

Int. J. Nonlinear Anal. Appl. 9 (2018) No. 2, 9-19 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2018.11633.1579

# Symmetric Rogers-Hölder's inequalities on diamond– $\alpha$ calculus

Sajid Iqbal<sup>a,\*</sup>, Muhammad Jibril Shahab Sahir<sup>a</sup>, Muhamamd Samraiz<sup>b</sup>

<sup>a</sup>Department of Mathematics, University of Sargodha, Sub–Campus Bhakkar, Bhakkar, Pakistan <sup>b</sup>Department of Mathematics, University of Sargodha, Sargodha, Pakistan

(Communicated by M.B. Ghaemi)

### Abstract

We present symmetric Rogers–Hölder's inequalities on time scales when  $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 0$  and  $\frac{r}{p} + \frac{r}{q}$  is not necessarily equal to 1 where p, q and r are nonzero real numbers.

*Keywords:* Diamond- $\alpha$  integral, Rogers-Hölder's inequalities, time scales. 2010 MSC: Primary 26D15; Secondary 26D20, 26D99, 34N05.

# 1. Introduction and Preliminaries

First we need here basic concepts of delta calculus. The results of delta calculus are adapted from [3, 7, 8]. A time scale is an arbitrary nonempty closed subset of the real numbers. It is denoted by  $\mathbb{T}$ . For  $t \in \mathbb{T}$ , forward jump operator  $\sigma : \mathbb{T} \to \mathbb{T}$  is defined by

$$\sigma(t) := \inf\{s \in \mathbb{T} : s > t\}$$

The mapping  $\mu : \mathbb{T} \to \mathbb{R}_0^+ = [0, \infty)$  such that  $\mu(t) := \sigma(t) - t$  is called the *graininess*. The *backward* jump operator  $\rho : \mathbb{T} \to \mathbb{T}$  is defined by

$$\rho(t) := \sup\{s \in \mathbb{T} : s < t\}.$$

The mapping  $\nu : \mathbb{T} \to \mathbb{R}_0^+ = [0, \infty)$  such that  $\nu(t) := t - \rho(t)$  is called the *backward graininess*. If  $\sigma(t) > t$ , we say that t is *right-scattered*, while if  $\rho(t) < t$ , we say that t is *left-scattered*. Also, if

\*Corresponding author

*Email addresses:* sajid\_uos2000@yahoo.com (Sajid Iqbal), jibrielshahab@gmail.com (Muhammad Jibril Shahab Sahir), msamraiz@uos.edu.pk (Muhammad Samraiz)

 $t < \sup \mathbb{T}$  and  $\sigma(t) = t$ , then t is called *right-dense*, and if  $t > \inf \mathbb{T}$  and  $\rho(t) = t$ , then t is called *left-dense*. If  $\mathbb{T}$  has a left-scattered maximum M, then  $\mathbb{T}^k = \mathbb{T} - \{M\}$ . Otherwise  $\mathbb{T}^k = \mathbb{T}$ .

For a function  $f : \mathbb{T} \to \mathbb{R}$ , the derivative  $f^{\Delta}$  is defined as follows. Let  $t \in \mathbb{T}^k$ , if there exists  $f^{\Delta}(t) \in \mathbb{R}$  such that for all  $\epsilon > 0$ , there exists a neighborhood U of t with

$$|f(\sigma(t)) - f(s) - f^{\Delta}(t)(\sigma(t) - s)| \le \epsilon |\sigma(t) - s|$$

for all  $s \in U$ , then f is said to be differentiable at t, and  $f^{\Delta}(t)$  is called the *delta derivative* of f at t. A function  $f : \mathbb{T} \to \mathbb{R}$  is said to be *right-dense continuous (rd-continuous)* if it is continuous at each right-dense point and there exists a finite left limit at every left-dense point. The set of all rd-continuous functions is denoted by  $C_{rd}(\mathbb{T}, \mathbb{R})$ . The next definition is given in [3, 7, 8].

**Definition 1.1.** A function  $F : \mathbb{T} \to \mathbb{R}$  is called a delta antiderivative of  $f : \mathbb{T} \to \mathbb{R}$  provided that  $F^{\Delta}(t) = f(t)$  holds for all  $t \in \mathbb{T}^k$ , then the delta integral of f is defined by

$$\int_{a}^{b} f(t)\Delta t = F(b) - F(a).$$

The following results of nabla calculus are taken from [3, 6, 7, 8].

If  $\mathbb{T}$  has a right-scattered minimum m, then  $\mathbb{T}_k = \mathbb{T} - \{m\}$ . Otherwise  $\mathbb{T}_k = \mathbb{T}$ . The function  $f : \mathbb{T} \to \mathbb{R}$  is called *nabla differentiable* at  $t \in \mathbb{T}_k$ , if there exists  $f^{\nabla}(t) \in \mathbb{R}$  with the following property: For any  $\epsilon > 0$ , there exists a neighborhood U of t, such that

$$|f(\rho(t)) - f(s) - f^{\nabla}(t)(\rho(t) - s)| \le \epsilon |\rho(t) - s|$$

for all  $s \in U$ . A function  $f : \mathbb{T} \to \mathbb{R}$  is *left-dense continuous or ld-continuous* provided it is continuous at left-dense points in  $\mathbb{T}$  and its right-sided limits exist (finite) at right-dense points in  $\mathbb{T}$ . The set of all ld-continuous functions is denoted by  $C_{ld}(\mathbb{T}, \mathbb{R})$ . The next definition is given in [3, 6, 7, 8].

**Definition 1.2.** A function  $G : \mathbb{T} \to \mathbb{R}$  is called a nabla antiderivative of  $g : \mathbb{T} \to \mathbb{R}$  provided that  $G^{\nabla}(t) = g(t)$  holds for all  $t \in \mathbb{T}_k$ , then the nabla integral of g is defined by

$$\int_{a}^{b} g(t)\nabla t = G(b) - G(a)$$

Now we present short introduction of diamond- $\alpha$  derivative as given in [3, 14]. Let  $\mathbb{T}$  be a time scale and f(t) be differentiable on  $\mathbb{T}$  in the  $\Delta$  and  $\nabla$  sense. For  $t \in \mathbb{T}_k^k$ , where  $\mathbb{T}_k^k = \mathbb{T}^k \cap \mathbb{T}_k$ , diamond- $\alpha$  derivative  $f^{\Diamond_{\alpha}}(t)$  is defined by

$$f^{\Diamond_{\alpha}}(t) = \alpha f^{\Delta}(t) + (1 - \alpha) f^{\nabla}(t) \quad 0 \le \alpha \le 1.$$

Thus f is diamond- $\alpha$  differentiable if and only if f is  $\Delta$  and  $\nabla$  differentiable. The diamond- $\alpha$  derivative reduces to the standard  $\Delta$ -derivative for  $\alpha = 1$ , or the standard  $\nabla$ -derivative for  $\alpha = 0$ . It represents a weighted dynamic derivative for  $\alpha \in (0, 1)$ .

