Int. J. Nonlinear Anal. Appl. 9 (2018) No. 2, 71-84 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2018.1644.1432

Generalized multivalued F-contractions on incomplete metric spaces

Hamid Baghani

Department of Mathematics, Faculty of Mathematics, University of Sistan and Baluchestan, P.O. Box 98135-674, Zahedan, Iran

(Communicated by M.B. Ghaemi)

Abstract

In this paper, we explain a new generalized contractive condition for multivalued mappings and prove a fixed point theorem in metric spaces (not necessary complete) which extends some well–known results in the literature. Finally, as an application, we prove that a multivalued function satisfying a general linear functional inclusion admits a unique selection fulfilling the corresponding functional equation.

Keywords: Fixed point theorem, Weakly Picard operator, O–complete metric space, Selections of multivalued functions. 2010 MSC: Primary 54H25; Secondary 47H10, 47H04.

1. Introduction and preliminaries

Throughout this paper, \mathbb{N}, \mathbb{Q} and \mathbb{R} denote, respectively, the sets of all natural numbers, rational numbers and real numbers. Also, for every nonempty set X denote $\mathcal{P}^*(X)$ the set of all nonempty subsets of X. Let (X, d) be a metric space. We denote by B(X), CB(X) and CP(X) collections of all bounded, closed bounded and complete members of $\mathcal{P}^*(X)$, respectively. The number

$$diam(A) := \sup\{d(a,b) : a, b \in A\},\$$

is said to be the diameter of $A \in \mathcal{P}^*(X)$. For $A, B \in CB(X)$ and $x \in X$, define

$$D(x,A) := \inf\{d(x,a); a \in A\}$$

Email address: h.baghani@gmail.com, h.baghani@math.usb.ac.ir (Hamid Baghani)

and

$$H(A,B) := \max\{\sup_{a \in A} D(a,B), \sup_{b \in B} D(b,A)\}.$$

The function H is a metric on CB(X) and is called a Pompeiu–Hausdorff metric. We can find detailed information about the Pompeiu–Hausdorff metric in [1, 10]. It is well known that if X is a complete metric space, then so is the metric space (CB(X), H). Let $T : X \to CB(X)$ be a map, then T is called a multivalued contraction if there exists $r \in (0, 1)$ such that for all $x, y \in X$, we have

$$H(Tx, Ty) \le rd(x, y).$$

In 1969, Nadler [18] proved that every multivalued contraction on a complete metric space has a fixed point. Since then, a lot of generalizations of the result of Nadler were given (see, for example [2, 3, 6, 11, 13, 15, 14, 24, 26]). An interesting important generalization of it were given by Berinde et al. [9] where the authors introduced the concept of a multivalued weakly Picard operator as follows:

Definition 1.1. (Berinde and Berinde, [9]) Let (X, d) be a metric space and $T : X \to \mathcal{P}^*(X)$ be a multivalued operator. T is said to be a Multivalued Weakly Picard (MWP) operator if for each $x \in X$ and any $y \in Tx$, there exists a sequence $\{x_n\}$ in X such that (i) $x_0 = x, x_1 = y$, (ii) $x_0 = x, Tx_1 = y$,

 $(ii) x_{n+1} \in Tx_n,$

(*iii*) the sequence $\{x_n\}$ is convergent and its limit is a fixed point of T.

Then Berinde et al. [9] showed that the type multivalued contractions on complete metric spaces considered by Nadler [18], Mizoguchi and Takahashi [17] and Petrusel [20] are MWP operators. In the same paper, Berinde et al. [9] introduced the concepts of multivalued almost contraction (the original name was multivalued (δ, L) -weak contraction) and proved the following important fixed point theorem:

Theorem 1.2. (Berinde and Berinde, [9]) Let (X, d) be a complete metric space and let T be a multivalued almost contraction from X into CB(X), that is, there exist two constant $\delta \in (0, 1)$ and $L \ge 0$ such that

 $H(Tx, Ty) \le \delta d(x, y) + L D(y, Tx)$

for all $x, y \in X$. Then T is an MWP operator.

Recently, Eshaghi et al. [12] introduced the notion of orthogonal sets and then gave a real extension of Banach's fixed point theorem. Then, Baghani et al. [7] by using the notion, proved a statement which is equivalent to the axiom of choice and explain a generalization of Theorem 3.11 of [12].

In this paper, by combining the ideas of Baghani et al. [7] and Berinde et al. [9], we explain a new generalized contractive condition of multivalued mappings and prove a fixed point theorem in metric spaces (not necessary compete) which improves the main result of Altun et al. [4, 5], Amini–Harandi [6], Mizoguchi et al. [17], Sgroi et al. [23] and Smajdor et al. [25].

Definition 1.3. Let Λ be the class of those functions $\phi(t_1, t_2, t_3, t_4, t_5) : \mathbb{R}^5_+ \to \mathbb{R}_+$ which satisfy the following conditions

 $(\Lambda_1) \phi$ is increasing in t_2, t_3, t_4 and t_5 ;

(Λ_2) $t_{n+1} < \phi(t_n, t_n, t_{n+1}, t_n + t_{n+1}, 0)$ implies that $t_{n+1} < t_n$, for each positive sequence $\{t_n\}$;

(A₃) If $t_n, s_n \to 0$ and $u_n \to \gamma > 0$, as $n \to \infty$, then we have $\limsup_{n \to \infty} \phi(t_n, s_n, \gamma, u_n, t_{n+1}) < \gamma$;

 $(\Lambda_4) \ \phi(u, u, u, 2u, 0) \le u \text{ for each } u \in \mathbb{R}^+ := (0, +\infty).$

