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Abstract

In this paper, we explain a new generalized contractive condition for multivalued mappings and
prove a fixed point theorem in metric spaces (not necessary complete) which extends some well–
known results in the literature. Finally, as an application, we prove that a multivalued function
satisfying a general linear functional inclusion admits a unique selection fulfilling the corresponding
functional equation.
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1. Introduction and preliminaries

Throughout this paper, N,Q and R denote, respectively, the sets of all natural numbers, rational
numbers and real numbers. Also, for every nonempty set X denote P∗(X) the set of all nonempty
subsets of X. Let (X, d) be a metric space. We denote by B(X), CB(X) and CP (X) collections of
all bounded, closed bounded and complete members of P∗(X), respectively. The number

diam(A) := sup{d(a, b) : a, b ∈ A},

is said to be the diameter of A ∈ P∗(X). For A,B ∈ CB(X) and x ∈ X, define

D(x,A) := inf{d(x, a); a ∈ A}
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and
H(A,B) := max{sup

a∈A
D(a,B), sup

b∈B
D(b, A)}.

The function H is a metric on CB(X) and is called a Pompeiu–Hausdorff metric. We can find
detailed information about the Pompeiu–Hausdorff metric in [1, 10]. It is well known that if X is a
complete metric space, then so is the metric space (CB(X), H). Let T : X → CB(X) be a map,
then T is called a multivalued contraction if there exists r ∈ (0, 1) such that for all x, y ∈ X, we have

H(Tx, Ty) ≤ rd(x, y).

In 1969, Nadler [18] proved that every multivalued contraction on a complete metric space has a
fixed point. Since then, a lot of generalizations of the result of Nadler were given (see, for example
[2, 3, 6, 11, 13, 15, 14, 24, 26]). An interesting important generalization of it were given by Berinde et
al. [9] where the authors introduced the concept of a multivalued weakly Picard operator as follows:

Definition 1.1. (Berinde and Berinde, [9]) Let (X, d) be a metric space and T : X → P∗(X) be
a multivalued operator. T is said to be a Multivalued Weakly Picard (MWP) operator if for each
x ∈ X and any y ∈ Tx, there exists a sequence {xn} in X such that
(i) x0 = x, x1 = y,
(ii) xn+1 ∈ Txn,
(iii) the sequence {xn} is convergent and its limit is a fixed point of T .

Then Berinde et al. [9] showed that the type multivalued contractions on complete metric spaces
considered by Nadler [18], Mizoguchi and Takahashi [17] and Petrusel [20] are MWP operators. In
the same paper, Berinde et al. [9] introduced the concepts of multivalued almost contraction (the
original name was multivalued (δ, L)–weak contraction) and proved the following important fixed
point theorem:

Theorem 1.2. (Berinde and Berinde, [9]) Let (X, d) be a complete metric space and let T be a
multivalued almost contraction from X into CB(X), that is, there exist two constant δ ∈ (0, 1) and
L ≥ 0 such that

H(Tx, Ty) ≤ δ.d(x, y) + L.D(y, Tx)

for all x, y ∈ X. Then T is an MWP operator.

Recently, Eshaghi et al. [12] introduced the notion of orthogonal sets and then gave a real
extension of Banach’s fixed point theorem. Then, Baghani et al. [7] by using the notion, proved a
statement which is equivalent to the axiom of choice and explain a generalization of Theorem 3.11
of [12].

In this paper, by combining the ideas of Baghani et al. [7] and Berinde et al. [9], we explain a new
generalized contractive condition of multivalued mappings and prove a fixed point theorem in metric
spaces (not necessary compete) which improves the main result of Altun et al. [4, 5], Amini–Harandi
[6], Mizoguchi et al. [17], Sgroi et al. [23] and Smajdor et al. [25].

Definition 1.3. Let Λ be the class of those functions φ(t1, t2, t3, t4, t5) : R5
+ → R+ which satisfy the

following conditions
(Λ1) φ is increasing in t2, t3, t4 and t5;
(Λ2) tn+1 < φ(tn, tn, tn+1, tn + tn+1, 0) implies that tn+1 < tn, for each positive sequence {tn};
(Λ3) If tn, sn → 0 and un → γ > 0, as n→∞, then we have lim supn→∞ φ(tn, sn, γ, un, tn+1) < γ;
(Λ4) φ(u, u, u, 2u, 0) ≤ u for each u ∈ R+ := (0,+∞).
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Example 1.4. Let φ : R5
+ → R+ defined by

φ(t1, t2, t3, t4, t5) = αt1 + βt2 + γt3 + δt4 + Lt5,

where α, β, γ, δ, L ≥ 0, α + β + γ + 2δ = 1 and γ 6= 1. We claim that φ ∈ Λ. Indeed (Λ1) obviously
holds. To show (Λ2), let {tn} be a positive sequence such that

tn+1 < φ(tn, tn, tn+1, tn + tn+1, 0) = αtn + βtn + γtn+1 + δ(tn + tn+1)

= (α + β + δ)tn + (γ + δ)tn+1.

