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Abstract

We present symmetric Rogers–Hölder’s inequalities on time scales when 1
p

+ 1
q

+ 1
r

= 0 and r
p

+ r
q

is
not necessarily equal to 1 where p, q and r are nonzero real numbers.
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1. Introduction and Preliminaries

First we need here basic concepts of delta calculus. The results of delta calculus are adapted from
[3, 7, 8]. A time scale is an arbitrary nonempty closed subset of the real numbers. It is denoted by
T. For t ∈ T, forward jump operator σ : T→ T is defined by

σ(t) := inf{s ∈ T : s > t}.

The mapping µ : T→ R+
0 = [0,∞) such that µ(t) := σ(t)− t is called the graininess. The backward

jump operator ρ : T→ T is defined by

ρ(t) := sup{s ∈ T : s < t}.

The mapping ν : T → R+
0 = [0,∞) such that ν(t) := t − ρ(t) is called the backward graininess. If

σ(t) > t, we say that t is right–scattered, while if ρ(t) < t, we say that t is left–scattered. Also, if
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t < supT and σ(t) = t, then t is called right–dense, and if t > inf T and ρ(t) = t, then t is called
left–dense. If T has a left–scattered maximum M, then Tk = T− {M}. Otherwise Tk = T.

For a function f : T → R, the derivative f∆ is defined as follows. Let t ∈ Tk, if there exists
f∆(t) ∈ R such that for all ε > 0, there exists a neighborhood U of t with

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|

for all s ∈ U , then f is said to be differentiable at t, and f∆(t) is called the delta derivative of f
at t. A function f : T → R is said to be right–dense continuous (rd–continuous) if it is continuous
at each right–dense point and there exists a finite left limit at every left-dense point. The set of all
rd–continuous functions is denoted by Crd(T,R). The next definition is given in [3, 7, 8].

Definition 1.1. A function F : T→ R is called a delta antiderivative of f : T→ R provided that
F∆(t) = f(t) holds for all t ∈ Tk, then the delta integral of f is defined by

b∫
a

f(t)∆t = F (b)− F (a).

The following results of nabla calculus are taken from [3, 6, 7, 8].
If T has a right–scattered minimum m, then Tk = T − {m}. Otherwise Tk = T. The function
f : T → R is called nabla differentiable at t ∈ Tk, if there exists f∇(t) ∈ R with the following
property: For any ε > 0, there exists a neighborhood U of t, such that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ ε|ρ(t)− s|

for all s ∈ U . A function f : T → R is left–dense continuous or ld–continuous provided it is
continuous at left–dense points in T and its right–sided limits exist (finite) at right–dense points in
T. The set of all ld–continuous functions is denoted by Cld(T,R). The next definition is given in
[3, 6, 7, 8].

Definition 1.2. A function G : T → R is called a nabla antiderivative of g : T → R provided that
G∇(t) = g(t) holds for all t ∈ Tk, then the nabla integral of g is defined by

b∫
a

g(t)∇t = G(b)−G(a).

Now we present short introduction of diamond-α derivative as given in [3, 14].
Let T be a time scale and f(t) be differentiable on T in the ∆ and ∇ sense. For t ∈ Tkk, where
Tkk = Tk ∩ Tk, diamond–α derivative f♦α(t) is defined by

f♦α(t) = αf∆(t) + (1− α)f∇(t) 0 ≤ α ≤ 1.

Thus f is diamond–α differentiable if and only if f is ∆ and ∇ differentiable. The diamond–α
derivative reduces to the standard ∆–derivative for α = 1, or the standard ∇–derivative for α = 0.
It represents a weighted dynamic derivative for α ∈ (0, 1).

Theorem 1.3. (Sheng et al. [14]) Let f, g : T→ R be diamond–α differentiable at t ∈ T. Then
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(i) f ± g : T→ R is diamond–α differentiable at t ∈ T, with

(f ± g)♦α(t) = f♦α(t)± g♦α(t).