Example 1.4. Let $\phi : \mathbb{R}^5_+ \to \mathbb{R}_+$ defined by

$$\phi(t_1, t_2, t_3, t_4, t_5) = \alpha t_1 + \beta t_2 + \gamma t_3 + \delta t_4 + L t_5,$$

where $\alpha, \beta, \gamma, \delta, L \ge 0$, $\alpha + \beta + \gamma + 2\delta = 1$ and $\gamma \ne 1$. We claim that $\phi \in \Lambda$. Indeed (Λ_1) obviously holds. To show (Λ_2), let $\{t_n\}$ be a positive sequence such that

$$t_{n+1} < \phi(t_n, t_n, t_{n+1}, t_n + t_{n+1}, 0) = \alpha t_n + \beta t_n + \gamma t_{n+1} + \delta(t_n + t_{n+1})$$

= $(\alpha + \beta + \delta)t_n + (\gamma + \delta)t_{n+1}.$

Since $\alpha + \beta + \gamma + 2\delta = 1$ and $\gamma \neq 1$, then we can conclude that $1 - (\gamma + \delta) > 0$ and hence

$$t_{n+1} < \frac{(\alpha + \beta + \delta)}{1 - (\gamma + \delta)} t_n = t_n.$$

It is obvious that properties (Λ_3) and (Λ_4) hold for this function.

Definition 1.5. (Amini–Harandi, [6]) Let $F : (0, +\infty) \to \mathbb{R}$ and $\theta : (0, +\infty) \to (0, +\infty)$ be two mappings. Throughout the paper, let Δ be the set of all pairs (θ, F) satisfying the following conditions:

 $(\delta_1) \ \theta(t_n) \not\rightarrow 0$ for each strictly decreasing sequence $\{t_n\}$;

 (δ_2) F is a strictly increasing function;

 (δ_3) For each sequence $\{\alpha_n\}$ of positive numbers, $\lim_{n\to\infty} \alpha_n = 0$ if and only if $\lim_{n\to\infty} F(\alpha_n) = -\infty$; (δ_4) If $t_n \downarrow 0$ and $\theta(t_n) \leq F(t_n) - F(t_{n+1})$ for each $n \in \mathbb{N}$, then we have $\sum_{n=1}^{\infty} t_n < \infty$.

Example 1.6. (Amini-Harandi, [6]) Let $F(t) = \ln(t)$ and $\theta(t) = -\ln(\alpha(t))$ for each $t \in (0, +\infty)$, where $\alpha : (0, \infty) \to (0, 1)$ satisfies $\limsup_{s \to t^+} \alpha(s) < 1$ for all $t \in [0, \infty)$. Then $(\theta, F) \in \Delta$.

2. Orthogonal sets

We start our work with the following definition, which can be considered as the main definition of our paper.

Definition 2.1. (Eshaghi et al., [12]) Let $X \neq \emptyset$ and $\bot \subseteq X \times X$ be a binary relation. If \bot satisfies the following condition

 $\exists x_0 \in X : (\forall y, y \perp x_0) \text{ or } (\forall y, x_0 \perp y),$

then \perp is called an orthogonality relation and the pair (X, \perp) an orthogonal set (briefly *O*-set).

Note that in above definition, we say that x_0 is orthogonal element. If (X, \bot) has only one orthogonal element, then it is called a uniquely orthogonal set and the element is said unique orthogonal element. Also, an orthogonal element x_0 is called left orthogonal element if $x_0 \bot x$ for each $x \in X$. Similarly, it is called a right orthogonal element if $x \bot x_0$ for each $x \in X$. Finally, we say that elements $x, y \in X$ are \bot -comparable either $x \bot y$ or $y \bot x$.

As an illustration, let us consider the following examples.

Example 2.2. (Eshaghi et al., [12]) Let X be the set of all people in the world. We define $x \perp y$ if x can give blood to y. According to the following table, if x_0 is a person such that his (her) blood type is AB+, then we have $y \perp x_0$ for all $y \in X$. This means that (X, \perp) is a O-set. Also, Let x_0 be a person with blood type O-, then we have $x_0 \perp y$ for all $y \in X$. Hence, in the O-set, x_0 is not unique.

Type	You can give blood to	You can receive blood from
A+	A+ AB+	A+ A- O+ O-
O+	O+A+B+AB+	O+ O-
B+	B+ AB+	B+ B- O+ O-
AB+	AB+	Everyone
A-	A+ A- AB+ AB-	A- O-
0-	Everyone	O-
B-	B+ B- AB+ AB-	B- O-
AB-	AB+ AB-	AB- B- O- A-

Example 2.3. Let Σ be a family of nonempty subsets of X. Assume μ is the set of all σ -algebras containing Σ . Define $A \perp_{\mu} B$ iff $B \subset A$. Hence (μ, \perp_{μ}) is an uniquely O-set that σ -algebra generated by Σ is a unique orthogonal element of μ .

Example 2.4. Let (X, \bot) be an O-set. Let f be a choice function on $\mathcal{P}^*(X)$. For all $A, B \in \mathcal{P}^*(X)$ define $A \bot^* B$ if and only if $f(A) \bot f(B)$. It is clear that $(\mathcal{P}^*(X), \bot^*)$ is an O-set and $\{x^*\}$ is an orthogonal element of $(\mathcal{P}^*(X), \bot^*)$, where x^* is an orthogonal element of (X, \bot) .

Example 2.5. Let X be a nonempty set. If f is a choice function on $\mathcal{P}^*(X)$, then f defines a equivalent relation \perp^* on $\mathcal{P}^*(X)$ via

$$A \perp^* B \iff f(A) = f(B).$$

The relation \perp^* in above satisfies the following.

1. The set of all equivalence classes modulo \perp^* is

$$\mathcal{P}^*(X)/\bot^* = \{\{x\}/\bot^* : x \in X\},\$$

where $\{x\}/\perp^*$ is the equivalence class of $\{x\}$ modulo \perp^* .

2. Every element of $\{x\}/\perp^*$ contains x.

It is easy to see that for each $x \in X$, $(\{x\}/\perp^*, \perp^*)$ is an O–set and $\{x\}$ is unique orthogonal element of $(\{x\}/\perp^*, \perp^*)$.