Since α + β + γ + 2δ = 1 and γ 6= 1, then we can conclude that 1− (γ + δ) > 0 and hence

tn+1 <
(α + β + δ)

1− (γ + δ)
tn = tn.

It is obvious that properties (Λ3) and (Λ4) hold for this function.

Definition 1.5. (Amini–Harandi, [6]) Let F : (0,+∞) → R and θ : (0,+∞) → (0,+∞) be two
mappings. Throughout the paper, let ∆ be the set of all pairs (θ, F ) satisfying the following condi-
tions:
(δ1) θ(tn) 6→ 0 for each strictly decreasing sequence {tn};
(δ2) F is a strictly increasing function;
(δ3) For each sequence {αn} of positive numbers, limn→∞ αn = 0 if and only if limn→∞ F (αn) = −∞;
(δ4) If tn ↓ 0 and θ(tn) ≤ F (tn)− F (tn+1) for each n ∈ N, then we have

∑∞
n=1 tn <∞.

Example 1.6. (Amini–Harandi, [6]) Let F (t) = ln(t) and θ(t) = − ln(α(t)) for each t ∈ (0,+∞),
where α : (0,∞)→ (0, 1) satisfies lim sups→t+ α(s) < 1 for all t ∈ [0,∞). Then (θ, F ) ∈ ∆.

2. Orthogonal sets

We start our work with the following definition, which can be considered as the main definition of
our paper.

Definition 2.1. (Eshaghi et al., [12]) Let X 6= ∅ and ⊥ ⊆ X×X be a binary relation. If ⊥ satisfies
the following condition

∃x0 ∈ X : (∀y, y⊥x0) or (∀y, x0⊥y),

then ⊥ is called an orthogonality relation and the pair (X,⊥) an orthogonal set (briefly O–set).

Note that in above definition, we say that x0 is orthogonal element. If (X,⊥) has only one orthog-
onal element, then it is called a uniquely orthogonal set and the element is said unique orthogonal
element. Also, an orthogonal element x0 is called left orthogonal element if x0⊥x for each x ∈ X.
Similarly, it is called a right orthogonal element if x⊥x0 for each x ∈ X. Finally, we say that elements
x, y ∈ X are ⊥–comparable either x⊥y or y⊥x.

As an illustration, let us consider the following examples.

Example 2.2. (Eshaghi et al., [12]) Let X be the set of all people in the world. We define x⊥y if
x can give blood to y. According to the following table, if x0 is a person such that his (her) blood
type is AB+, then we have y⊥x0 for all y ∈ X. This means that (X,⊥) is a O-set. Also, Let x0
be a person with blood type O−, then we have x0⊥y for all y ∈ X. Hence, in the O–set, x0 is not
unique.
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Type You can give blood to You can receive blood from
A+ A+ AB+ A+ A- O+ O-
O+ O+ A+ B+ AB+ O+ O-
B+ B+ AB+ B+ B- O+ O-

AB+ AB+ Everyone
A- A+ A- AB+ AB- A- O-
O- Everyone O-
B- B+ B- AB+ AB- B- O-

AB- AB+ AB- AB- B- O- A-

Example 2.3. Let Σ be a family of nonempty subsets of X. Assume µ is the set of all σ–algebras
containing Σ. Define A ⊥µ B iff B ⊂ A. Hence (µ,⊥µ) is an uniquely O–set that σ–algebra generated
by Σ is a unique orthogonal element of µ.

Example 2.4. Let (X,⊥) be an O–set. Let f be a choice function on P∗(X). For all A,B ∈ P∗(X)
define A⊥∗B if and only if f(A)⊥f(B). It is clear that (P∗(X),⊥∗) is an O–set and {x∗} is an
orthogonal element of (P∗(X),⊥∗), where x∗ is an orthogonal element of (X,⊥).