**Theorem 1.3.** (Sheng et al. [14]) Let  $f, g: \mathbb{T} \to \mathbb{R}$  be diamond- $\alpha$  differentiable at  $t \in \mathbb{T}$ . Then

(i)  $f \pm g : \mathbb{T} \to \mathbb{R}$  is diamond- $\alpha$  differentiable at  $t \in \mathbb{T}$ , with

$$(f \pm g)^{\Diamond_{\alpha}}(t) = f^{\Diamond_{\alpha}}(t) \pm g^{\Diamond_{\alpha}}(t).$$

(*ii*)  $fg: \mathbb{T} \to \mathbb{R}$  is diamond- $\alpha$  differentiable at  $t \in \mathbb{T}$ , with

$$(fg)^{\diamond_{\alpha}}(t) = f^{\diamond_{\alpha}}(t)g(t) + \alpha f^{\sigma}(t)g^{\Delta}(t) + (1-\alpha)f^{\rho}(t)g^{\nabla}(t)$$

(*iii*) For  $g(t)g^{\sigma}(t)g^{\rho}(t) \neq 0$ ,  $\frac{f}{g}: \mathbb{T} \to \mathbb{R}$  is diamond- $\alpha$  differentiable at  $t \in \mathbb{T}$ , with

$$\left(\frac{f}{g}\right)^{\diamond_{\alpha}}(t) = \frac{f^{\diamond_{\alpha}}(t)g^{\sigma}(t)g^{\rho}(t) - \alpha f^{\sigma}(t)g^{\rho}(t)g^{\Delta}(t) - (1-\alpha)f^{\rho}(t)g^{\sigma}(t)g^{\nabla}(t)}{g(t)g^{\sigma}(t)g^{\rho}(t)}.$$

**Definition 1.4.** (Sheng et al. [14]) Let  $f : \mathbb{T} \to \mathbb{R}$  be diamond- $\alpha$  differentiable at  $t \in \mathbb{T}$ . Then:

(i) 
$$(f)^{\Diamond_{\alpha}\Delta}(t) = \alpha f^{\Delta\Delta}(t) + (1-\alpha)f^{\nabla\Delta}(t);$$

(*ii*) 
$$(f)^{\Diamond_{\alpha}\nabla}(t) = \alpha f^{\Delta\nabla}(t) + (1-\alpha)f^{\nabla\nabla}(t);$$

(*iii*) 
$$(f)^{\Delta\Diamond_{\alpha}}(t) = \alpha f^{\Delta\Delta}(t) + (1-\alpha)f^{\Delta\nabla}(t) \neq (f)^{\Diamond_{\alpha}\Delta}(t)$$

$$(iv) \ (f)^{\nabla \Diamond_{\alpha}}(t) = \alpha f^{\nabla \Delta}(t) + (1 - \alpha) f^{\nabla \nabla}(t) \neq (f)^{\Diamond_{\alpha} \nabla}(t);$$

 $\begin{aligned} (v) \ \ (f)^{\Diamond_{\alpha}\Diamond_{\alpha}}(t) &= \alpha^2 f^{\Delta\Delta}(t) + \alpha(1-\alpha)[f^{\Delta\nabla}(t) + f^{\nabla\Delta}(t)] + (1-\alpha)^2 f^{\nabla\nabla}(t) \\ &\neq \alpha^2 f^{\Delta\Delta}(t) + (1-\alpha)^2 f^{\nabla\nabla}(t). \end{aligned}$ 

**Theorem 1.5.** (Sheng et al. [14]) Let  $a, t \in \mathbb{T}$ , and  $h : \mathbb{T} \to \mathbb{R}$ . Then, the diamond- $\alpha$  integral from a to t of h is defined by

$$\int_{a}^{t} h(s) \diamondsuit_{\alpha} s = \alpha \int_{a}^{t} h(s) \Delta s + (1 - \alpha) \int_{a}^{t} h(s) \nabla s \quad 0 \le \alpha \le 1,$$

provided that there exist delta and nabla integrals of h on  $\mathbb{T}$ .

**Theorem 1.6.** (Sheng et al. [14]) Let  $a, b, t \in \mathbb{T}$ ,  $c \in \mathbb{R}$ . Assume that f(s) and g(s) are  $\Diamond_{\alpha}$ -integrable functions on  $[a, b]_{\mathbb{T}}$ , then

(i) 
$$\int_{a}^{t} [f(s) \pm g(s)] \Diamond_{\alpha} s = \int_{a}^{t} f(s) \Diamond_{\alpha} s \pm \int_{a}^{t} g(s) \Diamond_{\alpha} s;$$

(*ii*) 
$$\int_{a}^{n} cf(s) \diamondsuit_{\alpha} s = c \int_{a}^{n} f(s) \diamondsuit_{\alpha} s;$$

(*iii*) 
$$\int_a^t f(s) \diamondsuit_\alpha s = -\int_t^a f(s) \diamondsuit_\alpha s;$$

$$(iv) \quad \int_{a}^{t} f(s) \Diamond_{\alpha} s = \int_{a}^{b} f(s) \ \Diamond_{\alpha} s + \int_{b}^{t} f(s) \Diamond_{\alpha} s;$$
$$(v) \quad \int_{a}^{a} f(s) \Diamond_{\alpha} s = 0.$$

**Corollary 1.7.** (Sheng et al. [14]) Let  $t \in \mathbb{T}_k^k$  and  $f : \mathbb{T} \to \mathbb{R}$ . Then

$$\int_{t}^{\sigma(t)} f(s) \, \Diamond_{\alpha}(s) = \mu(t) [\alpha f(t) + (1 - \alpha) f^{\sigma}(t)]$$

and

$$\int_{\rho(t)}^{t} f(s) \, \Diamond_{\alpha}(s) = \nu(t) [\alpha f^{\rho}(t) + (1-\alpha)f(t)]$$

The following result is given in [1, page 147].