Let (X, \bot) be a O-set and $A, B \subseteq X$. The binary relation $\widehat{\bot}$ between A and B is defined as follows.

• $A \perp B$ if $a \perp b$ for all $a \in A$ and $b \in B$.

Now, we introduce \perp -preserving multivalued mapping by using the relation \perp .

Definition 2.6. Let (X, \bot, d) be a orthogonal metric space $((X, \bot)$ is an O-set and (X, d) is a metric space) and $T: X \to CB(X)$. Then T is said to be an \bot -preserving multivalued mapping if

$$x, y \in X, x \perp y \Rightarrow Tx \perp Ty.$$

Example 2.7. Let $X = \{\frac{1}{2}, \frac{1}{4}, \dots, \frac{1}{2^n}, \dots\} \cup \{0, 1\}, d(x, y) = |x - y|$ for all $x, y \in X$, and binary relation \perp on X be defined by

$$x \perp y \iff \begin{cases} \frac{y}{x} \in \mathbb{N}, \\ or \ x = y = 0. \end{cases}$$

Let $T: X \to CB(X)$ be defined by

$$Tx = \begin{cases} \left\{\frac{1}{2^n}, \frac{1}{2^{n+1}}\right\} & \text{if} & x = \frac{1}{2^n}, n = 1, 2, \dots, \\ \{0\}, & \text{if} & x = 0, \\ \left\{1, \frac{1}{2}, \frac{1}{4}\right\}, & \text{if} & x = 1. \end{cases}$$

It is easy to see that T is not an \perp -preserving multivalued mapping. Since $\frac{1}{2} \perp 1$ but $T(\frac{1}{2}) = \{\frac{1}{2}, \frac{1}{4}\}$ is not orthogonal to $\{1, \frac{1}{2}, \frac{1}{4}\} = T(1)$.

Example 2.8. Let X = [0, 1) and let the metric on X be the Euclidean metric. Define a binary relation \perp on X by $x \perp y$ if $xy \in \{x, y\}$ for all $x, y \in X$. Let $T : X \to CB(X)$ be a mapping defined by

$$T(x) = \begin{cases} \{\frac{1}{2}x^2, x\}, & x \in \mathbb{Q} \cap X, \\ \{0\}, & x \in \mathbb{Q}^c \cap X. \end{cases}$$

It is easy to see that T is an \perp -preserving multivalued mapping

3. Fixed Point Theory

In this section, we prove our main theorem. To this end, we need the following definitions.

Definition 3.1. (Eshaghi et al., [12]) Let (X, \perp) be an O-set. A sequence $\{x_n\}$ is called an *orthogonal sequence* (briefly, *O*-sequence) if

$$(\forall n, x_n \perp x_{n+1})$$
 or $(\forall n, x_{n+1} \perp x_n)$.

Definition 3.2. (Eshaghi et al., [12]) Let (X, \bot, d) be an orthogonal metric space. Then X is said to be *orthogonally complete* (briefly, *O-complete*) if every Cauchy O-sequence is convergent.

Definition 3.3. Let (X, \bot, d) be an orthogonal metric space. Then X is said to be orthogonally regular (briefly, \bot -regular) if X has the following properties

(i) for each sequence $\{x_n\}$ such that $x_n \perp x_{n+1}$ for all $n \in \mathbb{N}$, and $x_n \to x$, for some $x \in X$, then $x_n \perp x$ for all $n \in \mathbb{N}$;

(ii) for each sequence $\{x_n\}$ such that $x_{n+1} \perp x_n$ for all $n \in \mathbb{N}$, and $x_n \to x$, for some $x \in X$, then $x \perp x_n$ for all $n \in \mathbb{N}$.

Example 3.4. Let $X = \mathbb{Q}$. Suppose that $x \perp y$ if and only if x = 0 or y = 0. Clearly, \mathbb{Q} with the Euclidean metric is not a complete metric space, but it is O-complete. In fact, if $\{x_k\}$ is an arbitrary Cauchy O-sequence in \mathbb{Q} , then there exists a subsequence $\{x_{k_n}\}$ of $\{x_k\}$ for which $x_{k_n} = 0$ for all $n \geq 1$. It follows that $\{x_{k_n}\}$ converges to $0 \in X$. On the other hand, we know that every Cauchy sequence with a convergent subsequence is convergent. It follows that $\{x_k\}$ is convergent. It is easy to see that (X, \bot, d) is also an \bot -regular metric space.

Example 3.5. Let X = [0, 1). Suppose that

$$x \perp y \iff \begin{cases} x \le y \le \frac{1}{4}, \\ or \ x = 0. \end{cases}$$

.

Clearly, X with the Euclidian metric is not complete metric space, but it is O-complete. In fact, if $\{x_k\}$ is an arbitrary Cauchy O-sequence in X, then there exists a subsequence $\{x_{k_n}\}$ of $\{x_k\}$ for which $x_{k_n} = 0$ for all $n \ge 1$ or there exists a monotone subsequence $\{x_{k_n}\}$ of $\{x_k\}$ for which $x_{k_n} \le \frac{1}{4}$ for all $n \ge 1$. It follows that $\{x_{k_n}\}$ converges to a point $x \in [0, \frac{1}{4}] \subseteq X$. On the other hand, we know that every Cauchy sequence with a convergent subsequence is convergent. It follows that $\{x_k\}$ is convergent. It is easy to see that (X, \bot, d) is also an \bot -regular metric space.

Definition 3.6. Let (X, \bot, d) be an orthogonal metric space. Then $T : X \to CB(X)$ is said to be orthogonally continuous (or \bot -continuous) in $a \in X$ if, for each O-sequence $\{a_n\}$ in X with $a_n \to a$, we have $T(a_n) \to T(a)$. Also, T is said to be \bot -continuous on X if T is \bot -continuous in each $a \in X$.

