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Abstract

In 2008, Al-Thagafi and Shahzad [Generalized I-nonexpansive selfmaps and invariant approxima-
tions, Acta Math. Sinica 24(5) (2008), 867–876] introduced the notion of occasionally weakly com-
patible mappings (shortly owc maps) which is more general than all the commutativity concepts.
In the present paper, we prove common fixed point theorems for families of owc maps in Menger
spaces. As applications to our results, we obtain the corresponding fixed point theorems in fuzzy
metric spaces. Our results improve and extend the results of Kohli and Vashistha [Common fixed
point theorems in probabilistic metric spaces, Acta Math. Hungar. 115(1-2) (2007), 37-47], Vasuki
[Common fixed points for R-weakly commuting maps in fuzzy metric spaces, Indian J. Pure Appl.
Math. 30 (1999), 419–423], Chugh and Kumar [Common fixed point theorem in fuzzy metric spaces,
Bull. Cal. Math. Soc. 94 (2002), 17–22] and Imdad and Ali [Some common fixed point theorems in
fuzzy metric spaces, Math. Commun. 11(2) (2006), 153-163].
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1. Introduction

The concept of probabilistic metric space (shortly PM-space) was first introduced and studied by

Menger [31], which is a generalization of the metric space. The study of this space was expanded
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rapidly with the pioneering works of Schweizer and Sklar [43]. In 1972, V. M. Sehgal and A. T.

Bharucha-Reid [44] initiated the study of contraction mappings in probabilistic metric spaces (PM-

spaces) which is an important step in the development of fixed point theorems. It is also of funda-

mental importance in probabilistic functional analysis, nonlinear analysis and applications [7]. Many

mathematicians formulated the definitions of weakly commuting [46], compatible [33], weakly com-

patible maps [45] in probabilistic metric spaces and proved a number of fixed point theorems. In

2008, Al-Thagafi and Shahzad [3] introduced the notion of owc maps in metric spaces, while Chan-

dra and Bhatt [6] extended the notion of owc in probabilistic settings. It is worth to mention that

every pair of weakly commuting self-maps is compatible, each pair of compatible self-maps is weakly

compatible and each pair of weak compatible self-maps is owc but the reverse is not always true.

Many authors proved a number of fixed point theorems using the notion of owc maps on different

spaces (see [1]-[6], [8], [9], [10], [14], [24], [25], [27], [35]-[40], [49]).

The object of this paper is to prove common fixed point theorems for families of owc maps in

Menger spaces. Also, we obtain the corresponding fixed point theorems in fuzzy metric spaces. Our

results improve and extend many known results existing in the literature. Our improvement in this

paper is four-fold which includes:

1. relaxing the continuity of maps completely,

2. relaxing the completeness of the whole space or any subspace,

3. using minimal type contractive condition,

4. using the notion of owc maps which is more general than all the commutativity concepts.

2. Preliminaries

Definition 2.1. [43] A mapping 4 : [0, 1]× [0, 1]→ [0, 1] is t-norm if 4 is satisfying the following

conditions:

1. 4 is commutative and associative;

2. 4(a, 1) = a for all a ∈ [0, 1];

3. 4(a, b) ≤ 4(c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

The following are the basic t-norms:

4M(a, b) = min{a, b}
4P (a, b) = ab

4L(a, b) = max{a+ b− 1, 0}.

Definition 2.2. [43] A mapping F : R→ R+ is called a distribution function if it is non-decreasing

and left continuous with inf{F (t) : t ∈ R} = 0 and sup{F (t) : t ∈ R} = 1.

We shall denote by = the set of all distribution functions defined on [−∞,∞] while H(t) will

always denote the specific distribution function defined by

H(t) =

{
0, if t ≤ 0;
1, if t > 0.
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If X is a non-empty set, F : X ×X → = is called a probabilistic distance on X and the value of F
at (x, y) ∈ X ×X is represented by Fx,y.

Definition 2.3. [43] A PM-space is an ordered pair (X,F), where X is a nonempty set of elements

and F is a probabilistic distance satisfying the following conditions: for all x, y, z ∈ X and t, s > 0,

1. Fx,y(t) = H(t) for all t > 0 if and only x = y;

2. Fx,y(0) = 0;

3. Fx,y(t) = Fy,x(t);

4. if Fx,y(t) = 1 and Fy,z(s) = 1 then Fx,z(t+ s) = 1.

The ordered triplet (X,F ,4) is called a Menger space if (X,F) is a PM-space, 4 is a t-norm

and the following inequality holds:

Fx,y(t+ s) ≥ 4(Fx,z(t), Fz,y(s)),

for all x, y, z ∈ X and t, s > 0.

Every metric space (X, d) can always be realized as a PM-space by considering F : X ×X → =
defined by Fx,y(t) = H(t− d(x, y)) for all x, y ∈ X. So PM-spaces offer a wider framework than that

of the metric spaces and are better suited to cover even wider statistical situations.