**Theorem 1.8.** If for positive values of sets of  $f_i, g_i, h_i$  with condition  $f_i g_i h_i = 1$  for i = 1, ..., n, and the nonzero real numbers p, q and r satisfy  $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 0$ , then the following inequality holds

$$\left(\sum_{i=1}^{n} f_{i}^{p}\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} g_{i}^{q}\right)^{\frac{1}{q}} \left(\sum_{i=1}^{n} h_{i}^{r}\right)^{\frac{1}{r}} \ge 1,$$
(1.1)

if all but one of p, q and r are positive. Inequality (1.1) is reversed if all but one of p, q and r are negative for positive values of sets of  $f_i$ ,  $g_i$  and  $h_i$ .

The upcoming theorem is given in [4].

**Theorem 1.9.** Let p, q,  $a_k$  and  $b_k$  (k = 1, 2, ..., n) are positive real numbers, then

$$\left(\sum_{k=1}^{n} a_k b_k\right)^{\frac{1}{p} + \frac{1}{q}} \le \left(\sum_{k=1}^{n} a_k^p \sum_{k=1}^{n} a_k^{2-p} b_k^2\right)^{\frac{1}{2p}} \left(\sum_{k=1}^{n} b_k^q \sum_{k=1}^{n} a_k^2 b_k^{2-q}\right)^{\frac{1}{2q}}.$$
(1.2)

The sign of equality holds in (1.2) if and only if there exist real constants  $C_1$  and  $C_2$  such that  $a_k^{p-1} = C_1 b_k$  and  $b_k^{q-1} = C_2 a_k$ , (k = 1, ..., n).

Inequalities (1.1) and (1.2) can be unified and extended in weighted form on dynamic time scales which was initiated by Stefan Hilger given in [11]. Our aim is to present these applications of Rogers– Hölder's inequalities on diamond– $\alpha$  calculus. Discrete form of Hölder's inequality is given in [12] and found separately by Rogers and Hölder. Integral form of classical Rogers–Hölder's inequality on time scale calculus is given in [2, 3].

**Theorem 1.10.** (Agarwal et al. [3]) Let  $a, b \in \mathbb{T}$  with a < b and let  $f, g \in C([a, b]_{\mathbb{T}}, \mathbb{R})$  be  $\Diamond_{\alpha}$ integrable functions. If  $\frac{1}{p} + \frac{1}{q} = 1$ , with p > 1, then

$$\int_{a}^{b} |f(t)g(t)| \diamondsuit_{\alpha} t \le \left(\int_{a}^{b} |f(t)|^{p} \diamondsuit_{\alpha} t\right)^{\frac{1}{p}} \left(\int_{a}^{b} |g(t)|^{q} \diamondsuit_{\alpha} t\right)^{\frac{1}{q}}.$$
(1.3)

**Theorem 1.11.** (Agarwal et al. [3]) Let  $a, b \in \mathbb{T}$  with a < b and let  $h, f, g \in C([a, b]_{\mathbb{T}}, \mathbb{R})$  be  $\Diamond_{\alpha}$ -integrable functions. If  $\frac{1}{p} + \frac{1}{q} = 1$ , with p > 1, then

$$\int_{a}^{b} |h(t)| |f(t)g(t)| \diamond_{\alpha} t \leq \left( \int_{a}^{b} |h(t)| |f(t)|^{p} \diamond_{\alpha} t \right)^{\frac{1}{p}} \left( \int_{a}^{b} |h(t)| |g(t)|^{q} \diamond_{\alpha} t \right)^{\frac{1}{q}}.$$
(1.4)

In the case when p = q = 2, then Rogers–Hölder's inequality reduces to the following diamond– $\alpha$ Cauchy–Schwarz's inequality on time scales as

$$\int_{a}^{b} |h(t)| |f(t)g(t)| \Diamond_{\alpha} t \leq \sqrt{\left(\int_{a}^{b} |h(t)| |f(t)|^{2} \Diamond_{\alpha} t\right) \left(\int_{a}^{b} |h(t)| |g(t)|^{2} \Diamond_{\alpha} t\right)}.$$
(1.5)

**Theorem 1.12.** (Chen et al. [9]) Let  $a, b \in \mathbb{T}$  with a < b and let  $f_i \in C([a, b]_{\mathbb{T}}, \mathbb{R}), i = 1, ..., n$  be  $\Diamond_{\alpha}$ -integrable functions and  $p_i > 1$  such that  $\sum_{i=1}^{n} \frac{1}{p_i} = 1$ . Then

$$\int_{a}^{b} \prod_{i=1}^{n} |f_i(t)| \Diamond_{\alpha} t \leq \prod_{i=1}^{n} \left( \int_{a}^{b} |f_i(t)|^{p_i} \Diamond_{\alpha} t \right)^{\frac{1}{p_i}},$$
(1.6)

which is generalized Rogers-Hölder's Inequality.

# 2. Main Results

Our first main result is proved for different conditions imposed on p, q and r as p > 0, q > 0 but r < 0; p > 0, r > 0 but q < 0 or q > 0, r > 0 but p < 0 and is reversed if q < 0, r < 0 but p > 0; p < 0, r < 0 but q > 0 or p < 0, q < 0 but r > 0 in upcoming theorem.

**Theorem 2.1.** Let  $h, f_i \in C([a, b]_{\mathbb{T}}, \mathbb{R})$  be  $\Diamond_{\alpha}$ -integrable functions for i = 1, 2, 3 and p, q and r be three nonzero real numbers with  $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 0$ . Further assume that  $\prod_{i=1}^{3} f_i(x) = 1$ .