It is easy to see that every continuous mapping is \perp -continuous. The following example shows that the converse of the statement is not true in general.

Example 3.7. Let $X = \mathbb{R}$. Suppose $x \perp y$ if and only x = 0 or $0 \neq y \in \mathbb{Q}$. It is easy to see that (X, \perp) is an O-set. Define $T: X \to CB(X)$ by

$$T(x) = \begin{cases} \{x\}, x \in \mathbb{Q}, \\ \{0\}, x \in \mathbb{Q}^c. \end{cases}$$

The function T is \perp -continuous at all rational numbers while it is continuous just at x = 0.

Definition 3.8. Let (X, \bot, d) be an orthogonal metric space and $T : X \to \mathcal{P}^*(X)$ be a multivalued operator. T is said to be an orthogonal multivalued Weakly Picard (OMWP) operator if for each orthogonal element $x \in X$ and any $y \in Tx$, there exists an orthogonal sequence $\{x_n\}$ in X such that (i) $x_0 = x, x_1 = y$, (ii) $x_{n+1} \in Tx_n$,

(*iii*) the sequence $\{x_n\}$ is convergent and its limit is a fixed point of T.

Now, we are ready to prove the main theorem of this paper which can be consider as a multivalued version of Theorem 3.10 of [7].

Theorem 3.9. Let (X, \bot, d) be an O-complete metric space (not necessarily a complete metric space), and $T: X \to CB(X)$ be an \bot -preserving multivalued mapping. Assume that there exists $(\frac{\theta}{2}, F) \in \Delta$ such that

$$\theta(d(x,y)) + F(H(Tx,Ty)) \le F(\phi(d(x,y), D(x,Tx), D(y,Ty), D(x,Ty), D(y,Tx))),$$
(3.1)

for all \perp -comparable elements $x, y \in X$ with $Tx \neq Ty$, where $\phi \in \Lambda$. Also, suppose that T is compact valued or F is continuous from the right. If (i) T is \perp -continuous or; (ii) X is an \perp -regular metric space;

then T is an OMWP operator.

Proof. Let x_0 be an orthogonal element of X. By the definition of orthogonality, we have

$$\forall y \in X, x_0 \perp y \text{ or } \forall y \in X, y \perp x_0.$$

It follows that

$$\forall y \in T(x_0), x_0 \perp y \text{ or } \forall y \in T(x_0), y \perp x_0.$$

Without loss of generality let

$$\forall y \in T(x_0), x_0 \bot y.$$

Let $x_1 \in Tx_0$ then $x_0 \perp x_1$. On the other hand, since T is \perp -preserving, then $Tx_0 \perp Tx_1$. If $x_1 \in Tx_1$, then x_1 is fixed point of T and the proof is finished. Assume that $x_1 \notin Tx_1$, then $Tx_0 \neq Tx_1$. Since either T is compact valued or F is continuous from right, $x_1 \in Tx_0$ and

$$F(D(x_1, Tx_1)) < F(H(Tx_0, Tx_1)) + \frac{\theta(d(x_0, x_1))}{2},$$

then there exists $x_2 \in Tx_1$ with $x_1 \perp x_2$ such that

$$F(d(x_1, x_2)) \le F(H(Tx_0, Tx_1)) + \frac{\theta(d(x_0, x_1))}{2}.$$

Repeating this process, we can construct an O–sequence $\{x_n\}$ with initial point x_0 such that $x_{n+1} \in Tx_n, Tx_n \neq Tx_{n+1}$ and

$$F(d(x_n, x_{n+1})) \le F(H(Tx_{n-1}, Tx_n)) + \frac{\theta(d(x_{n-1}, x_n))}{2}$$
(3.2)

for all $n \in \mathbb{N}$. From (3.1), (3.2), (Λ_1) and (δ_2) we have

$$\begin{aligned} \theta(d(x_{n-1}, x_n)) + F(d(x_n, x_{n+1})) \\ &\leq \theta(d(x_{n-1}, x_n)) + F(H(Tx_{n-1}, Tx_n)) + \frac{\theta(d(x_{n-1}, x_n))}{2} \\ &\leq F(\phi(d(x_{n-1}, x_n), D(x_{n-1}, Tx_{n-1}), D(x_n, Tx_n), D(x_{n-1}, Tx_n), D(x_n, Tx_{n-1}))) \\ &+ \frac{\theta(d(x_{n-1}, x_n))}{2} \\ &\leq F(\phi(d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_n, x_{n+1}), d(x_{n-1}, x_{n+1}), 0)) + \frac{\theta(d(x_{n-1}, x_n))}{2} \\ &\leq F(\phi(d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_n, x_{n+1}), d(x_{n-1}, x_n) + d(x_n, x_{n+1}), 0)) \\ &+ \frac{\theta(d(x_{n-1}, x_n))}{2}, \end{aligned}$$

and so

$$\frac{\theta(d(x_{n-1}, x_n))}{2} + F(d(x_n, x_{n+1}))$$

$$\leq F(\phi(d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_n, x_{n+1}), d(x_{n-1}, x_n) + d(x_n, x_{n+1}), 0))$$
(3.3)

for each $n \in \mathbb{N}$. This implies that

$$d(x_n, x_{n+1}) < \phi(d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_n, x_{n+1}), d(x_{n-1}, x_n) + d(x_n, x_{n+1}), 0)$$

for each $n \in \mathbb{N}$. Then by (Λ_2) , $d(x_n, x_{n+1}) < d(x_{n-1}, x_n)$ for each $n \in \mathbb{N}$. Since $\{d(x_n, x_{n+1})\}$ is a strictly decreasing sequence, then by using (3.3), (Λ_1) and (Λ_4) , we obtain that