Example 2.5. Let X be a nonempty set. If f is a choice function on P∗(X), then f defines a
equivalent relation ⊥∗ on P∗(X) via

A⊥∗B ⇐⇒ f(A) = f(B).

The relation ⊥∗ in above satisfies the following.

1. The set of all equivalence classes modulo ⊥∗ is

P∗(X)/⊥∗ = {{x}/⊥∗ : x ∈ X},

where {x}/⊥∗ is the equivalence class of {x} modulo ⊥∗.
2. Every element of {x}/⊥∗ contains x.

It is easy to see that for each x ∈ X, ({x}/⊥∗,⊥∗) is an O–set and {x} is unique orthogonal element
of ({x}/⊥∗,⊥∗).

Let (X,⊥) be a O–set and A,B ⊆ X. The binary relation ⊥̂ between A and B is defined as follows.

• A ⊥̂ B if a ⊥ b for all a ∈ A and b ∈ B.

Now, we introduce ⊥–preserving multivalued mapping by using the relation ⊥̂.

Definition 2.6. Let (X,⊥, d) be a orthogonal metric space ( (X,⊥) is an O–set and (X, d) is a
metric space) and T : X → CB(X). Then T is said to be an ⊥–preserving multivalued mapping if

x, y ∈ X, x ⊥ y ⇒ Tx ⊥̂ Ty.

Example 2.7. Let X = {1
2
, 1
4
, . . . , 1

2n
, . . .} ∪ {0, 1}, d(x, y) = |x − y| for all x, y ∈ X, and binary

relation ⊥ on X be defined by

x ⊥ y ⇐⇒

{
y
x
∈ N,

or x = y = 0.
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Let T : X → CB(X) be defined by

Tx =


{ 1
2n
, 1
2n+1} if x = 1

2n
, n = 1, 2, . . . ,

{0}, if x = 0,

{1, 1
2
, 1
4
}, if x = 1.

It is easy to see that T is not an ⊥–preserving multivalued mapping. Since 1
2
⊥ 1 but T (1

2
) = {1

2
, 1
4
}

is not orthogonal to {1, 1
2
, 1
4
} = T (1).

Example 2.8. Let X = [0, 1) and let the metric on X be the Euclidean metric. Define a binary
relation ⊥ on X by x ⊥ y if xy ∈ {x, y} for all x, y ∈ X. Let T : X → CB(X) be a mapping defined
by

T (x) =

{
{1
2
x2, x}, x ∈ Q ∩X,

{0}, x ∈ Qc ∩X.

It is easy to see that T is an ⊥–preserving multivalued mapping

3. Fixed Point Theory

In this section, we prove our main theorem. To this end, we need the following definitions.

Definition 3.1. (Eshaghi et al., [12]) Let (X,⊥) be an O–set. A sequence {xn} is called an orthog-
onal sequence (briefly, O–sequence) if

(∀n, xn⊥xn+1) or (∀n, xn+1⊥xn).

Definition 3.2. (Eshaghi et al., [12]) Let (X,⊥, d) be an orthogonal metric space. Then X is said
to be orthogonally complete (briefly, O–complete) if every Cauchy O–sequence is convergent.

Definition 3.3. Let (X,⊥, d) be an orthogonal metric space. Then X is said to be orthogonally
regular (briefly, ⊥–regular) if X has the following properties

(i) for each sequence {xn} such that xn ⊥ xn+1 for all n ∈ N, and xn → x, for some x ∈ X, then
xn ⊥ x for all n ∈ N;

(ii) for each sequence {xn} such that xn+1 ⊥ xn for all n ∈ N, and xn → x, for some x ∈ X,
then x ⊥ xn for all n ∈ N.

Example 3.4. Let X = Q. Suppose that x ⊥ y if and only if x = 0 or y = 0. Clearly, Q with the
Euclidean metric is not a complete metric space, but it is O–complete. In fact, if {xk} is an arbitrary
Cauchy O–sequence in Q, then there exists a subsequence {xkn} of {xk} for which xkn = 0 for all
n ≥ 1. It follows that {xkn} converges to 0 ∈ X. On the other hand, we know that every Cauchy
sequence with a convergent subsequence is convergent. It follows that {xk} is convergent. It is easy
to see that (X,⊥, d) is also an ⊥–regular metric space.