(ii) fg : T→ R is diamond–α differentiable at t ∈ T, with

(fg)♦α(t) = f♦α(t)g(t) + αfσ(t)g∆(t) + (1− α)fρ(t)g∇(t).

(iii) For g(t)gσ(t)gρ(t) 6= 0, f
g

: T→ R is diamond–α differentiable at t ∈ T, with(
f

g

)♦α

(t) =
f♦α(t)gσ(t)gρ(t)− αfσ(t)gρ(t)g∆(t)− (1− α)fρ(t)gσ(t)g∇(t)

g(t)gσ(t)gρ(t)
.

Definition 1.4. (Sheng et al. [14]) Let f : T→ R be diamond–α differentiable at t ∈ T. Then:

(i) (f)♦α∆(t) = αf∆∆(t) + (1− α)f∇∆(t);

(ii) (f)♦α∇(t) = αf∆∇(t) + (1− α)f∇∇(t);

(iii) (f)∆♦α(t) = αf∆∆(t) + (1− α)f∆∇(t) 6= (f)♦α∆(t);

(iv) (f)∇♦α(t) = αf∇∆(t) + (1− α)f∇∇(t) 6= (f)♦α∇(t);

(v) (f)♦α♦α(t) = α2f∆∆(t) + α(1− α)[f∆∇(t) + f∇∆(t)] + (1− α)2f∇∇(t)
6= α2f∆∆(t) + (1− α)2f∇∇(t).

Theorem 1.5. (Sheng et al. [14]) Let a, t ∈ T, and h : T→ R. Then, the diamond–α integral from
a to t of h is defined by∫ t

a

h(s)♦αs = α

∫ t

a

h(s)∆s+ (1− α)

∫ t

a

h(s)∇s 0 ≤ α ≤ 1,

provided that there exist delta and nabla integrals of h on T.

Theorem 1.6. (Sheng et al. [14]) Let a, b, t ∈ T, c ∈ R. Assume that f(s) and g(s) are ♦α–
integrable functions on [a, b]T, then

(i)
∫ t
a
[f(s)± g(s)]♦αs =

∫ t
a
f(s) ♦αs±

∫ t
a
g(s)♦αs;

(ii)
∫ t
a
cf(s)♦αs = c

∫ t
a
f(s) ♦αs;

(iii)
∫ t
a
f(s)♦αs = −

∫ a
t
f(s)♦αs;

(iv)
∫ t
a
f(s)♦αs =

∫ b
a
f(s) ♦αs+

∫ t
b
f(s)♦αs;

(v)
∫ a
a
f(s)♦αs = 0.

Corollary 1.7. (Sheng et al. [14]) Let t ∈ Tkk and f : T→ R. Then∫ σ(t)

t

f(s) ♦α(s) = µ(t)[αf(t) + (1− α)fσ(t)]

and ∫ t

ρ(t)

f(s) ♦α(s) = ν(t)[αfρ(t) + (1− α)f(t)].
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The following result is given in [1, page 147].

Theorem 1.8. If for positive values of sets of fi, gi, hi with condition figihi = 1 for i = 1, . . . , n,
and the nonzero real numbers p, q and r satisfy 1

p
+ 1

q
+ 1

r
= 0, then the following inequality holds(

n∑
i=1

fpi

) 1
p
(

n∑
i=1

gqi

) 1
q
(

n∑
i=1

hri

) 1
r

≥ 1, (1.1)

if all but one of p, q and r are positive. Inequality (1.1) is reversed if all but one of p, q and r are
negative for positive values of sets of fi, gi and hi.

The upcoming theorem is given in [4].