$$\frac{\theta(d(x_{n-1}, x_n))}{2} + F(d(x_n, x_{n+1}))
\leq F(\phi(d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_n, x_{n+1}), d(x_{n-1}, x_n) + d(x_n, x_{n+1}), 0))
\leq F(\phi(d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_{n-1}, x_n) + d(x_{n-1}, x_n), 0))
= F(\phi(d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_{n-1}, x_n), 2d(x_{n-1}, x_n), 0))
< F(d(x_{n-1}, x_n)),$$
(3.4)

for each $n \in \mathbb{N}$. Let $\lim_{n\to\infty} d(x_n, x_{n+1}) = r$, for some $r \ge 0$. Now, we show that r = 0. On contrary, assume that r > 0. From (3.4) we get

$$\frac{1}{2}\sum_{i=1}^{n}\theta(d(x_i, x_{i+1})) \le F(d(x_1, x_2)) - F(d(x_{n+1}, x_{n+2}))$$
(3.5)

for each $n \in \mathbb{N}$. Since $\{d(x_n, x_{n+1})\}$ is strictly decreasing, then from (δ_1) we obtain that $\theta(d(x_n, x_{n+1})) \not\rightarrow 0$. 1. Thus, $\sum_{i=1}^{\infty} \theta(d(x_i, x_{i+1})) = +\infty$, and then from (3.5) we have $\lim_{n\to\infty} F(d(x_n, x_{n+1})) = -\infty$. Then by $(\delta_3), d(x_n, x_{n+1}) \to 0$, as $n \to \infty$, that a contradiction. Hence

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$
(3.6)

From (3.4), (3.6) and (δ_4) , we have $\sum_{n=1}^{\infty} d(x_n, x_{n+1}) < \infty$. Then by triangle inequality $\{x_n\}$ is a Cauchy O-sequence. Since X is O-complete, then there exists $x \in X$ such that $\lim_{n\to\infty} x_n = x$. Now, we prove that x is fixed point of T.

Case 1. T is \perp -continuous. In this case, we have

$$D(x, Tx) = \lim_{n \to \infty} D(x_{n+1}, Tx) \le \lim_{n \to \infty} H(Tx_n, Tx) = 0.$$

Then $x \in Tx$ and the proof is complete.

Case 2. X is an \perp -regular metric space.

If there exists a strictly increasing sequence $\{n_k\}$ such that $x_{n_k} \in Tx$ for all $k \in \mathbb{N}$, since Tx is closed and $x_{n_k} \to x$, as $k \to \infty$, we get that $x \in Tx$ and the proof is complete. So, we can assume that there exists $n_0 \in \mathbb{N}$ such that $x_n \notin Tx$ for each $n > n_0$. This implies that $Tx_n \neq Tx$ for each $n \ge n_0$. Now since X is an \perp -regular metric space by using (3.1) with $x = x_n$ and y = x, we obtain

$$F(D(x_{n+1}, Tx)) < \theta(d(x_n, x)) + F(D(x_{n+1}, Tx))$$

$$\leq \theta(d(x_n, x)) + F(H(Tx_n, Tx))$$

$$\leq F(\phi(d(x_n, x), D(x_n, Tx_n), D(x, Tx), D(x_n, Tx), D(x, Tx_n)))$$

$$\leq F(\phi(d(x_n, x), d(x_n, x_{n+1}), D(x, Tx), D(x_n, Tx), d(x, x_{n+1})))$$

for each $n \ge n_0$. Therefore

$$D(x_{n+1}, Tx) < \phi(d(x_n, x), d(x_n, x_{n+1}), D(x, Tx), D(x_n, Tx), d(x, x_{n+1}))$$

for each $n \ge n_0$. Now if $x \in Tx$, then the proof is complete. Let $x \notin Tx$ then by using (3) and (Λ_3) we have

$$D(x, Tx) = \limsup_{n \to \infty} D(x_{n+1}, Tx)$$

$$\leq \limsup_{n \to \infty} \phi(d(x_n, x), d(x_n, x_{n+1}), D(x, Tx), D(x_n, Tx), d(x, x_{n+1}))$$

$$< D(x, Tx),$$

which is a contradiction. Hence $x \in Tx$ and the proof is complete. \Box

Letting $\phi(t_1, t_2, t_3, t_4, t_5) = t_1$, we get a generalization of Theorem 2.4 of [6], Theorem 2 and Theorem 3 of [5] as follows.

Corollary 3.10. Let (X, \bot, d) be an O-complete metric space (not necessarily a complete metric space), and $T: X \to CB(X)$ be an \bot -preserving multivalued mapping. Assume that there exists $(\frac{\theta}{2}, F) \in \Delta$ such that

$$\theta(d(x,y)) + F(H(Tx,Ty)) \le F(d(x,y))$$

for all \perp -comparable elements $x, y \in X$ with $Tx \neq Ty$. Also, suppose that T is compact valued or F is continuous from the right. If

(i) T is \perp -continuous or;

(*ii*) X is an \perp -regular metric space;

then T is an OMWP operator.

Letting

$$\phi(t_1, t_2, t_3, t_4, t_5) = t_1 + \lambda . t_5,$$

where $\lambda \geq 0$, we get a generalization of Theorem 2.2 of [4] as follows.

Corollary 3.11. Let (X, \bot, d) be an O-complete metric space (not necessarily a complete metric space), and $T: X \to CB(X)$ be an \bot -preserving multivalued mapping. Assume that there exists $(\frac{\theta}{2}, F) \in \Delta$ such that

$$\theta(d(x,y)) + F(H(Tx,Ty)) \le F(d(x,y) + \lambda D(y,Tx))$$

for all \perp -comparable elements $x, y \in X$ with $Tx \neq Ty$, where $\lambda \geq 0$. Also, suppose that T is compact valued or F is continuous from the right. If

(i) T is \perp -continuous or;

(*ii*) X is an \perp -regular metric space;

then T is an OMWP operator.