(i) If p > 0, q > 0 but r < 0, then

$$\left(\int_{a}^{b} |h(x)| |f_{1}(x)|^{p} \Diamond_{\alpha} x\right)^{\frac{1}{p}} \left(\int_{a}^{b} |h(x)| |f_{2}(x)|^{q} \Diamond_{\alpha} x\right)^{\frac{1}{q}} \left(\int_{a}^{b} |h(x)| |f_{3}(x)|^{r} \Diamond_{\alpha} x\right)^{\frac{1}{r}} \ge 1.$$
(2.1)

(*ii*) If q < 0, r < 0 but p > 0, then

$$\left(\int_{a}^{b} |h(x)| |f_{1}(x)|^{p} \Diamond_{\alpha} x\right)^{\frac{1}{p}} \left(\int_{a}^{b} |h(x)| |f_{2}(x)|^{q} \Diamond_{\alpha} x\right)^{\frac{1}{q}} \left(\int_{a}^{b} |h(x)| |f_{3}(x)|^{r} \Diamond_{\alpha} x\right)^{\frac{1}{r}} \le 1.$$
(2.2)

**Proof**. To prove (i), given condition  $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 0$  can be rearranged as  $\frac{1}{(-\frac{p}{r})} + \frac{1}{(-\frac{q}{r})} = 1$ . Let  $P = -\frac{p}{r} > 1$ ,  $Q = -\frac{q}{r} > 1$ . Applying Rogers–Hölder's inequality, we have

$$\int_{a}^{b} |h(x)| |f_{1}(x)f_{2}(x)| \diamondsuit_{\alpha} x \le \left( \int_{a}^{b} |h(x)| |f_{1}(x)|^{P} \diamondsuit_{\alpha} x \right)^{\frac{1}{P}} \left( \int_{a}^{b} |h(x)| |f_{2}(x)|^{Q} \diamondsuit_{\alpha} x \right)^{\frac{1}{Q}},$$

and

$$\int_{a}^{b} |h(x)| |f_{1}(x)f_{2}(x)| \diamond_{\alpha} x \leq \left(\int_{a}^{b} |h(x)| |f_{1}(x)|^{-\frac{p}{r}} \diamond_{\alpha} x\right)^{-\frac{r}{p}} \left(\int_{a}^{b} |h(x)| |f_{2}(x)|^{-\frac{q}{r}} \diamond_{\alpha} x\right)^{-\frac{r}{q}}.$$
 (2.3)

By replacing  $|f_1(x)|$  by  $|f_1(x)|^{-r}$  and  $|f_2(x)|$  by  $|f_2(x)|^{-r}$  and taking power  $-\frac{1}{r} > 0$ , (2.3) takes the form

$$\left(\int_{a}^{b} |h(x)| |f_{1}(x)f_{2}(x)|^{-r} \Diamond_{\alpha} x\right)^{-\frac{1}{r}} \leq \left(\int_{a}^{b} |h(x)| |f_{1}(x)|^{p} \Diamond_{\alpha} x\right)^{\frac{1}{p}} \left(\int_{a}^{b} |h(x)| |f_{2}(x)|^{q} \Diamond_{\alpha} x\right)^{\frac{1}{q}}.$$
 (2.4)  
 $f_{1}(x)f_{2}(x)f_{2}(x) = 1$  then (2.4) takes the form

As  $f_1(x)f_2(x)f_3(x) = 1$ , then (2.4) takes the form

$$\left(\int_{a}^{b} |h(x)| |f_{3}(x)|^{r} \Diamond_{\alpha} x\right)^{-\frac{1}{r}} \leq \left(\int_{a}^{b} |h(x)| |f_{1}(x)|^{p} \Diamond_{\alpha} x\right)^{\frac{1}{p}} \left(\int_{a}^{b} |h(x)| |f_{2}(x)|^{q} \Diamond_{\alpha} x\right)^{\frac{1}{q}}$$
  
lows inequality (2.1)

This follows inequality (2.1).

Now to prove (*ii*), the given condition  $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 0$  can be rearranged as  $\frac{1}{(-\frac{q}{p})} + \frac{1}{(-\frac{r}{p})} = 1$ . Let  $P = -\frac{q}{p} > 1$ ,  $Q = -\frac{r}{p} > 1$ . Applying Rogers–Hölder's inequality, we get

$$\int_{a}^{b} |h(x)| |f_{2}(x)f_{3}(x)| \Diamond_{\alpha} x \le \left(\int_{a}^{b} |h(x)| |f_{2}(x)|^{-\frac{q}{p}} \Diamond_{\alpha} x\right)^{-\frac{p}{q}} \left(\int_{a}^{b} |h(x)| |f_{3}(x)|^{-\frac{r}{p}} \Diamond_{\alpha} x\right)^{-\frac{p}{r}}$$

and then replacing  $|f_2(x)|$  by  $|f_2(x)|^{-p}$  and  $|f_3(x)|$  by  $|f_3(x)|^{-p}$  and taking power  $-\frac{1}{p} < 0$ , we get required inequality (2.2). This completes the proof.  $\Box$ 

Now we generalize the inequalities (2.1) and (2.2) in upcoming theorem.

**Theorem 2.2.** Let  $h, f_i \in C([a, b]_{\mathbb{T}}, \mathbb{R})$  be  $\Diamond_{\alpha}$ -integrable functions for i = 1, 2, ..., n and  $p_i$  be nonzero real numbers with  $\sum_{i=1}^{n} \frac{1}{p_i} = 0$ . Further assume that  $\prod_{i=1}^{n} f_i(x) = 1$ .

(i) If all  $p_i$  for i = 1, 2, ..., n but one are positive, then

$$\prod_{i=1}^{n} \left( \int_{a}^{b} |h(x)| |f_{i}(x)|^{p_{i}} \Diamond_{\alpha} x \right)^{\frac{1}{p_{i}}} \ge 1.$$
(2.5)

(ii) If all  $p_i$  for i = 1, 2, ..., n but one are negative, then

$$\prod_{i=1}^{n} \left( \int_{a}^{b} |h(x)| |f_{i}(x)|^{p_{i}} \Diamond_{\alpha} x \right)^{\frac{1}{p_{i}}} \leq 1.$$
(2.6)