Theorem 1.9. Let p, q, ak and bk (k = 1, 2, . . . , n) are positive real numbers, then(
n∑
k=1

akbk

) 1
p

+ 1
q

≤

(
n∑
k=1

apk

n∑
k=1

a2−p
k b2

k

) 1
2p
(

n∑
k=1

bqk

n∑
k=1

a2
kb

2−q
k

) 1
2q

. (1.2)

The sign of equality holds in (1.2) if and only if there exist real constants C1 and C2 such that
ap−1
k = C1bk and bq−1

k = C2ak, (k = 1, . . . , n).

Inequalities (1.1) and (1.2) can be unified and extended in weighted form on dynamic time scales
which was initiated by Stefan Hilger given in [11]. Our aim is to present these applications of Rogers–
Hölder’s inequalities on diamond–α calculus. Discrete form of Hölder’s inequality is given in [12] and
found separately by Rogers and Hölder. Integral form of classical Rogers–Hölder’s inequality on time
scale calculus is given in [2, 3].

Theorem 1.10. (Agarwal et al. [3]) Let a, b ∈ T with a < b and let f, g ∈ C([a, b]T,R) be ♦α–
integrable functions. If 1

p
+ 1

q
= 1, with p > 1, then∫ b

a

|f(t)g(t)| ♦αt ≤
(∫ b

a

|f(t)|p♦αt
) 1

p
(∫ b

a

|g(t)|q♦αt
) 1

q

. (1.3)

Theorem 1.11. (Agarwal et al. [3]) Let a, b ∈ T with a < b and let h, f, g ∈ C([a, b]T,R) be
♦α–integrable functions. If 1

p
+ 1

q
= 1, with p > 1, then∫ b

a

|h(t)||f(t)g(t)|♦αt ≤
(∫ b

a

|h(t)||f(t)|p♦αt
) 1

p
(∫ b

a

|h(t)||g(t)|q♦αt
) 1

q

. (1.4)

In the case when p = q = 2, then Rogers–Hölder’s inequality reduces to the following diamond–α
Cauchy–Schwarz’s inequality on time scales as∫ b

a

|h(t)||f(t)g(t)|♦αt ≤

√(∫ b

a

|h(t)||f(t)|2♦αt
)(∫ b

a

|h(t)||g(t)|2♦αt
)
. (1.5)

Theorem 1.12. (Chen et al. [9]) Let a, b ∈ T with a < b and let fi ∈ C([a, b]T,R), i = 1, . . . , n be

♦α–integrable functions and pi > 1 such that
n∑
i=1

1
pi

= 1. Then

b∫
a

n∏
i=1

|fi(t)|♦αt ≤
n∏
i=1

 b∫
a

|fi(t)|pi♦αt


1
pi

, (1.6)

which is generalized Rogers–Hölder’s Inequality.
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2. Main Results

Our first main result is proved for different conditions imposed on p, q and r as p > 0, q > 0 but
r < 0; p > 0, r > 0 but q < 0 or q > 0, r > 0 but p < 0 and is reversed if q < 0, r < 0 but p > 0;
p < 0, r < 0 but q > 0 or p < 0, q < 0 but r > 0 in upcoming theorem.

Theorem 2.1. Let h, fi ∈ C([a, b]T,R) be ♦α–integrable functions for i = 1, 2, 3 and p, q and r be

three nonzero real numbers with 1
p

+ 1
q

+ 1
r

= 0. Further assume that
3∏
i=1

fi(x) = 1.

(i) If p > 0, q > 0 but r < 0, then(∫ b

a

|h(x)||f1(x)|p♦αx
) 1

p
(∫ b

a

|h(x)||f2(x)|q♦αx
) 1

q
(∫ b

a

|h(x)||f3(x)|r♦αx
) 1

r

≥ 1. (2.1)

(ii) If q < 0, r < 0 but p > 0, then(∫ b

a

|h(x)||f1(x)|p♦αx
) 1

p
(∫ b

a

|h(x)||f2(x)|q♦αx
) 1

q
(∫ b

a

|h(x)||f3(x)|r♦αx
) 1

r

≤ 1. (2.2)