Letting

$$\phi(t_1, t_2, t_3, t_4, t_5) = \alpha t_1 + \beta t_2 + \gamma t_3 + \delta t_4 + L t_5,$$

where $\alpha, \beta, \gamma, \delta, L \ge 0$, $\alpha + \beta + \gamma + 2\delta = 1$ and $\gamma \ne 1$, we get a generalization of Theorem 3.4 of [23] as follows.

Corollary 3.12. Let (X, \bot, d) be an O-complete metric space (not necessarily a complete metric space), and $T: X \to CB(X)$ be an \bot -preserving multivalued mapping. Assume that there exists $(\frac{\theta}{2}, F) \in \Delta$ such that

$$\begin{aligned} \theta(d(x,y)) + F(H(Tx,Ty)) \\ &\leq F(\alpha d(x,y) + \beta D(x,Tx) + \gamma D(y,Ty) + \delta D(x,Ty) + LD(y,Tx)) \end{aligned}$$

for all \perp -comparable elements $x, y \in X$ with $Tx \neq Ty$, where $\alpha, \beta, \gamma, \delta, L \geq 0$, $\alpha + \beta + \gamma + 2\delta = 1$ and $\gamma \neq 1$. Also, suppose that T is compact valued or F is continuous from the right. If (i) T is \perp -continuous or; (ii) X is an \perp -regular metric space; then T is an OMWP operator.

Proof. By using Example 2.1 of [6], we can easily show that this corollary is a generalization of Theorem 3.4 of [23]. \Box

In below we explain a generalization of Mizoguchi–Takahashi's fixed point theorem [17].

Corollary 3.13. Let (X, \bot, d) be an O-complete metric space (not necessarily a complete metric space), and $T: X \to CB(X)$ be an \bot -preserving multivalued mapping. Assume that

 $H(Tx, Ty) \le \alpha(d(x, y))d(x, y)$

for all \perp -comparable elements $x, y \in X$ with $Tx \neq Ty$, where α is a function from $(0, \infty)$ into (0, 1) such that $\limsup_{s \to t^+} \alpha(s) < 1$ for all $t \in [0, \infty)$. If

(i) T is \perp -continuous or;

(ii) X is an \perp -regular metric space;

then T is an OMWP operator.

Proof. Let $F(t) = \ln(t)$, $\theta(t) = -\ln(\alpha(t))$ for each $t \in (0, \infty)$, and $\phi : \mathbb{R}^5_+ \to \mathbb{R}_+$ be defined by $\phi(t_1, t_2, t_3, t_4, t_5) = t_1$ then $(\theta, F) \in \Delta$ and $\phi \in \Lambda$. Hence by using Theorem 3.1, T has a fixed point. \Box

In below, we explain a new fixed point theorem for single valued mappings.

Corollary 3.14. Let (X, \bot, d) be an O-complete metric space (not necessarily a complete metric space), and $f: X \to X$ be an \bot -continuous and \bot -preserving mapping. Assume that there exists $(\frac{\theta}{2}, F) \in \Delta$ such that

$$\theta(d(x,y)) + F(d(fx, fy)) \le F(\phi(d(x,y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)))$$

for all \perp -comparable elements $x, y \in X$ with $fx \neq fy$, where $\phi \in \Lambda$. Then f has a fixed point.

Open problem: Let $f : X \to X$ be a mapping satisfying in all conditions of Corollary 3.14, then can we conclude that f is a Picard operator? Does f have a unique fixed point?

Now we illustrate our main results by the following examples.

Example 3.15. Let (X, d) be a metric space, where $X = \{1, 2, 3, 4\}$, d(1, 2) = d(1, 3) = 1, $d(1, 4) = \frac{7}{4}$ and d(2, 3) = d(2, 4) = d(3, 4) = 2. Let $T : X \to CB(X)$ be given by $T1 = T4 = \{1, 4\}$, $T2 = T3 = \{4\}$ and $\bot = \{(1, 1), (1, 2), (1, 3), (1, 4), (4, 1), (4, 4)\}$ be a binary relation on X. Since X is finite set then every Cauchy sequence in (X, d) is equivalent constant and so convergent. Then (X, \bot, d) is an O-complete metric space. It is easy to see that: (i) X is an \bot -regular metric space;

(ii) the inequality

$$1 + \ln(H(Tx, Ty)) \le \ln(\alpha . d(x, y) + L . D(y, Tx)),$$

holds for all \perp -comparable elements $x, y \in X$ with $Tx \neq Ty$, where $\alpha = 1$ and L = 4. Then by Corollary 3.12, T has a fixed point.

Example 3.16. Let X = (0, 1] be endowed with the Euclidean metric d(x, y) = |x - y|, for each $x, y \in X$ and suppose that $x \perp y$ if and only if y = 1. Let $T : X \to CB(X)$ be given by $Tx = [\frac{x}{2}, x]$ whenever $x \in (0, \frac{1}{2})$ and $Tx = \{1\}$ whenever $x \in [\frac{1}{2}, 1]$. Now we can easily show that (1) X is an O-complete and \perp -regular metric space.

(2) T is an \perp -preserving multivalued mapping;

(3) the inequality

$$\frac{1}{2} + \ln(H(Tx, Ty)) \le \ln(\alpha . d(x, y) + L.D(y, Tx)),$$

holds for all \perp -comparable elements $x, y \in X$ with $Tx \neq Ty$, where $\alpha = 1$ and L = 11. Then by Corollary 3.12, T has a fixed point.

4. Selection of multivalued mappings in incomplete metric space

Let $(X, \|.\|)$ and $(Y, \|.\|)$ be real normed spaces and let K be a nonempty subset of X. Consider a multivalued mapping $F : K \to B(Y)$. A function $f : K \to Y$ is called a selection of the F if and only if $f(x) \in F(x), x \in K$. Let

$$Sel(F) := \{ f : K \to Y : f(x) \in F(x), x \in K \}.$$

It is easy to check that if there exists a constant M > 0 such that $diam(F(x)) \leq M \|x\|$ for all $x \in K$, then the distance function

$$d(f,g) = \sup\left\{\frac{\|f(x) - g(x)\|}{\|x\|}, 0 \neq x \in K, f, g \in Sel(F)\right\},\$$

is a metric in Sel(F). Obviously, the convergence in the space (Sel(F), d) implies the point wise convergence on the set K.