Example 3.5. Let X = [0, 1). Suppose that

x ⊥ y ⇐⇒

{
x ≤ y ≤ 1

4
,

or x = 0.
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Clearly, X with the Euclidian metric is not complete metric space, but it is O–complete. In fact,
if {xk} is an arbitrary Cauchy O–sequence in X, then there exists a subsequence {xkn} of {xk} for
which xkn = 0 for all n ≥ 1 or there exists a monotone subsequence {xkn} of {xk} for which xkn ≤ 1

4

for all n ≥ 1. It follows that {xkn} converges to a point x ∈ [0, 1
4
] ⊆ X. On the other hand, we

know that every Cauchy sequence with a convergent subsequence is convergent. It follows that {xk}
is convergent. It is easy to see that (X,⊥, d) is also an ⊥–regular metric space.

Definition 3.6. Let (X,⊥, d) be an orthogonal metric space. Then T : X → CB(X) is said to
be orthogonally continuous (or ⊥–continuous) in a ∈ X if, for each O–sequence {an} in X with
an → a, we have T (an) → T (a). Also, T is said to be ⊥–continuous on X if T is ⊥–continuous in
each a ∈ X.

It is easy to see that every continuous mapping is ⊥–continuous. The following example shows that
the converse of the statement is not true in general.

Example 3.7. Let X = R. Suppose x⊥y if and only x = 0 or 0 6= y ∈ Q. It is easy to see that
(X,⊥) is an O-set. Define T : X → CB(X) by

T (x) =

{
{x}, x ∈ Q,
{0}, x ∈ Qc.

The function T is ⊥–continuous at all rational numbers while it is continuous just at x = 0.

Definition 3.8. Let (X,⊥, d) be an orthogonal metric space and T : X → P∗(X) be a multivalued
operator. T is said to be an orthogonal multivalued Weakly Picard (OMWP) operator if for each
orthogonal element x ∈ X and any y ∈ Tx, there exists an orthogonal sequence {xn} in X such that
(i) x0 = x, x1 = y,
(ii) xn+1 ∈ Txn,
(iii) the sequence {xn} is convergent and its limit is a fixed point of T .

Now, we are ready to prove the main theorem of this paper which can be consider as a multivalued
version of Theorem 3.10 of [7].

Theorem 3.9. Let (X,⊥, d) be an O–complete metric space (not necessarily a complete metric
space), and T : X → CB(X) be an ⊥–preserving multivalued mapping. Assume that there exists
( θ
2
, F ) ∈ ∆ such that

θ(d(x, y)) + F (H(Tx, Ty)) ≤ F (φ(d(x, y), D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx))), (3.1)

for all ⊥–comparable elements x, y ∈ X with Tx 6= Ty, where φ ∈ Λ. Also, suppose that T is compact
valued or F is continuous from the right. If
(i) T is ⊥–continuous or;
(ii) X is an ⊥–regular metric space;
then T is an OMWP operator.

Proof . Let x0 be an orthogonal element of X. By the definition of orthogonality, we have

∀y ∈ X, x0⊥y or ∀y ∈ X, y⊥x0.
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It follows that

∀y ∈ T (x0), x0⊥y or ∀y ∈ T (x0), y⊥x0.

Without loss of generality let

∀y ∈ T (x0), x0⊥y.

Let x1 ∈ Tx0 then x0 ⊥ x1. On the other hand, since T is ⊥-preserving, then Tx0 ⊥̂ Tx1. If x1 ∈ Tx1,
then x1 is fixed point of T and the proof is finished. Assume that x1 6∈ Tx1, then Tx0 6= Tx1. Since
either T is compact valued or F is continuous from right, x1 ∈ Tx0 and

F (D(x1, Tx1)) < F (H(Tx0, Tx1)) +
θ(d(x0, x1))

2
,

then there exists x2 ∈ Tx1 with x1 ⊥ x2 such that

F (d(x1, x2)) ≤ F (H(Tx0, Tx1)) +
θ(d(x0, x1))

2
.

Repeating this process, we can construct an O–sequence {xn} with initial point x0 such that xn+1 ∈
Txn, Txn 6= Txn+1 and

F (d(xn, xn+1)) ≤ F (H(Txn−1, Txn)) +
θ(d(xn−1, xn))

2
(3.2)

for all n ∈ N. From (3.1), (3.2), (Λ1) and (δ2)we have

θ(d(xn−1, xn)) + F (d(xn, xn+1))

≤ θ(d(xn−1, xn)) + F (H(Txn−1, Txn)) +
θ(d(xn−1, xn))

2
≤ F (φ(d(xn−1, xn), D(xn−1, Txn−1), D(xn, Txn), D(xn−1, Txn), D(xn, Txn−1)))