Definition 2.4. [45] Two self maps A and B of a non-empty set X are said to be weakly compatible

(or coincidentally commuting) if they commute at their coincidence points, that is, if Ax = Bx for

some x ∈ X, then ABx = BAx.

The concept of owc maps due to [3] is a proper generalization of nontrivial weakly compatible

maps which do have a coincidence point.

Definition 2.5. Two self maps A and B of a non-empty set X are owc if and only if there is a

point x ∈ X which is a coincidence point of A and B at which A and B commute.

From the following example it is clear that the notion of owc is more general than weak compat-

ibility.

Example 2.6. Let X = [0,∞) with the usual metric. Define A,B : X → X by Ax = 3x and

Bx = x2 for all x ∈ X. Then Ax = Bx for x = 0, 3 but AB(0) = BA(0), and AB(3) 6= BA(3).

Thus A and B are owc but not weakly compatible.

Lemma 2.7. [25] Let X be a non-empty set, A and B are owc self maps of X. If A and B have a

unique point of coincidence, w = Ax = Bx, then w is the unique common fixed point of A and B.
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3. Results

In this section, first we prove a common fixed point theorem for any even number of owc maps

in Menger space.

Theorem 3.1. Let P1, P2, . . . , P2n, A and B be self-maps on a Menger space (X,F ,4), where 4 is

a continuous t-norm. Further, let the pairs (A,P1P3 . . . P2n−1) and (B,P2P4 . . . P2n) are each owc

and satisfying

FAx,By(t) ≥ φ

(
min

{
FP1P3...P2n−1x,P2P4...P2ny(t), FAx,P1P3...P2n−1x(t),

FBy,P2P4...P2ny(t)

})
(3.1)

for all x, y ∈ X and t > 0 where φ : [0, 1] → [0, 1] is a continuous function with φ(s) > s whenever

0 < s < 1. Suppose that

P1(P3 . . . P2n−1) = (P3 . . . P2n−1)P1,
P1P3(P5 . . . P2n−1) = (P5 . . . P2n−1)P1P3,

...
P1 . . . P2n−3(P2n−1) = (P2n−1)P1 . . . P2n−3,

A(P3 . . . P2n−1) = (P3 . . . P2n−1)A,
A(P5 . . . P2n−1) = (P5 . . . P2n−1)A,

...
AP2n−1 = P2n−1A,

P2(P4 . . . P2n) = (P4 . . . P2n)P2,
P2P4(P6 . . . P2n) = (P6 . . . P2n)P2P4,

...
P2 . . . P2n−2(P2n) = (P2n)P2 . . . P2n−2,

B(P4 . . . P2n) = (P4 . . . P2n)B,
B(P6 . . . P2n) = (P6 . . . P2n)B,

...
BP2n = P2nB.



(3.2)

Then P1, P2, . . . , P2n, A and B have a unique common fixed point in X.

Proof . Since the pairs (A,P1P3 . . . P2n−1) and (B,P2P4 . . . P2n) are each owc, there exist points

u, v ∈ X such that Au = P1P3 . . . P2n−1u, A(P1P3 . . . P2n−1)u = (P1P3 . . . P2n−1)Au and Bv =

P2P4 . . . P2nv, B(P2P4 . . . P2n)v = (P2P4 . . . P2n)Bv. We claim that Au = Bv. For if Au 6= Bv, then

there exists a positive real number t such that FAu,Bv(t) < 1. Putting x = u and y = v in inequality

(3.1), then we get

FAu,Bv(t) ≥ φ

(
min

{
FP1P3...P2n−1u,P2P4...P2nv(t),

FAu,P1P3...P2n−1u(t), FBv,P2P4...P2nv(t)

})
= φ (min {FAu,Bv(t), FAu,Au(t), FBv,Bv(t)})
= φ (min {FAu,Bv(t), 1, 1})
= φ (FAu,Bv(t))

> FAu,Bv(t),
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a contradiction. Therefore Au = Bv. Moreover, if there is another point z such that Az =

P1P3 . . . P2n−1z. Then using inequality (3.1) it follows thatAz = P1P3 . . . P2n−1z = Bv = P2P4 . . . P2nv,

or Au = Az. Hence w = Au = P1P3 . . . P2n−1u is the unique point of coincidence of A and

P1P3 . . . P2n−1. By Lemma 2.7, it follows that w is the unique common fixed point of A and

P1P3 . . . P2n−1. By symmetry, q = Bv = P2P4 . . . P2nv is the unique common fixed point of B and

P2P4 . . . P2n. Since w = q, we obtain that w is the unique common fixed point of B and P2P4 . . . P2n.

Now we show that w is the fixed point of all the component maps. We claim that P3 . . . P2n−1w = w.