Proof . To prove (i), given condition 1
p

+ 1
q

+ 1
r

= 0 can be rearranged as 1
(− p

r
)

+ 1
(− q

r
)

= 1. Let

P = −p
r
> 1, Q = − q

r
> 1. Applying Rogers–Hölder’s inequality, we have∫ b

a

|h(x)||f1(x)f2(x)|♦αx ≤
(∫ b

a

|h(x)||f1(x)|P♦αx
) 1

P
(∫ b

a

|h(x)||f2(x)|Q♦αx
) 1

Q

,

and ∫ b

a

|h(x)||f1(x)f2(x)|♦αx ≤
(∫ b

a

|h(x)||f1(x)|−
p
r♦αx

)− r
p
(∫ b

a

|h(x)||f2(x)|−
q
r♦αx

)− r
q

. (2.3)

By replacing |f1(x)| by |f1(x)|−r and |f2(x)| by |f2(x)|−r and taking power −1
r
> 0, (2.3) takes the

form

(∫ b

a

|h(x)||f1(x)f2(x)|−r♦αx
)− 1

r

≤
(∫ b

a

|h(x)||f1(x)|p♦αx
) 1

p
(∫ b

a

|h(x)||f2(x)|q♦αx
) 1

q

. (2.4)

As f1(x)f2(x)f3(x) = 1, then (2.4) takes the form(∫ b

a

|h(x)||f3(x)|r♦αx
)− 1

r

≤
(∫ b

a

|h(x)||f1(x)|p♦αx
) 1

p
(∫ b

a

|h(x)||f2(x)|q♦αx
) 1

q

.

This follows inequality (2.1).
Now to prove (ii), the given condition 1

p
+ 1

q
+ 1

r
= 0 can be rearranged as 1

(− q
p

)
+ 1

(− r
p

)
= 1. Let

P = − q
p
> 1, Q = − r

p
> 1. Applying Rogers–Hölder’s inequality, we get∫ b

a

|h(x)||f2(x)f3(x)|♦αx ≤
(∫ b

a

|h(x)||f2(x)|−
q
p♦αx

)− p
q
(∫ b

a

|h(x)||f3(x)|−
r
p♦αx

)− p
r

and then replacing |f2(x)| by |f2(x)|−p and |f3(x)| by |f3(x)|−p and taking power −1
p
< 0, we get

required inequality (2.2). This completes the proof. �

Now we generalize the inequalities (2.1) and (2.2) in upcoming theorem.
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Theorem 2.2. Let h, fi ∈ C([a, b]T,R) be ♦α–integrable functions for i = 1, 2, . . . , n and pi be

nonzero real numbers with
n∑
i=1

1
pi

= 0. Further assume that
n∏
i=1

fi(x) = 1.

(i) If all pi for i = 1, 2, . . . , n but one are positive, then

n∏
i=1

(∫ b

a

|h(x)||fi(x)|pi♦αx
) 1

pi

≥ 1. (2.5)

(ii) If all pi for i = 1, 2, . . . , n but one are negative, then

n∏
i=1

(∫ b

a

|h(x)||fi(x)|pi♦αx
) 1

pi

≤ 1. (2.6)

Proof . To prove (i), the given condition becomes
n−1∑
i=1

1
pi

+ 1
pn

= 0 can be rearranged as
n−1∑
i=1

1
(− pi

pn
)

= 1,

where all pi are positive for i = 1, . . . , n−1 but pn is negative. Let Pi = − pi
pn
> 1 for i = 1, . . . , n−1.