+
θ(d(xn−1, xn))

2

≤ F (φ(d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), d(xn−1, xn+1), 0)) +
θ(d(xn−1, xn))

2
≤ F (φ(d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), d(xn−1, xn) + d(xn, xn+1), 0))

+
θ(d(xn−1, xn))

2
,

and so

θ(d(xn−1, xn))

2
+ F (d(xn, xn+1))

≤ F (φ(d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), d(xn−1, xn) + d(xn, xn+1), 0))
(3.3)

for each n ∈ N. This implies that

d(xn, xn+1)

< φ(d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), d(xn−1, xn) + d(xn, xn+1), 0)
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for each n ∈ N. Then by (Λ2), d(xn, xn+1) < d(xn−1, xn) for each n ∈ N. Since {d(xn, xn+1)} is a
strictly decreasing sequence, then by using (3.3), (Λ1) and (Λ4), we obtain that

θ(d(xn−1, xn))

2
+ F (d(xn, xn+1))

≤ F (φ(d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), d(xn−1, xn) + d(xn, xn+1), 0))

≤ F (φ(d(xn−1, xn), d(xn−1, xn), d(xn−1, xn), d(xn−1, xn) + d(xn−1, xn), 0))

= F (φ(d(xn−1, xn), d(xn−1, xn), d(xn−1, xn), 2d(xn−1, xn), 0))

≤ F (d(xn−1, xn)),

(3.4)

for each n ∈ N. Let limn→∞ d(xn, xn+1) = r, for some r ≥ 0. Now, we show that r = 0. On contrary,
assume that r > 0. From (3.4) we get

1

2

n∑
i=1

θ(d(xi, xi+1)) ≤ F (d(x1, x2))− F (d(xn+1, xn+2)) (3.5)

for each n ∈ N. Since {d(xn, xn+1)} is strictly decreasing, then from (δ1) we obtain that θ(d(xn, xn+1)) 6→
0. Thus,

∑∞
i=1 θ(d(xi, xi+1)) = +∞, and then from (3.5) we have limn→∞ F (d(xn, xn+1)) = −∞.

Then by (δ3), d(xn, xn+1)→ 0, as n→∞, that a contradiction. Hence

lim
n→∞

d(xn, xn+1) = 0. (3.6)

From (3.4), (3.6) and (δ4), we have
∑∞

n=1 d(xn, xn+1) < ∞. Then by triangle inequality {xn} is a
Cauchy O–sequence. Since X is O–complete, then there exists x ∈ X such that limn→∞ xn = x.
Now, we prove that x is fixed point of T .

Case 1. T is ⊥–continuous.
In this case, we have

D(x, Tx) = lim
n→∞

D(xn+1, Tx) ≤ lim
n→∞

H(Txn, Tx) = 0.

Then x ∈ Tx and the proof is complete.

Case 2. X is an ⊥–regular metric space.
If there exists a strictly increasing sequence {nk} such that xnk

∈ Tx for all k ∈ N, since Tx is closed
and xnk

→ x, as k → ∞, we get that x ∈ Tx and the proof is complete. So, we can assume that
there exists n0 ∈ N such that xn 6∈ Tx for each n > n0. This implies that Txn 6= Tx for each n ≥ n0.
Now since X is an ⊥–regular metric space by using (3.1) with x = xn and y = x, we obtain

F (D(xn+1, Tx)) < θ(d(xn, x)) + F (D(xn+1, Tx))

≤ θ(d(xn, x)) + F (H(Txn, Tx))

≤ F (φ(d(xn, x), D(xn, Txn), D(x, Tx), D(xn, Tx), D(x, Txn)))

≤ F (φ(d(xn, x), d(xn, xn+1), D(x, Tx), D(xn, Tx), d(x, xn+1)))

for each n ≥ n0. Therefore

D(xn+1, Tx) < φ(d(xn, x), d(xn, xn+1), D(x, Tx), D(xn, Tx), d(x, xn+1))
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for each n ≥ n0. Now if x ∈ Tx, then the proof is complete. Let x 6∈ Tx then by using (3) and (Λ3)
we have

D(x, Tx) = lim sup
n→∞

D(xn+1, Tx)

≤ lim sup
n→∞

φ(d(xn, x), d(xn, xn+1), D(x, Tx), D(xn, Tx), d(x, xn+1))

< D(x, Tx),

which is a contradiction. Hence x ∈ Tx and the proof is complete. �

Letting φ(t1, t2, t3, t4, t5) = t1, we get a generalization of Theorem 2.4 of [6], Theorem 2 and
Theorem 3 of [5] as follows.