For if P3 . . . P2n−1w 6= w, then there exists a positive real number t such that FP3...P2n−1w,w(t) < 1.

Putting x = P3 . . . P2n−1w, y = w, P
′
1 = P1P3 . . . P2n−1 and P

′
2 = P2P4 . . . P2n in inequality (3.1), we

have

FAP3...P2n−1w,Bw(t) ≥ φ

(
min

{
FP ′1P3...P2n−1w,P

′
2w

(t),

FAP3...P2n−1w,P
′
1P3...P2n−1w

(t), FBw,P ′2w
(t)

})
,

FP3...P2n−1w,w(t) ≥ φ

(
min

{
FP3...P2n−1w,w(t),

FP3...P2n−1w,P3...P2n−1w(t), Fw,w(t)

})
= φ

(
min

{
FP3...P2n−1w,w(t), 1, 1

})
= φ

(
FP3...P2n−1w,w(t)

)
> FP3...P2n−1w,w(t),

a contradiction. Therefore P3 . . . P2n−1w = w. Hence, P1w = w. Continuing this procedure, we have

Aw = P1w = P3w = . . . = P2n−1w = w.

So,

Bw = P2w = P4w = . . . = P2nw = w.

Hence, w is the unique common fixed point of P1, P2, . . . , P2n, A and B. �

The following result is a slight generalization of Theorem 3.1.

Theorem 3.2. Let {Tα}α∈J and {Pi}2ni=1 be two families of self-maps on a Menger space (X,F ,4),

where 4 is a continuous t-norm. Further, let the pairs (Tα, P1P3 . . . P2n−1) and (Tβ, P2P4 . . . P2n) are

each owc and satisfying: for a fixed β ∈ J ,

FTαx,Tβy(t) ≥ φ

(
min

{
FP1P3...P2n−1x,P2P4...P2ny(t),

FTαx,P1P3...P2n−1x(t), FTβy,P2P4...P2ny(t)

})
(3.3)

for all x, y ∈ X and t > 0 where φ : [0, 1] → [0, 1] is a continuous function with φ(s) > s whenever
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0 < s < 1. Suppose that

P1(P3 . . . P2n−1) = (P3 . . . P2n−1)P1,
P1P3(P5 . . . P2n−1) = (P5 . . . P2n−1)P1P3,

...
P1 . . . P2n−3(P2n−1) = (P2n−1)P1 . . . P2n−3,

Tα(P3 . . . P2n−1) = (P3 . . . P2n−1)Tα,
Tα(P5 . . . P2n−1) = (P5 . . . P2n−1)Tα,

...
TαP2n−1 = P2n−1Tα,

P2(P4 . . . P2n) = (P4 . . . P2n)P2,
P2P4(P6 . . . P2n) = (P6 . . . P2n)P2P4,

...
P2 . . . P2n−2(P2n) = (P2n)P2 . . . P2n−2,

Tβ(P4 . . . P2n) = (P4 . . . P2n)Tβ,
Tβ(P6 . . . P2n) = (P6 . . . P2n)Tβ,

...
TβP2n = P2nTβ.



(3.4)

Then all {Pi} and {Tα} have a unique common fixed point in X.

Proof . Since the proof is straightforward, we omit it. �

Corollary 3.3. Let A,B, S and T be self-maps on a Menger space (X,F ,4), where 4 is a contin-

uous t-norm. Further, let the pairs (A, S) and (B, T ) are each owc and satisfying

FAx,By(t) ≥ φ (min {FSx,Ty(t), FAx,Sx(t), FBy,Ty(t)}) (3.5)

for all x, y ∈ X and t > 0 where φ : [0, 1] → [0, 1] is a continuous function with φ(s) > s whenever

0 < s < 1.

Then A,B, S and T have a unique common fixed point point in X.

Proof . If we set P1P3 . . . P2n−1 = S and P2P4 . . . P2n = T in Theorem 3.1 then the result follows. �

Now, we give an example which illustrates Corollary 3.3.

Example 3.4. Let X = [0, 2] with the metric d defined by d(x, y) = |x − y| and for each t ∈ [0, 1],

define

Fx,y(t) =

{ t
t+|x−y| , if t > 0;

0, if t = 0.

for all x, y ∈ X. Clearly (X,F ,4) be a Menger space, where 4 is defined as 4(a, b) = ab for all

a, b ∈ [0, 1]. Define the self-maps A,B, S and T as

A(x) =

{
x, if 0 ≤ x ≤ 1;
2, if 1 < x ≤ 2.

B(x) =

{
1, if 0 ≤ x ≤ 1;
2, if 1 < x ≤ 2.
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S(x) =

{
1, if 0 ≤ x ≤ 1;
0, if 1 < x ≤ 2.