Applying generalized Rogers–Hölder’s inequality, we have∫ b

a

|h(x)|
n−1∏
i=1

|fi(x)|♦αx ≤
n−1∏
i=1

(∫ b

a

|h(x)||fi(x)|Pi♦αx
) 1

Pi

and ∫ b

a

|h(x)|
n−1∏
i=1

|fi(x)|♦αx ≤
n−1∏
i=1

(∫ b

a

|h(x)||fi(x)|−
pi
pn♦αx

)− pn
pi

. (2.7)

By replacing |fi(x)| by |fi(x)|−pn for i = 1, . . . , n− 1 and taking power − 1
pn
> 0, (2.7) takes the form(∫ b

a

|h(x)|
n−1∏
i=1

|fi(x)|−pn♦αx

)− 1
pn

≤
n−1∏
i=1

(∫ b

a

|h(x)||fi(x)|pi♦αx
) 1

pi

. (2.8)

Applying condition
n∏
i=1

fi(x) = 1, (2.8) takes the form

(∫ b

a

|h(x)||fn(x)|pn♦αx
)− 1

pn

≤
n−1∏
i=1

(∫ b

a

|h(x)||fi(x)|pi♦αx
) 1

pi

.

This follows inequality (2.5).

Now to prove (ii), the given condition
n−1∑
i=1

1
pi

+ 1
pn

= 0 can be rearranged as
n−1∑
i=1

1
(− pi

pn
)

= 1, where all pi

for i = 1, . . . , n− 1 are negative but pn is positive. Let Pi = − pi
pn
> 1 for i = 1, . . . , n− 1. Applying

Rogers–Hölder’s inequality, we get∫ b

a

|h(x)|
n−1∏
i=1

|fi(x)|♦αx ≤
n−1∏
i=1

(∫ b

a

|h(x)||fi(x)|−
pi
pn♦αx

)− pn
pi

and then replacing |fi(x)| by |fi(x)|−pn and taking power − 1
pn
< 0, we get required inequality (2.6).

�

As diamond–α integral is the combination of delta and nabla integrals. Now we present our
results on delta and nabla calculus.
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Corollary 2.3. Let h, fi ∈ Crd([a, b]T,R) for i = 1, 2, 3 and p, q and r be three nonzero real numbers

with 1
p

+ 1
q

+ 1
r

= 0. Further assume that
3∏
i=1

fi(x) = 1.

(i) If p > 0, q > 0 but r < 0; p > 0, r > 0 but q < 0 or q > 0, r > 0 but p < 0, then

(∫ b

a

|h(x)||f1(x)|p ∆x

) 1
p
(∫ b

a

|h(x)||f2(x)|q ∆x

) 1
q
(∫ b

a

|h(x)||f3(x)|r ∆x

) 1
r

≥ 1. (2.9)

(ii) If q < 0, r < 0 but p > 0; p < 0, r < 0 but q > 0 or p < 0, q < 0 but r > 0, then

(∫ b

a

|h(x)||f1(x)|p ∆x

) 1
p
(∫ b

a

|h(x)||f2(x)|q ∆x

) 1
q
(∫ b

a

|h(x)||f3(x)|r ∆x

) 1
r

≤ 1. (2.10)

Remark 2.4. If T = Z and h(x) = 1, then (2.9) takes its discrete form for positive values of sets of
fi, gi, hi with condition figihi = 1 for i = 1, . . . , n, which is given in (1.1). Moreover, if T = Z, then
(2.10) takes reverse discrete form of (1.1).

Remark 2.5. As for T = R, we have ∫ b

a

. ∆x =

∫ b

a

. dx.

Therefore we can get continuous versions of (2.9) and (2.10), respectively in next corollary.

Corollary 2.6. Let h, fi ∈ Cld([a, b]T,R) for i = 1, 2, 3 and p, q and r be three nonzero real numbers

with 1
p

+ 1
q

+ 1
r

= 0. Further assume that
3∏
i=1

fi(x) = 1.

