0 + l], we must compute g(., tN−1, N − 2)
in adequate points of the interval IN−1 = [0, Z0 + 2l]. By following this process, finally to evaluate
g(ξ, t2, 1) where ξ ∈ [0, Z0 + (N − 1)l], we have to evaluate g(ξ, t1, 0) over I0 = [0, Nl].

Note that in application we can consider In = [0,min{(N − n)l, H}] that H is a practical constant.
The algorithm for double barrier option is similar and it is just enough consider all integral interval
[0, ln(l1/l2)]. The semi–code of this algorithm is as follows:
________________________________________________________________

Algorithm: Single barrier option pricing with N discrete monitoring dates
________________________________________________________________

Input:I m ∈ N positive integer, N ∈ N number of monitoring dates
Output:J X ∈ R+, option price.

1 step← 0

2 numnode1 ← 2m.Ceil(length(I0)) + 1

3 h ← length(I0)/numnode1

4 for i = 0 : numnode1 do

5 ξi ← i.h

6 end

7 for i = 0 : numnode1 do

8 Compute g(ξi, t1, 0) by gaussian quadrature rule.

9 end

10 for step = 1 : N − 2 do

11 numnodestep ← 2m.Ceil(length(Istep)) + 1

12 h← length(Istep)/numnodestep

13 for i = 0 : numnodestep do

14 ξi ← i.h
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15 end

16 for i = 0 : numnodestep do

17 Compute g(ξi, tstep, step− 1) by Romberg method based on Simpson′s rule using

nodal points g(ξj, tstep−1, step− 2), 0 ≤ j ≤ numnodestep−2.

18 end

19 end

20 X ← g(z0, tN , N − 1) by Romberg method based on Simpson′s rule using nodal points

g(ξj, tN−1, N − 2), 0 ≤ j ≤ numnodeN−2.

Example 3.1. Consider the problem of pricing down–and–out discrete barrier call option on stock
for different levels of L, maturity time T , and monitoring dates. The employed parameters in this
example are stock price = 100, strike = 100, µ = 0.1, σ = 0.3, and T = 0.2 [9]. In Table 1, the pricing
of a single barrier down–and–out call option for lower level L and different monitoring dates N has
been presented. Also, the other methods which have been brought in this sample are the recursive
integration method (RI) in [1] with 2000 used points; the continuous monitoring formula(CC) with
the barrier level shifting which has been demonstrated in [7]; Trinomial tree method (TT) indicated
in [6]; Monte Carlo (MC) in [3]. The Wiener–Hopf method (WH) is an analytical solution of discrete
barrier option pricing [9].

Table 1: Discrete barrier option pricing of Example 3.1: µ = 0.1, σ2 = 0.09

N L Presented Method AS RI CC TT Monte Carlo

5 89 6.2807 6.2807 6.2763 6.284 6.281 6.28092
5 95 5.6711 5.6711 5.6667 5.646 5.671 5.67124
5 97 5.1672 5.1672 5.1628 5.028 5.167 5.16739
25 89 6.2097 6.2099 6.2003 6.210 6.210 6.21059
25 95 5.0812 5.0814 5.0719 5.084 5.081 5.08203
25 97 4.1159 4.1158 4.1064 4.113 4.115 4.11621

Example 3.2. Consider an especial case of discrete double barrier option with constant drift and
volatility which has been mentioned in [11]. Consider the problem of pricing down–and–out and
up–and–out discrete double barrier call option on stock for different levels of L and U , maturity
time T = 1, and monitoring dates. The parameters are Stock price=2, µ(t) = 0.05, and σ2 = 0.5.
Obtained results are demonstrated in Table 2.

Table 2: Double Discrete Barrier option contract pricing of Example 3.2: µ = 0.05, σ2 = 0.5

K L1 L2 Presented Method Pricing by [11] Monte Carlo

1.75 1 3 0.076181 0.076172 0.0772
2 1.5 3 0.018124 0.017856 0.0191
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4. Conclusions and remarks

In this article, pricing of double and single discrete double barrier option under the Black–Scholes
model with constant parameters, is investigated. The partial differential equations of option pricing
in different monitoring dates are converted into simple diffusion equations and a fast numerical
algorithm is presented. The accuracy of the numerical results shows the reliability and validity of
this algorithm.
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