**Proof**. To prove (i), the given condition becomes  $\sum_{i=1}^{n-1} \frac{1}{p_i} + \frac{1}{p_n} = 0$  can be rearranged as  $\sum_{i=1}^{n-1} \frac{1}{(-\frac{p_i}{p_n})} = 1$ , where all  $p_i$  are positive for  $i = 1, \ldots, n-1$  but  $p_n$  is negative. Let  $P_i = -\frac{p_i}{p_n} > 1$  for  $i = 1, \ldots, n-1$ . Applying generalized Rogers-Hölder's inequality, we have

$$\int_{a}^{b} |h(x)| \prod_{i=1}^{n-1} |f_{i}(x)| \Diamond_{\alpha} x \leq \prod_{i=1}^{n-1} \left( \int_{a}^{b} |h(x)| |f_{i}(x)|^{P_{i}} \Diamond_{\alpha} x \right)^{\frac{1}{P_{i}}}$$

and

$$\int_{a}^{b} |h(x)| \prod_{i=1}^{n-1} |f_{i}(x)| \diamondsuit_{\alpha} x \leq \prod_{i=1}^{n-1} \left( \int_{a}^{b} |h(x)| |f_{i}(x)|^{-\frac{p_{i}}{p_{n}}} \diamondsuit_{\alpha} x \right)^{-\frac{p_{n}}{p_{i}}}.$$
(2.7)

By replacing  $|f_i(x)|$  by  $|f_i(x)|^{-p_n}$  for i = 1, ..., n-1 and taking power  $-\frac{1}{p_n} > 0$ , (2.7) takes the form

$$\left(\int_{a}^{b} |h(x)| \prod_{i=1}^{n-1} |f_{i}(x)|^{-p_{n}} \Diamond_{\alpha} x\right)^{-\frac{1}{p_{n}}} \leq \prod_{i=1}^{n-1} \left(\int_{a}^{b} |h(x)| |f_{i}(x)|^{p_{i}} \Diamond_{\alpha} x\right)^{\frac{1}{p_{i}}}.$$
(2.8)

Applying condition  $\prod_{i=1}^{n} f_i(x) = 1$ , (2.8) takes the form

$$\left(\int_{a}^{b} |h(x)| |f_{n}(x)|^{p_{n}} \Diamond_{\alpha} x\right)^{-\frac{1}{p_{n}}} \leq \prod_{i=1}^{n-1} \left(\int_{a}^{b} |h(x)| |f_{i}(x)|^{p_{i}} \Diamond_{\alpha} x\right)^{\frac{1}{p_{i}}}$$

This follows inequality (2.5).

Now to prove (*ii*), the given condition  $\sum_{i=1}^{n-1} \frac{1}{p_i} + \frac{1}{p_n} = 0$  can be rearranged as  $\sum_{i=1}^{n-1} \frac{1}{(-\frac{p_i}{p_n})} = 1$ , where all  $p_i$  for i = 1, ..., n-1 are negative but  $p_n$  is positive. Let  $P_i = -\frac{p_i}{p_n} > 1$  for i = 1, ..., n-1. Applying Rogers–Hölder's inequality, we get

$$\int_{a}^{b} |h(x)| \prod_{i=1}^{n-1} |f_{i}(x)| \Diamond_{\alpha} x \leq \prod_{i=1}^{n-1} \left( \int_{a}^{b} |h(x)| |f_{i}(x)|^{-\frac{p_{i}}{p_{n}}} \Diamond_{\alpha} x \right)^{-\frac{p_{n}}{p_{i}}}$$

and then replacing  $|f_i(x)|$  by  $|f_i(x)|^{-p_n}$  and taking power  $-\frac{1}{p_n} < 0$ , we get required inequality (2.6).

As diamond- $\alpha$  integral is the combination of delta and nabla integrals. Now we present our results on delta and nabla calculus.

**Corollary 2.3.** Let  $h, f_i \in C_{rd}([a, b]_{\mathbb{T}}, \mathbb{R})$  for i = 1, 2, 3 and p, q and r be three nonzero real numbers with  $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 0$ . Further assume that  $\prod_{i=1}^{3} f_i(x) = 1$ .

(i) If p > 0, q > 0 but r < 0; p > 0, r > 0 but q < 0 or q > 0, r > 0 but p < 0, then

$$\left(\int_{a}^{b} |h(x)| |f_{1}(x)|^{p} \Delta x\right)^{\frac{1}{p}} \left(\int_{a}^{b} |h(x)| |f_{2}(x)|^{q} \Delta x\right)^{\frac{1}{q}} \left(\int_{a}^{b} |h(x)| |f_{3}(x)|^{r} \Delta x\right)^{\frac{1}{r}} \geq 1.$$
(2.9)

(ii) If q < 0, r < 0 but p > 0; p < 0, r < 0 but q > 0 or p < 0, q < 0 but r > 0, then

$$\left(\int_{a}^{b} |h(x)| |f_{1}(x)|^{p} \Delta x\right)^{\frac{1}{p}} \left(\int_{a}^{b} |h(x)| |f_{2}(x)|^{q} \Delta x\right)^{\frac{1}{q}} \left(\int_{a}^{b} |h(x)| |f_{3}(x)|^{r} \Delta x\right)^{\frac{1}{r}} \leq 1. \quad (2.10)$$

**Remark 2.4.** If  $\mathbb{T} = \mathbb{Z}$  and h(x) = 1, then (2.9) takes its discrete form for positive values of sets of  $f_i, g_i, h_i$  with condition  $f_i g_i h_i = 1$  for i = 1, ..., n, which is given in (1.1). Moreover, if  $\mathbb{T} = \mathbb{Z}$ , then (2.10) takes reverse discrete form of (1.1).

**Remark 2.5.** As for  $\mathbb{T} = \mathbb{R}$ , we have

$$\int_a^b \cdot \Delta x = \int_a^b \cdot dx$$

Therefore we can get continuous versions of (2.9) and (2.10), respectively in next corollary.

**Corollary 2.6.** Let  $h, f_i \in C_{ld}([a, b]_{\mathbb{T}}, \mathbb{R})$  for i = 1, 2, 3 and p, q and r be three nonzero real numbers with  $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 0$ . Further assume that  $\prod_{i=1}^{3} f_i(x) = 1$ .

(i) If p > 0, q > 0 but r < 0; p > 0, r > 0 but q < 0 or q > 0, r > 0 but p < 0, then

$$\left(\int_{a}^{b} |h(x)| |f_{1}(x)|^{p} \nabla x\right)^{\frac{1}{p}} \left(\int_{a}^{b} |h(x)| |f_{2}(x)|^{q} \nabla x\right)^{\frac{1}{q}} \left(\int_{a}^{b} |h(x)| |f_{3}(x)|^{r} \nabla x\right)^{\frac{1}{r}} \geq 1. \quad (2.11)$$

(ii) If q < 0, r < 0 but p > 0; p < 0, r < 0 but q > 0 or p < 0, q < 0 but r > 0, then

$$\left(\int_{a}^{b} |h(x)| |f_{1}(x)|^{p} \nabla x\right)^{\frac{1}{p}} \left(\int_{a}^{b} |h(x)| |f_{2}(x)|^{q} \nabla x\right)^{\frac{1}{q}} \left(\int_{a}^{b} |h(x)| |f_{3}(x)|^{r} \nabla x\right)^{\frac{1}{r}} \leq 1. \quad (2.12)$$

Now second part of our main results is started. The following inequality is a weighted symmetric form of Rogers–Holder's inequality.