(i) If p > 0, q > 0 but r < 0; p > 0, r > 0 but q < 0 or q > 0, r > 0 but p < 0, then

(∫ b

a

|h(x)||f1(x)|p ∇x
) 1

p
(∫ b

a

|h(x)||f2(x)|q ∇x
) 1

q
(∫ b

a

|h(x)||f3(x)|r ∇x
) 1

r

≥ 1. (2.11)

(ii) If q < 0, r < 0 but p > 0; p < 0, r < 0 but q > 0 or p < 0, q < 0 but r > 0, then

(∫ b

a

|h(x)||f1(x)|p ∇x
) 1

p
(∫ b

a

|h(x)||f2(x)|q ∇x
) 1

q
(∫ b

a

|h(x)||f3(x)|r ∇x
) 1

r

≤ 1. (2.12)

Now second part of our main results is started. The following inequality is a weighted symmetric
form of Rogers–Holder’s inequality.

Theorem 2.7. Let h, f, g ∈ C([a, b]T,R) be ♦α–integrable functions.

(i) Take p, q and r three nonzero positive real numbers. Then the following inequality holds(∫ b

a

|h(x)||f(x)g(x)|♦αx
) r

p
+ r
q

≤
(∫ b

a

|h(x)||f(x)|
p
r♦αx

∫ b

a

|h(x)||f(x)|2−
p
r |g(x)|2♦αx

) r
2p

×
(∫ b

a

|h(x)||g(x)|
q
r♦αx

∫ b

a

|h(x)||g(x)|2−
q
r |f(x)|2♦αx

) r
2q

; (2.13)
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(ii) Take p and q are positive real numbers and r be negative. Then the following reverse inequality
holds(∫ b

a

|h(x)||f(x)g(x)|♦αx
) r

p
+ r
q

≥
(∫ b

a

|h(x)||f(x)|
p
r♦αx

∫ b

a

|h(x)||f(x)|2−
p
r |g(x)|2♦αx

) r
2p

×
(∫ b

a

|h(x)||g(x)|
q
r♦αx

∫ b

a

|h(x)||g(x)|2−
q
r |f(x)|2♦αx

) r
2q

(2.14)

and sign of equality holds in (2.13) and (2.14), if |f(x)| pr−1 = |Cg(x)| and |g(x)| qr−1 = |Df(x)|,
where |C| and |D| are two real numbers.

Proof . For the proof of (i), we can write(∫ b

a

|h(x)||f(x)g(x)|♦αx
)2

=

(∫ b

a

|h(x)||f(x)|
p
2r |f(x)|1−

p
2r |g(x)|♦αx

)2

≤
(∫ b

a

|h(x)||f(x)|
p
r♦αx

)(∫ b

a

|h(x)||f(x)|2(1− p
2r

)|g(x)|2♦αx
)

=

(∫ b

a

|h(x)||f(x)|
p
r♦αx

)(∫ b

a

|h(x)||f(x)|2−
p
r |g2(x)|♦αx

)
.

As r
p
> 0, then by taking power r

p
on both sided we obtain

(∫ b

a

|h(x)||f(x)g(x)|♦αx
) r

p

≤
(∫ b

a

|h(x)||f(x)|
p
r♦αx

∫ b

a

|h(x)||f(x)|2−
p
r |g(x)|2♦αx

) r
2p

. (2.15)

Similarly, we can write(∫ b

a

|h(x)||f(x)g(x)|♦αx
) r

q

≤
(∫ b

a

|h(x)||g(x)|
q
r♦αx

∫ b

a

|h(x)||g(x)|2−
q
r |f(x)|2♦αx

) r
2q

. (2.16)

Combining (2.15) and (2.16), we get (2.13). If p and q are positive real numbers and r be negative,
then (2.14) is clear. Clearly the sign of equality holds in (2.13) and (2.14), if |f(x)| pr−1 = |Cg(x)|
and |g(x)| qr−1 = |Df(x)|, where |C| and |D| are two real numbers. �

Remark 2.8. If p
r

= q
r

= 2, then (2.13) reduces to (1.5).