Theorem 4.1. Let $(X, \|.\|)$ and $(Y, \|.\|)$ be real normed spaces and let K be a nonempty subset of X such that $0 \in K$. Suppose that p, q > 0 and $\alpha, \beta \in \mathbb{R}$ are fixed and one of the following conditions holds:

- 1. $|\alpha| ,$
- 2. $|\beta| < q$ and $K \subseteq qK$.

Consider a multivalued function $F: K \to B(Y)$ such that $0 \in F(0)$ and

$$diam(F(x)) \le M . \|x\|, x \in K,$$

for some positive constant M. Also, for each $x \in K$, there exists $\perp_x \subseteq F(x) \times F(x)$ such that $(F(x), \perp_x, \|.\|)$ is an O-complete metric space with left orthogonal element x^* . If

$$\alpha F(x) + \beta F(y) \subseteq F(px + qy),$$

$$\alpha \bot_x + \beta \bot_y \subseteq \bot_{px+qy},$$
(4.1)

where $x, y \in K$ and $px + qy \in K$, then there exists a unique selection $f : K \to Y$ of multivalued mapping F such that

$$\alpha f(x) + \beta f(y) = f(px + qy), x, y \in K, px + qy \in K.$$

Proof. Assume that $|\alpha| < p$ and $K \subseteq pK$. Since diamF(0) = 0 and $0 \in F(0)$, then F(0) = 0 and $\perp_0 = \{(0,0)\}$. Putting y = 0 in (4.1), since $\perp_0 = \{(0,0)\}$, we obtain

$$\alpha F(\frac{x}{p}) \subseteq F(x),$$

$$\alpha . \bot_{\frac{x}{p}} \subseteq \bot_{x},$$
(4.2)

for each $x \in K$. Consider the following orthogonality relation on Sel(F):

$$f \perp_* g \iff f(x) \perp_x g(x), x \in K.$$

Let $f^*: K \to Y$ be defined by $f^*(x) = x^*$. It is easy to check that $(Sel(F), \perp_*)$ is an orthogonal set and f^* is an orthogonal element of $(Sel(F), \perp_*)$. Let $\mathcal{F}(g)(x) := \alpha . g(\frac{x}{p})$ for each $x \in K$ and $g \in Sel(F)$. By (4.2), $\mathcal{F}(g) \in Sel(F)$ and \mathcal{F} is \perp_* -preserving. Hence, $\mathcal{F} : Sel(F) \to Sel(F)$ is an \perp_* -preserving mapping. Moreover, for each $g_1, g_2 \in Sel(F)$, we obtain that

$$d(\mathcal{F}(g_1), \mathcal{F}(g_2)) = |\alpha| \cdot \sup\left\{\frac{\|g_1(\frac{x}{p}) - g_2(\frac{x}{p})\|}{\|x\|}, 0 \neq x \in K\right\}$$
$$= \frac{|\alpha|}{p} \cdot \sup\left\{\frac{\|g_1(\frac{x}{p}) - g_2(\frac{x}{p})\|}{\frac{\|x\|}{p}}, 0 \neq x \in K\right\}$$
$$\leq \frac{|\alpha|}{p} \cdot d(g_1, g_2).$$

Since $|\alpha| < p$, then $\mathcal{F} : Sel(F) \to Sel(F)$ is a contractive mapping in (Sel(F), d). Now, according to the assumptions, since for each $x \in K$, $(F(x), \perp_x, \|.\|)$ is an O-complete metric space, then $(Sel(F), \perp_*, d)$ is an O-complete metric space. Therefore by Corollary 3.11 of [7], it has a unique fixed point f and $\lim_{n\to\infty} \mathcal{F}^n(g) = f$ for each $g \in Sel(F)$. Hence $f : K \to Y$ is the unique selection of F such that

$$f(x) = \alpha \cdot f(\frac{x}{p}), \quad x \in K.$$

Fix $g \in Sel(F)$ and $x, y \in K$ such that $px + qy \in K$. Then $\frac{x}{p}, \frac{y}{p}$ and $\frac{px+qy}{p}$ are belong to K. By (4.1), $\alpha.g(\frac{x}{p}) + \beta.g(\frac{y}{p})$ and $g(\frac{px+qy}{p})$ are elements of $F(\frac{px+qy}{p})$. Hence

$$\left\|\alpha.g(\frac{x}{p}) + \beta.g(\frac{y}{p}) - g(\frac{px + qy}{p})\right\| \le diam F(\frac{px + qy}{p}) \le M. \left\|\frac{px + qy}{p}\right\|.$$

Thus

$$\|\alpha.\mathcal{F}(g)(x) + \beta.\mathcal{F}(g)(y) - \mathcal{F}(g)(px + qy)\| \le M \frac{|\alpha|}{p} \|px + qy\|$$

for each $x, y \in K$ such that $px + qy \in K$. Repeating this process, we get

$$\|\alpha.\mathcal{F}^n(g)(x) + \beta.\mathcal{F}^n(g)(y) - \mathcal{F}^n(g)(px + qy)\| \le M\left(\frac{|\alpha|}{p}\right)^n \|px + qy\|$$

for each $n \in \mathbb{N}$ and all $x, y \in K$ with $px + qy \in K$. Letting $n \to \infty$, we obtain

$$\alpha f(x) + \beta f(y) = f(px + qy), x, y \in K, px + qy \in K.$$

Corollary 4.2. (Smajdor and Szczawinska, [25]) Let $(X, \|.\|)$ and $(Y, \|.\|)$ be real normed spaces and let K be a nonempty subset of X such that $0 \in K$. Suppose that p, q > 0 and $\alpha, \beta \in \mathbb{R}$ are fixed and one of the following conditions holds:

- 1. $|\alpha| < p$ and $K \subseteq pK$,
- 2. $|\beta| < q$ and $K \subseteq qK$.