**Theorem 2.7.** Let  $h, f, g \in C([a, b]_{\mathbb{T}}, \mathbb{R})$  be  $\Diamond_{\alpha}$ -integrable functions.

(i) Take p, q and r three nonzero positive real numbers. Then the following inequality holds

$$\left(\int_{a}^{b} |h(x)||f(x)g(x)|\Diamond_{\alpha}x\right)^{\frac{r}{p}+\frac{r}{q}} \leq \left(\int_{a}^{b} |h(x)||f(x)|^{\frac{p}{r}}\Diamond_{\alpha}x\int_{a}^{b} |h(x)||f(x)|^{2-\frac{p}{r}}|g(x)|^{2}\Diamond_{\alpha}x\right)^{\frac{r}{2q}} \\ \times \left(\int_{a}^{b} |h(x)||g(x)|^{\frac{q}{r}}\Diamond_{\alpha}x\int_{a}^{b} |h(x)||g(x)|^{2-\frac{q}{r}}|f(x)|^{2}\Diamond_{\alpha}x\right)^{\frac{r}{2q}}; \quad (2.13)$$

(ii) Take p and q are positive real numbers and r be negative. Then the following reverse inequality holds

$$\left(\int_{a}^{b} |h(x)||f(x)g(x)|\Diamond_{\alpha}x\right)^{\frac{r}{p}+\frac{r}{q}} \ge \left(\int_{a}^{b} |h(x)||f(x)|^{\frac{p}{r}}\Diamond_{\alpha}x\int_{a}^{b} |h(x)||f(x)|^{2-\frac{p}{r}}|g(x)|^{2}\Diamond_{\alpha}x\right)^{\frac{r}{2p}} \times \left(\int_{a}^{b} |h(x)||g(x)|^{\frac{q}{r}}\Diamond_{\alpha}x\int_{a}^{b} |h(x)||g(x)|^{2-\frac{q}{r}}|f(x)|^{2}\Diamond_{\alpha}x\right)^{\frac{r}{2q}} (2.14)$$

and sign of equality holds in (2.13) and (2.14), if  $|f(x)|^{\frac{p}{r}-1} = |Cg(x)|$  and  $|g(x)|^{\frac{q}{r}-1} = |Df(x)|$ , where |C| and |D| are two real numbers.

**Proof**. For the proof of (i), we can write

$$\left(\int_{a}^{b}|h(x)||f(x)g(x)|\Diamond_{\alpha}x\right)^{2}$$

$$=\left(\int_{a}^{b}|h(x)||f(x)|^{\frac{p}{2r}}|f(x)|^{1-\frac{p}{2r}}|g(x)|\Diamond_{\alpha}x\right)^{2}$$

$$\leq\left(\int_{a}^{b}|h(x)||f(x)|^{\frac{p}{r}}\Diamond_{\alpha}x\right)\left(\int_{a}^{b}|h(x)||f(x)|^{2(1-\frac{p}{2r})}|g(x)|^{2}\Diamond_{\alpha}x\right)$$

$$=\left(\int_{a}^{b}|h(x)||f(x)|^{\frac{p}{r}}\Diamond_{\alpha}x\right)\left(\int_{a}^{b}|h(x)||f(x)|^{2-\frac{p}{r}}|g^{2}(x)|\Diamond_{\alpha}x\right).$$

As  $\frac{r}{p} > 0$ , then by taking power  $\frac{r}{p}$  on both sided we obtain

$$\left(\int_{a}^{b} |h(x)| |f(x)g(x)| \diamondsuit_{\alpha} x\right)^{\frac{r}{p}} \le \left(\int_{a}^{b} |h(x)| |f(x)|^{\frac{p}{r}} \diamondsuit_{\alpha} x \int_{a}^{b} |h(x)| |f(x)|^{2-\frac{p}{r}} |g(x)|^{2} \diamondsuit_{\alpha} x\right)^{\frac{r}{2p}}.$$
 (2.15)

Similarly, we can write

$$\left(\int_{a}^{b} |h(x)| |f(x)g(x)| \Diamond_{\alpha} x\right)^{\frac{r}{q}} \le \left(\int_{a}^{b} |h(x)| |g(x)|^{\frac{q}{r}} \Diamond_{\alpha} x \int_{a}^{b} |h(x)| |g(x)|^{2-\frac{q}{r}} |f(x)|^{2} \Diamond_{\alpha} x\right)^{\frac{r}{2q}}.$$
 (2.16)

Combining (2.15) and (2.16), we get (2.13). If p and q are positive real numbers and r be negative, then (2.14) is clear. Clearly the sign of equality holds in (2.13) and (2.14), if  $|f(x)|_{r}^{\frac{p}{r}-1} = |Cg(x)|$  and  $|g(x)|_{r}^{\frac{q}{r}-1} = |Df(x)|$ , where |C| and |D| are two real numbers.  $\Box$ 

**Remark 2.8.** If  $\frac{p}{r} = \frac{q}{r} = 2$ , then (2.13) reduces to (1.5).

Remark 2.9. Further by using GM-AM inequality, (2.13) can be written as

$$\left(\int_{a}^{b} |h(x)||f(x)g(x)|\Diamond_{\alpha}x\right)^{\frac{r}{p}+\frac{r}{q}} \leq \frac{1}{2} \left(\int_{a}^{b} |h(x)||f(x)|^{\frac{p}{r}}\Diamond_{\alpha}x\right)^{\frac{r}{p}} \left(\int_{a}^{b} |h(x)||g(x)|^{\frac{q}{r}}\Diamond_{\alpha}x\right)^{\frac{r}{q}} + \frac{1}{2} \left(\int_{a}^{b} |h(x)||f(x)|^{2-\frac{p}{r}}|g(x)|^{2}\Diamond_{\alpha}x\right)^{\frac{r}{p}} \left(\int_{a}^{b} |h(x)||g(x)|^{2-\frac{q}{r}}|f(x)|^{2}\Diamond_{\alpha}x\right)^{\frac{r}{q}}.$$
 (2.17)