Remark 2.9. Further by using GM–AM inequality, (2.13) can be written as

(∫ b

a

|h(x)||f(x)g(x)|♦αx
) r

p
+ r
q

≤ 1

2

(∫ b

a

|h(x)||f(x)|
p
r♦αx

) r
p
(∫ b

a

|h(x)||g(x)|
q
r♦αx

) r
q

+

1

2

(∫ b

a

|h(x)||f(x)|2−
p
r |g(x)|2♦αx

) r
p
(∫ b

a

|h(x)||g(x)|2−
q
r |f(x)|2♦αx

) r
q

. (2.17)
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Remark 2.10. If α = 1, r = 1, h(x) = 1, 1
p

+ 1
q
< 1 and T = Z and p, q, fk and gk (k = 1, 2, . . . , n)

are positive real numbers, then discrete version of (2.17) can be written as(
n∑
k=1

fkgk

) 1
p

+ 1
q

≤ 1

2

( n∑
k=1

fpk

) 1
p
(

n∑
k=1

gqk

) 1
q

+

(
n∑
k=1

f 2−p
k g2

k

) 1
p
(

n∑
k=1

f 2
kg

2−q
k

) 1
q

 ,

as given in [10, 13].

Now we present delta and nabla versions of Theorem 2.7.

Corollary 2.11. Let h, f, g ∈ Crd([a, b]T,R). Take p, q and r three positive real numbers. Then the
following inequality holds

(∫ b

a

|h(x)||f(x)g(x)|∆x
) r

p
+ r
q

≤
(∫ b

a

|h(x)||f(x)|
p
r∆x

∫ b

a

|h(x)||f(x)|2−
p
r |g(x)|2∆x

) r
2p

×
(∫ b

a

|h(x)||g(x)|
q
r∆x

∫ b

a

|h(x)||g(x)|2−
q
r |f(x)|2∆x

) r
2q

, (2.18)

and sign of equality holds if |f(x)| pr−1 = |Cg(x)| and |g(x)| qr−1 = |Df(x)|, where |C| and |D| are two
real numbers.

Remark 2.12. If T = Z, r = 1 and h(x) = 1, then we get discrete version of (2.18) as given in
(1.2). And if T = R, then we get continuous version of (2.18).

Corollary 2.13. Let h, f, g ∈ Cld([a, b]T,R). Take p, q and r three positive real numbers. Then the
following inequality holds

(∫ b

a

|h(x)||f(x)g(x)|∇x
) r

p
+ r
q

≤
(∫ b

a

|h(x)||f(x)|
p
r∇x

∫ b

a

|h(x)||f(x)|2−
p
r |g(x)|2∇x

) r
2p

×
(∫ b

a

|h(x)||g(x)|
q
r∇x

∫ b

a

|h(x)||g(x)|2−
q
r |f(x)|2∇x

) r
2q

, (2.19)

and sign of equality holds if |f(x)| pr−1 = |Cg(x)| and |g(x)| qr−1 = |Df(x)|, where |C| and |D| are two
real numbers.

Remark 2.14. Let h, f, g ∈ C([a, b]T,R). Let p, q be positive real numbers and r be negative. Then
inequalities (2.18) and (2.19) will be reversed.

To conclude this paper, we present two dimensional inequalities. Our results in two dimensional
case are given in next section.

3. Two Dimensional Symmetric Rogers-Hölder’s Weighted Inequalities

Theorem 3.1. Let h, fi ∈ C([a, b]T × [a, b]T,R) be ♦α–integrable functions for i = 1, 2, 3 and p, q

and r be three nonzero real numbers with 1
p

+ 1
q

+ 1
r

= 0. Further assume that
3∏
i=1

fi(x, y) = 1.
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(i) If p > 0, q > 0 but r < 0; p > 0, r > 0 but q < 0 or q > 0, r > 0 but p < 0, then(∫ b

a

∫ b

a

|h(x, y)||f1(x, y)|p♦αx♦αy
) 1

p

×
(∫ b

a

∫ b

a

|h(x, y)||f2(x, y)|q♦αx♦αy
) 1

q
(∫ b

a

∫ b

a

|h(x, y)||f3(x, y)|r♦αx♦αy
) 1

r

≥ 1. (3.1)