Corollary 3.10. Let (X,⊥, d) be an O–complete metric space (not necessarily a complete metric
space), and T : X → CB(X) be an ⊥–preserving multivalued mapping. Assume that there exists
( θ
2
, F ) ∈ ∆ such that

θ(d(x, y)) + F (H(Tx, Ty)) ≤ F (d(x, y))

for all ⊥–comparable elements x, y ∈ X with Tx 6= Ty. Also, suppose that T is compact valued or
F is continuous from the right. If
(i) T is ⊥–continuous or;
(ii) X is an ⊥–regular metric space;
then T is an OMWP operator.

Letting
φ(t1, t2, t3, t4, t5) = t1 + λ.t5,

where λ ≥ 0, we get a generalization of Theorem 2.2 of [4] as follows.

Corollary 3.11. Let (X,⊥, d) be an O–complete metric space (not necessarily a complete metric
space), and T : X → CB(X) be an ⊥–preserving multivalued mapping. Assume that there exists
( θ
2
, F ) ∈ ∆ such that

θ(d(x, y)) + F (H(Tx, Ty)) ≤ F (d(x, y) + λ.D(y, Tx))

for all ⊥–comparable elements x, y ∈ X with Tx 6= Ty, where λ ≥ 0. Also, suppose that T is
compact valued or F is continuous from the right. If
(i) T is ⊥–continuous or;
(ii) X is an ⊥–regular metric space;
then T is an OMWP operator.

Letting
φ(t1, t2, t3, t4, t5) = αt1 + βt2 + γt3 + δt4 + Lt5,

where α, β, γ, δ, L ≥ 0, α+ β + γ + 2δ = 1 and γ 6= 1, we get a generalization of Theorem 3.4 of [23]
as follows.

Corollary 3.12. Let (X,⊥, d) be an O–complete metric space (not necessarily a complete metric
space), and T : X → CB(X) be an ⊥–preserving multivalued mapping. Assume that there exists
( θ
2
, F ) ∈ ∆ such that

θ(d(x, y)) + F (H(Tx, Ty))

≤ F (αd(x, y) + βD(x, Tx) + γD(y, Ty) + δD(x, Ty) + LD(y, Tx))
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for all ⊥–comparable elements x, y ∈ X with Tx 6= Ty, where α, β, γ, δ, L ≥ 0, α + β + γ + 2δ = 1
and γ 6= 1. Also, suppose that T is compact valued or F is continuous from the right. If
(i) T is ⊥–continuous or;
(ii) X is an ⊥–regular metric space;
then T is an OMWP operator.

Proof . By using Example 2.1 of [6], we can easily show that this corollary is a generalization of
Theorem 3.4 of [23]. �

In below we explain a generalization of Mizoguchi–Takahashi’s fixed point theorem [17].

Corollary 3.13. Let (X,⊥, d) be an O–complete metric space (not necessarily a complete metric
space), and T : X → CB(X) be an ⊥–preserving multivalued mapping. Assume that

H(Tx, Ty) ≤ α(d(x, y))d(x, y)

for all ⊥–comparable elements x, y ∈ X with Tx 6= Ty, where α is a function from (0,∞) into (0, 1)
such that lim sups→t+ α(s) < 1 for all t ∈ [0,∞). If
(i) T is ⊥–continuous or;
(ii) X is an ⊥-regular metric space;
then T is an OMWP operator.

Proof . Let F (t) = ln(t), θ(t) = − ln(α(t)) for each t ∈ (0,∞), and φ : R5
+ → R+ be defined by

φ(t1, t2, t3, t4, t5) = t1 then (θ, F ) ∈ ∆ and φ ∈ Λ. Hence by using Theorem 3.1, T has a fixed point.
�

In below, we explain a new fixed point theorem for single valued mappings.

Corollary 3.14. Let (X,⊥, d) be an O–complete metric space (not necessarily a complete metric
space), and f : X → X be an ⊥–continuous and ⊥–preserving mapping. Assume that there exists
( θ
2
, F ) ∈ ∆ such that

θ(d(x, y)) + F (d(fx, fy)) ≤ F (φ(d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)))

for all ⊥–comparable elements x, y ∈ X with fx 6= fy, where φ ∈ Λ. Then f has a fixed point.

Open problem: Let f : X → X be a mapping satisfying in all conditions of Corollary 3.14, then
can we conclude that f is a Picard operator? Does f have a unique fixed point?