Consider a multivalued mapping $F: K \to CP(Y)$ such that $0 \in F(0)$ and

$$diam(F(x)) \le M \cdot ||x||, x \in K,$$

for some positive constant M. If

$$\alpha F(x) + \beta F(y) \subseteq F(px + qy),$$

where $x, y \in K$ and $px + qy \in K$, then there exists a unique selection $f : K \to Y$ of multivalued mapping F such that

$$\alpha f(x) + \beta f(y) = f(px + qy), x, y \in K, px + qy \in K.$$

Corollary 4.3. Let $(X, \|.\|)$ and $(Y, \|.\|)$ be real normed spaces and let K be a convex cone in X. Suppose that p, q > 0 and $\alpha, \beta \in \mathbb{R}$ are fixed and one of the following conditions holds:

- 1. $|\alpha| < p$ and $K \subseteq pK$,
- 2. $|\beta| < q$ and $K \subseteq qK$.

Consider a multivalued mapping $F: K \to B(Y)$ such that $0 \in F(0)$ and

 $diam(F(x)) \le M. \|x\|, x \in K,$

for some positive constant M. Also, for each $x \in K$, there exists $\perp_x \subseteq F(x) \times F(x)$ such that $(F(x), \perp_x, \|.\|)$ is an O-complete metric space with left orthogonal element x^* . If

$$\alpha F(x) + \beta F(y) \subseteq F(px + qy),$$

$$\alpha \bot_x + \beta \bot_y \subseteq \bot_{px+qy},$$

where $x, y \in K$, then there exists a unique selection $f: K \to Y$ of multivalued mapping F such that

$$\alpha f(x) + \beta f(y) = f(px + qy), x, y \in K.$$

References

- R.P. Agarwal, D. O'Regan and D.R. Sahu, Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Vol. 6, New York: Springer, 2009.
- [2] R.P. Agarwal, D. O'Regan and N.S. Papageorgiou, Common fixed point theory for multivalued contractive maps of Reich type in uniform spaces, Appl. Anal. 83 (2004) 37–47.
- R. P. Agarwal, D. O'Regan and N. Shahzad, Fixed point theorems for generalized contractive maps of Meir-Keeler type, Math. Nachr. 276 (2004) 3–22.
- [4] I. Altun, G. Durmaza, G. Minak and S. Romaguera, Multivalued almost F-contractions on complete metric spaces, Filomat 30 (2016) 441–448.
- [5] I. Altun, G. Minak and H. Dag, Multivalued F-contractions on complete metric spaces, J. Nonlinear Convex Anal. 16 (2015) 659–666.

- [6] A. Amini-Harandi, Fixed and coupled fixed points of a new type set-valued contractive mappings in complete metric spaces, Fixed Point Theory and Appl. 2012 (2012): 215.
- [7] H. Baghani, M. Eshaghi Gordji and M. Ramezani, Orthogonal sets: The axiom of choice and proof of a fixed point theorem, J. Fixed Point Theory and Appl. 18 (2016) 465–477.
- [8] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922) 133-181.
- M. Berinde and V. Berinde, On a general class of multivalued weakly Picard mappings, J. Math. Anal. Appl. 326 (2007) 772–782.
- [10] V. Berinde and M. Pacurar, The role of the Pompeiu-Hausdorff metric in fixed point theory, Creat. Math. Inform. 22 (2013) 143–150.
- [11] L. Čirič, Multi-valued nonlinear contraction mappings, Nonlinear Anal. 71 (2009) 2716–2723.
- [12] M. Eshaghi Gordji, M. Ramezani, M. De La Sen and Y.J. Cho, On orthogonal sets and Banach fixed Point theorem, Fixed Point Theory 18 (2017) 569–578.
- [13] Y. Feng and S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl. 317 (2006) 103–112.
- [14] D. Klim and D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl. 334 (2007) 132–139.
- [15] T. Kamran and Q. Kiran, Fixed point theorems for multi-valued mappings obtained by altering distances, Math. Comput. Model. 54 (2011) 2772–2777.
- [16] H. Kaneko, Generalized contractive multi-valued mappings and their fixed points, Math. Japon. 33 (1988) 57–64.
- [17] N. Mizogochi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric space, J. Math. Anal. Appl. 141 (1989) 177–188.
- [18] S.B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969) 475–488.
- [19] A. Nicolae, Fixed point theorems for multivalued mappings of Feng-Liu type, Fixed Point Theory 12 (2011) 145– 154.
- [20] A. Petrusel, On Frigon-Granas-type multifunctions, Nonlinear Anal. Forum 7 (2002) 113–122.
- [21] S. Reich, Some problems and results in fixed point theory, Contemp. Math. 21 (1983) 179–187.
- [22] S. Reich, Fixed points of contractive functions, Boll. Unione Mat. Ital. 5 (1972) 26-42.
- [23] M. Sgroi and C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat 27 (2013) 1259–1268.
- [24] M. Shoaib, M. Sarwar and C. Tunc, Coupled fixed point theorem for multi-valued mapping via generalized contraction in partially ordered metric spaces with applications, J. Math. Anal. 8 (2017) 27–39.
- [25] A. Smajdor and J. Szczawinska, Selections of set-valued functions satisfying the general linear inclusion, J. Fixed Point Theory and Appl. 18 (2016) 133–145.
- [26] T. Suzuki, Mizoguchi and Takahashi's fixed point theorem is a real generalization of Nadler's, J. Math. Anal. Appl. 340 (2008) 752–755.
- [27] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Appl. 2012 (2012): 94.