(ii) If q < 0, r < 0 but p > 0; p < 0, r < 0 but q > 0 or p < 0, q < 0 but r > 0, then(∫ b

a

∫ b

a

|h(x, y)||f1(x, y)|p♦αx♦αy
) 1

p

×
(∫ b

a

∫ b

a

|h(x, y)||f2(x, y)|q♦αx♦αy
) 1

q
(∫ b

a

∫ b

a

|h(x, y)||f3(x, y)|r♦αx♦αy
) 1

r

≤ 1. (3.2)

Proof . Similar to proof of Theorem 2.1. �

Theorem 3.2. Let h, f, g ∈ C([a, b]T × [a, b]T,R) be ♦α–integrable functions.

(i) Let p, q and r be positive real numbers. Then the following inequality holds(∫ b

a

∫ b

a

|h(x, y)||f(x, y)g(x, y)|♦αx♦αy
) r

p
+ r
q

≤
(∫ b

a

∫ b

a

|h(x, y)||f(x, y)|
p
r♦αx♦αy

∫ b

a

∫ b

a

|h(x, y)||f(x, y)|2−
p
r |g(x, y)|2♦αx♦αy

) r
2p

×
(∫ b

a

∫ b

a

|h(x, y)||g(x, y)|
q
r♦αx♦αy

∫ b

a

∫ b

a

|h(x, y)||g(x, y)|2−
q
r |f(x, y)|2♦αx♦αy

) r
2q

(3.3)

and sign of equality holds if |f(x, y)| pr−1 = |Cg(x, y)| and |g(x, y)| qr−1 = |Df(x, y)|, where |C|
and |D| are two real numbers.

(ii) Let p and q be positive real numbers and r be negative. Then the following reverse inequality
holds(∫ b

a

∫ b

a

|h(x, y)||f(x, y)g(x, y)|♦αx♦αy
) r

p
+ r
q

≥
(∫ b

a

∫ b

a

|h(x, y)||f(x, y)|
p
r♦αx♦αy

∫ b

a

∫ b

a

|h(x, y)||f(x, y)|2−
p
r |g(x, y)|2♦αx♦αy

) r
2p

×
(∫ b

a

∫ b

a

|h(x, y)||g(x, y)|
q
r♦αx♦αy

∫ b

a

∫ b

a

|h(x, y)||g(x, y)|2−
q
r |f(x, y)|2♦αx♦αy

) r
2q

and sign of equality holds if |f(x, y)| pr−1 = |Cg(x, y)| and |g| qr−1(x, y) = |Df(x, y)|, where |C|
and |D| are two real numbers.

Proof . Similar to the proof of Theorem 2.7. �

Remark 3.3. If p
r

= q
r

= 2 and h(x, y) = 1, then (3.3) reduces to∫ b

a

∫ b

a

|f(x, y)g(x, y)|♦αx♦αy ≤

√(∫ b

a

∫ b

a

|f(x, y)|2♦αx♦αy
)(∫ b

a

∫ b

a

|g(x, y)|2♦αx♦αy
)
,

which is given in [5].



Symmetric Rogers–Hölder’s inequalities on diamond–α calculus 9 (2018) No. 2, 9-19 19

References

[1] J. Aczél and E.F. Bechenbach, General inequalities 2, On Hölder’s inequality, Proc. Second Internat. Conf.
Oberwolfach (1978) 145–150.

[2] R.P. Agarwal, M. Bohner and A. Peterson, Inequalities on time scales: A survey, Math. Inequal. Appl. 4 (2001)
535–557.

[3] R.P. Agarwal, D. O’Regan and S. Saker, Dynamic inequalities on time scales, Springer International Publishing,
Springer, 2014.

[4] H. Alzer, Two inequalities for series and sums, Math. Bohem. 120 (1995) 197–201.
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