Now we illustrate our main results by the following examples.

Example 3.15. Let (X, d) be a metric space, where X = {1, 2, 3, 4}, d(1, 2) = d(1, 3) = 1, d(1, 4) =
7
4

and d(2, 3) = d(2, 4) = d(3, 4) = 2. Let T : X → CB(X) be given by T1 = T4 = {1, 4},
T2 = T3 = {4} and ⊥ = {(1, 1), (1, 2), (1, 3), (1, 4), (4, 1), (4, 4)} be a binary relation on X. Since
X is finite set then every Cauchy sequence in (X, d) is equivalent constant and so convergent. Then
(X,⊥, d) is an O–complete metric space. It is easy to see that:
(i) X is an ⊥–regular metric space;
(ii) the inequality

1 + ln(H(Tx, Ty)) ≤ ln(α.d(x, y) + L.D(y, Tx)),

holds for all ⊥–comparable elements x, y ∈ X with Tx 6= Ty, where α = 1 and L = 4. Then by
Corollary 3.12, T has a fixed point.
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Example 3.16. Let X = (0, 1] be endowed with the Euclidean metric d(x, y) = |x − y|, for each
x, y ∈ X and suppose that x ⊥ y if and only if y = 1. Let T : X → CB(X) be given by Tx = [x

2
, x]

whenever x ∈ (0, 1
2
) and Tx = {1} whenever x ∈ [1

2
, 1] . Now we can easily show that

(1) X is an O–complete and ⊥–regular metric space.
(2) T is an ⊥–preserving multivalued mapping;
(3) the inequality

1

2
+ ln(H(Tx, Ty)) ≤ ln(α.d(x, y) + L.D(y, Tx)),

holds for all ⊥–comparable elements x, y ∈ X with Tx 6= Ty, where α = 1 and L = 11. Then by
Corollary 3.12, T has a fixed point.

4. Selection of multivalued mappings in incomplete metric space

Let (X, ‖.‖) and (Y, ‖.‖) be real normed spaces and let K be a nonempty subset of X. Consider a
multivalued mapping F : K → B(Y ). A function f : K → Y is called a selection of the F if and
only if f(x) ∈ F (x), x ∈ K. Let

Sel(F ) := {f : K → Y : f(x) ∈ F (x), x ∈ K}.

It is easy to check that if there exists a constant M > 0 such that diam(F (x)) ≤ M.‖x‖ for all
x ∈ K, then the distance function

d(f, g) = sup

{
‖f(x)− g(x)‖

‖x‖
, 0 6= x ∈ K, f, g ∈ Sel(F )

}
,

is a metric in Sel(F ). Obviously, the convergence in the space (Sel(F ), d) implies the point wise
convergence on the set K.

Theorem 4.1. Let (X, ‖.‖) and (Y, ‖.‖) be real normed spaces and let K be a nonempty subset of
X such that 0 ∈ K. Suppose that p, q > 0 and α, β ∈ R are fixed and one of the following conditions
holds:

1. |α| < p and K ⊆ pK,

2. |β| < q and K ⊆ qK.

Consider a multivalued function F : K → B(Y ) such that 0 ∈ F (0) and

diam(F (x)) ≤M.‖x‖, x ∈ K,

for some positive constant M . Also, for each x ∈ K, there exists ⊥x ⊆ F (x) × F (x) such that
(F (x),⊥x, ‖.‖) is an O–complete metric space with left orthogonal element x∗. If

αF (x) + βF (y) ⊆ F (px+ qy),

α.⊥x + β.⊥y ⊆ ⊥px+qy,
(4.1)

where x, y ∈ K and px + qy ∈ K, then there exists a unique selection f : K → Y of multivalued
mapping F such that

αf(x) + βf(y) = f(px+ qy), x, y ∈ K, px+ qy ∈ K.
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Proof . Assume that |α| < p and K ⊆ pK. Since diamF (0) = 0 and 0 ∈ F (0), then F (0) = 0 and
⊥0 = {(0, 0)}. Putting y = 0 in (4.1), since ⊥0 = {(0, 0)}, we obtain

αF (
x

p
) ⊆ F (x),

α.⊥x
p
⊆ ⊥x,

(4.2)

for each x ∈ K. Consider the following orthogonality relation on Sel(F ):

f ⊥∗ g ⇐⇒ f(x) ⊥x g(x), x ∈ K.