**Remark 2.10.** If  $\alpha = 1$ , r = 1, h(x) = 1,  $\frac{1}{p} + \frac{1}{q} < 1$  and  $\mathbb{T} = \mathbb{Z}$  and  $p, q, f_k$  and  $g_k$  (k = 1, 2, ..., n) are positive real numbers, then discrete version of (2.17) can be written as

$$\left(\sum_{k=1}^{n} f_k g_k\right)^{\frac{1}{p} + \frac{1}{q}} \le \frac{1}{2} \left( \left(\sum_{k=1}^{n} f_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} g_k^q\right)^{\frac{1}{q}} + \left(\sum_{k=1}^{n} f_k^{2-p} g_k^2\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} f_k^2 g_k^{2-q}\right)^{\frac{1}{q}} \right)^{\frac{1}{q}} \right)$$

as given in [10, 13].

Now we present delta and nabla versions of Theorem 2.7.

**Corollary 2.11.** Let  $h, f, g \in C_{rd}([a, b]_{\mathbb{T}}, \mathbb{R})$ . Take p, q and r three positive real numbers. Then the following inequality holds

$$\left(\int_{a}^{b} |h(x)||f(x)g(x)|\Delta x\right)^{\frac{r}{p}+\frac{r}{q}} \leq \left(\int_{a}^{b} |h(x)||f(x)|^{\frac{p}{r}}\Delta x \int_{a}^{b} |h(x)||f(x)|^{2-\frac{p}{r}}|g(x)|^{2}\Delta x\right)^{\frac{r}{2p}} \times \left(\int_{a}^{b} |h(x)||g(x)|^{\frac{q}{r}}\Delta x \int_{a}^{b} |h(x)||g(x)|^{2-\frac{q}{r}}|f(x)|^{2}\Delta x\right)^{\frac{r}{2q}}, \quad (2.18)$$

and sign of equality holds if  $|f(x)|_{r}^{\frac{p}{r}-1} = |Cg(x)|$  and  $|g(x)|_{r}^{\frac{q}{r}-1} = |Df(x)|$ , where |C| and |D| are two real numbers.

**Remark 2.12.** If  $\mathbb{T} = \mathbb{Z}$ , r = 1 and h(x) = 1, then we get discrete version of (2.18) as given in (1.2). And if  $\mathbb{T} = \mathbb{R}$ , then we get continuous version of (2.18).

**Corollary 2.13.** Let  $h, f, g \in C_{ld}([a, b]_{\mathbb{T}}, \mathbb{R})$ . Take p, q and r three positive real numbers. Then the following inequality holds

$$\left(\int_{a}^{b} |h(x)||f(x)g(x)|\nabla x\right)^{\frac{r}{p}+\frac{r}{q}} \leq \left(\int_{a}^{b} |h(x)||f(x)|^{\frac{p}{r}} \nabla x \int_{a}^{b} |h(x)||f(x)|^{2-\frac{p}{r}} |g(x)|^{2} \nabla x\right)^{\frac{r}{2q}} \times \left(\int_{a}^{b} |h(x)||g(x)|^{\frac{q}{r}} \nabla x \int_{a}^{b} |h(x)||g(x)|^{2-\frac{q}{r}} |f(x)|^{2} \nabla x\right)^{\frac{r}{2q}}, \quad (2.19)$$

and sign of equality holds if  $|f(x)|_{r}^{\frac{p}{r}-1} = |Cg(x)|$  and  $|g(x)|_{r}^{\frac{q}{r}-1} = |Df(x)|$ , where |C| and |D| are two real numbers.

**Remark 2.14.** Let  $h, f, g \in C([a, b]_{\mathbb{T}}, \mathbb{R})$ . Let p, q be positive real numbers and r be negative. Then inequalities (2.18) and (2.19) will be reversed.

To conclude this paper, we present two dimensional inequalities. Our results in two dimensional case are given in next section.

# 3. Two Dimensional Symmetric Rogers-Hölder's Weighted Inequalities

**Theorem 3.1.** Let  $h, f_i \in C([a, b]_{\mathbb{T}} \times [a, b]_{\mathbb{T}}, \mathbb{R})$  be  $\Diamond_{\alpha}$ -integrable functions for i = 1, 2, 3 and p, qand r be three nonzero real numbers with  $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 0$ . Further assume that  $\prod_{i=1}^{3} f_i(x, y) = 1$ . (i) If p > 0, q > 0 but r < 0; p > 0, r > 0 but q < 0 or q > 0, r > 0 but p < 0, then

$$\left(\int_{a}^{b}\int_{a}^{b}|h(x,y)||f_{1}(x,y)|^{p}\Diamond_{\alpha}x\Diamond_{\alpha}y\right)^{\frac{1}{p}}$$

$$\times\left(\int_{a}^{b}\int_{a}^{b}|h(x,y)||f_{2}(x,y)|^{q}\Diamond_{\alpha}x\Diamond_{\alpha}y\right)^{\frac{1}{q}}\left(\int_{a}^{b}\int_{a}^{b}|h(x,y)||f_{3}(x,y)|^{r}\Diamond_{\alpha}x\Diamond_{\alpha}y\right)^{\frac{1}{r}} \ge 1. \quad (3.1)$$

$$(ii) If q < 0, r < 0 but p > 0; p < 0, r < 0 but q > 0 or p < 0, q < 0 but r > 0, then$$

$$\left(\int_{a}^{b}\int_{a}^{b}|h(x,y)||f_{1}(x,y)|^{p}\Diamond_{\alpha}x\Diamond_{\alpha}y\right)^{\frac{1}{p}} \times \left(\int_{a}^{b}\int_{a}^{b}|h(x,y)||f_{2}(x,y)|^{q}\Diamond_{\alpha}x\Diamond_{\alpha}y\right)^{\frac{1}{q}} \left(\int_{a}^{b}\int_{a}^{b}|h(x,y)||f_{3}(x,y)|^{r}\Diamond_{\alpha}x\Diamond_{\alpha}y\right)^{\frac{1}{r}} \leq 1. \quad (3.2)$$
**f** Similar to proof of Theorem 2.1 \[\sigma\]