Let f ∗ : K → Y be defined by f ∗(x) = x∗. It is easy to check that (Sel(F ),⊥∗) is an orthogonal
set and f ∗ is an orthogonal element of (Sel(F ),⊥∗). Let F(g)(x) := α.g(x

p
) for each x ∈ K and

g ∈ Sel(F ). By (4.2), F(g) ∈ Sel(F ) and F is ⊥∗–preserving. Hence, F : Sel(F ) → Sel(F ) is an
⊥∗-preserving mapping. Moreover, for each g1, g2 ∈ Sel(F ), we obtain that

d(F(g1),F(g2)) = |α|. sup

{
‖g1(xp )− g2(xp )‖

‖x‖
, 0 6= x ∈ K

}

=
|α|
p
. sup

{
‖g1(xp )− g2(xp )‖

‖x‖
p

, 0 6= x ∈ K

}

≤ |α|
p
.d(g1, g2).

Since |α| < p, then F : Sel(F ) → Sel(F ) is a contractive mapping in (Sel(F ), d). Now, according
to the assumptions, since for each x ∈ K, (F (x),⊥x, ‖.‖) is an O–complete metric space, then
(Sel(F ),⊥∗, d) is an O–complete metric space. Therefore by Corollary 3.11 of [7], it has a unique
fixed point f and limn→∞Fn(g) = f for each g ∈ Sel(F ). Hence f : K → Y is the unique selection
of F such that

f(x) = α.f(
x

p
), x ∈ K.

Fix g ∈ Sel(F ) and x, y ∈ K such that px+ qy ∈ K. Then x
p
, y
p

and px+qy
p

are belong to K. By (4.1),

α.g(x
p
) + β.g(y

p
) and g(px+qy

p
) are elements of F (px+qy

p
). Hence∥∥∥∥α.g(

x

p
) + β.g(

y

p
)− g(

px+ qy

p
)

∥∥∥∥ ≤ diamF (
px+ qy

p
)

≤M.

∥∥∥∥px+ qy

p

∥∥∥∥ .
Thus

‖α.F(g)(x) + β.F(g)(y)−F(g)(px+ qy)‖ ≤M
|α|
p
‖px+ qy‖

for each x, y ∈ K such that px+ qy ∈ K. Repeating this process, we get

‖α.Fn(g)(x) + β.Fn(g)(y)−Fn(g)(px+ qy)‖ ≤M
( |α|
p

)n
‖px+ qy‖

for each n ∈ N and all x, y ∈ K with px+ qy ∈ K. Letting n→∞, we obtain

αf(x) + βf(y) = f(px+ qy), x, y ∈ K, px+ qy ∈ K.

�
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Corollary 4.2. (Smajdor and Szczawinska, [25]) Let (X, ‖.‖) and (Y, ‖.‖) be real normed spaces
and let K be a nonempty subset of X such that 0 ∈ K. Suppose that p, q > 0 and α, β ∈ R are fixed
and one of the following conditions holds:

1. |α| < p and K ⊆ pK,

2. |β| < q and K ⊆ qK.

Consider a multivalued mapping F : K → CP (Y ) such that 0 ∈ F (0) and

diam(F (x)) ≤M.‖x‖, x ∈ K,

for some positive constant M . If

αF (x) + βF (y) ⊆ F (px+ qy),

where x, y ∈ K and px + qy ∈ K, then there exists a unique selection f : K → Y of multivalued
mapping F such that

αf(x) + βf(y) = f(px+ qy), x, y ∈ K, px+ qy ∈ K.

Corollary 4.3. Let (X, ‖.‖) and (Y, ‖.‖) be real normed spaces and let K be a convex cone in X.
Suppose that p, q > 0 and α, β ∈ R are fixed and one of the following conditions holds:

1. |α| < p and K ⊆ pK,

2. |β| < q and K ⊆ qK.

Consider a multivalued mapping F : K → B(Y ) such that 0 ∈ F (0) and

diam(F (x)) ≤M.‖x‖, x ∈ K,

for some positive constant M . Also, for each x ∈ K, there exists ⊥x ⊆ F (x) × F (x) such that
(F (x),⊥x, ‖.‖) is an O–complete metric space with left orthogonal element x∗. If

αF (x) + βF (y) ⊆ F (px+ qy),

α.⊥x + β.⊥y ⊆ ⊥px+qy,

where x, y ∈ K, then there exists a unique selection f : K → Y of multivalued mapping F such that

αf(x) + βf(y) = f(px+ qy), x, y ∈ K.
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