**Proof** . Similar to proof of Theorem 2.1.  $\Box$ 

**Theorem 3.2.** Let  $h, f, g \in C([a, b]_{\mathbb{T}} \times [a, b]_{\mathbb{T}}, \mathbb{R})$  be  $\Diamond_{\alpha}$ -integrable functions. (i) Let p, q and r be positive real numbers. Then the following inequality holds

$$\left(\int_{a}^{b}\int_{a}^{b}|h(x,y)||f(x,y)g(x,y)|\Diamond_{\alpha}x\Diamond_{\alpha}y\right)^{\frac{r}{p}+\frac{r}{q}}$$

$$\leq \left(\int_{a}^{b}\int_{a}^{b}|h(x,y)||f(x,y)|^{\frac{p}{r}}\Diamond_{\alpha}x\Diamond_{\alpha}y\int_{a}^{b}\int_{a}^{b}|h(x,y)||f(x,y)|^{2-\frac{p}{r}}|g(x,y)|^{2}\Diamond_{\alpha}x\Diamond_{\alpha}y\right)^{\frac{r}{2p}}$$

$$\times \left(\int_{a}^{b}\int_{a}^{b}|h(x,y)||g(x,y)|^{\frac{q}{r}}\Diamond_{\alpha}x\Diamond_{\alpha}y\int_{a}^{b}\int_{a}^{b}|h(x,y)||g(x,y)|^{2-\frac{q}{r}}|f(x,y)|^{2}\Diamond_{\alpha}x\Diamond_{\alpha}y\right)^{\frac{r}{2q}} (3.3)$$

and sign of equality holds if  $|f(x,y)|^{\frac{p}{r}-1} = |Cg(x,y)|$  and  $|g(x,y)|^{\frac{q}{r}-1} = |Df(x,y)|$ , where |C| and |D| are two real numbers.

(ii) Let p and q be positive real numbers and r be negative. Then the following reverse inequality holds

$$\begin{split} \left(\int_{a}^{b}\int_{a}^{b}|h(x,y)||f(x,y)g(x,y)|\Diamond_{\alpha}x\Diamond_{\alpha}y\right)^{\frac{r}{p}+\frac{r}{q}} \\ &\geq \left(\int_{a}^{b}\int_{a}^{b}|h(x,y)||f(x,y)|^{\frac{p}{r}}\Diamond_{\alpha}x\Diamond_{\alpha}y\int_{a}^{b}\int_{a}^{b}|h(x,y)||f(x,y)|^{2-\frac{p}{r}}|g(x,y)|^{2}\Diamond_{\alpha}x\Diamond_{\alpha}y\right)^{\frac{r}{2p}} \\ &\times \left(\int_{a}^{b}\int_{a}^{b}|h(x,y)||g(x,y)|^{\frac{q}{r}}\Diamond_{\alpha}x\Diamond_{\alpha}y\int_{a}^{b}\int_{a}^{b}|h(x,y)||g(x,y)|^{2-\frac{q}{r}}|f(x,y)|^{2}\Diamond_{\alpha}x\Diamond_{\alpha}y\right)^{\frac{r}{2q}} \end{split}$$

and sign of equality holds if  $|f(x,y)|^{\frac{p}{r}-1} = |Cg(x,y)|$  and  $|g|^{\frac{q}{r}-1}(x,y) = |Df(x,y)|$ , where |C| and |D| are two real numbers.

**Proof** . Similar to the proof of Theorem 2.7.  $\Box$ 

**Remark 3.3.** If  $\frac{p}{r} = \frac{q}{r} = 2$  and h(x, y) = 1, then (3.3) reduces to

$$\int_{a}^{b} \int_{a}^{b} |f(x,y)g(x,y)| \Diamond_{\alpha} x \Diamond_{\alpha} y \quad \leq \quad \sqrt{\left(\int_{a}^{b} \int_{a}^{b} |f(x,y)|^{2} \Diamond_{\alpha} x \Diamond_{\alpha} y\right) \left(\int_{a}^{b} \int_{a}^{b} |g(x,y)|^{2} \Diamond_{\alpha} x \Diamond_{\alpha} y\right)},$$

which is given in [5].

### References

- J. Aczél and E.F. Bechenbach, General inequalities 2, On Hölder's inequality, Proc. Second Internat. Conf. Oberwolfach (1978) 145–150.
- [2] R.P. Agarwal, M. Bohner and A. Peterson, *Inequalities on time scales: A survey*, Math. Inequal. Appl. 4 (2001) 535–557.
- [3] R.P. Agarwal, D. O'Regan and S. Saker, *Dynamic inequalities on time scales*, Springer International Publishing, Springer, 2014.
- [4] H. Alzer, Two inequalities for series and sums, Math. Bohem. 120 (1995) 197–201.
- [5] M.R.S. Ammi and D.F.M. Torres, Hölder's and Hardy's two dimensional diamond-alpha inequalities on time scales, Ann. Univ. Craiova Math. Comp. Sci. Series 37 (2010) 1–11.
- [6] D.R. Anderson, J. Bullock, L. Erbe, A. Peterson and H. Tran, Nabla dynamic equations on time scales, Panamer. Math. J. 13 (2003) 1–48.
- [7] M. Bohner and A. Peterson, Dynamic equations on time scales, Birkhäuser Boston Inc., Boston, MA, 2001.
- [8] M. Bohner and A. Peterson, Advances in dynamic equations on time scales. Birkhäuser, Boston, MA, 2003.
- [9] G.S. Chen, F.L. Huang and L.F. Liao, Generalizations of Hölder inequality and some related results on time scales. J. Inequal. Appl. 2014 (2014): 207.
- [10] D.E. Daykin and C.J. Eliezer, Generalization of Hölder's and Minkowski's inequalities, Proc. Camb. Phil. Soc. 64 (1968) 1023–1027.
- [11] S. Hilger, Ein Maβkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universität Würzburg, 1988.
- [12] O. Hölder, Uber einen Mittelwerthssatz, Nachr. Ges. Wiss. Gottingen (1889) 38–47.
- [13] D.S. Mitrinović, J. Pečarić and A.M. Fink, Classical and New Inequalities in Analysis, Vol. 61, Kluwer, Dordrecht, The Netherlands, 1993.
- [14] Q. Sheng, M. Fadag, J. Henderson and J.M. Davis, An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear Anal. Real World Appl. 7 (2006) 395–413.