T (x) =

{
1, if 0 ≤ x ≤ 1;
x
2
, if 1 < x ≤ 2.

and φ : [0, 1]→ [0, 1] as φ(0) = 0, φ(1) = 1 and φ(s) =
√
s for 0 < s < 1. Then A,B, S and T satisfy

all the conditions of Corollary 3.3 with respect to the distribution function Fx,y.

First of all, we have

A(1) = 1 = S(1) and AS(1) = 1 = SA(1)

and

B(1) = 1 = T (1) and BT (1) = 1 = TB(1),

that is, A and S as well as B and T are owc maps. Also 1 is the unique common fixed point of

A,B, S and T . On the other hand, it is clear to see that the maps A,B, S and T are discontinuous

at 1.

On taking A = B and S = T in Corollary 3.3, then we get the following result.

Corollary 3.5. Let A and S be self-maps on a Menger space (X,F ,4), where 4 is a continuous

t-norm. Further, let the pair (A, S) is owc and satisfying

FAx,Ay(t) ≥ φ (min {FSx,Sy(t), FAx,Sx(t), FAy,Sy(t)}) (3.6)

for all x, y ∈ X and t > 0 where φ : [0, 1] → [0, 1] is a continuous function with φ(s) > s whenever

0 < s < 1.

Then A and S have a unique common fixed point in X.

Remark 3.6. The conclusions of Theorem 3.1, Theorem 3.2, Corollary 3.3 and Corollary 3.5 remain

true if we replace inequalities (3.1) by (3.7), (3.3) by (3.8), (3.5) by (3.9) and (3.6) by (3.10) as

follows:

FAx,By(t) ≥ φ(FP1P3...P2n−1x,P2P4...P2ny(t)) (3.7)

FTαx,Tβy(t) ≥ φ(FP1P3...P2n−1x,P2P4...P2ny(t)) (3.8)

FAx,By(t) ≥ φ(FSx,Ty(t)) (3.9)

FAx,Ay(t) ≥ φ(FSx,Sy(t)). (3.10)

Then we obtain an improved version of the results of Kohli and Vashistha (see Theorem 4.7, Theorem

4.8 in [28]) in the sense that the concept of owc is the most general among all the commutativity

concepts. Our results do not require completeness of the whole space (or subspaces), continuity of the

involved maps and containment of ranges amongst involved maps.
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4. Applications to Fuzzy Metric Spaces

In 1965, Zadeh [50] introduced the concept of fuzzy sets. Since then, to use this concept in topol-

ogy and analysis, many authors have expansively developed the theory of fuzzy sets and applications.

For example, Kramosil and Michalek [29], Erceg [16], Deng [15], Kaleva and Seikkala [26], Grabiec

[19], Fang [17], George and Veeramani [18], Subrahmanyam [47] and Gregori and Sapena [20] have

introduced the concept of fuzzy metric spaces (shortly FM-spaces) in different ways. In applications

of fuzzy set theory, the field of engineering has undoubtedly been a leader. All engineering disci-

plines such as civil engineering, electrical engineering, mechanical engineering, robotics, industrial

engineering, computer engineering, nuclear engineering etc. have already been affected to various

degrees by the new methodological possibilities opened by fuzzy sets. Recently, Khan and Sumitra

[27] extended the notion of owc maps on FM-spaces and proved some common fixed point theorems

(see [8]).

Fixed-point theory in FM-spaces for different contractive-type mappings is closely related to that

in PM-spaces (refer [7, 21, 32, 44]. Various mathematicians; for example, Hadžić and Pap [22], Razani

and Shirdaryazdi [42], Razani and Kouladgar [41], Liu and Li [30] and Pant and Chauhan [38] have

studied the applications of fixed point theorems in PM-spaces to FM-spaces. In this section, we

obtain the corresponding fixed point theorems in FM-spaces.

First of all, we recall some definitions and lemmas in FM-spaces from [11, 12, 18, 29, 34].

Definition 4.1. The 3-tuple (X,M,4) is said to be a FM-space if X is an arbitrary set, 4 is a

continuous t-norm and M is a fuzzy set on X2 × [0,∞[ satisfying the following conditions: for all

x, y, z ∈ X and t, s > 0,

1. M(x, y, 0) = 0.

2. M(x, y, t) = 1 for all t > 0 if and only if x = y.

3. M(x, y, t) = M(y, x, t).

4. M(x, z, t+ s) ≥ 4 (M(x, y, t),M(y, z, s)).

5. M(x, y, ·) : [0,∞[→ [0, 1] is left continuous.

6. limt→∞M(x, y, t) = 1.

In the following example (see [18]), we know that every metric induces a fuzzy metric:

Example 4.2. Let (X, d) be a metric space. Define 4(a, b) = a.b (or 4(a, b) = min{a, b}) for all

x, y ∈ X and t > 0,

M(x, y, t) =
t

t+ d(x, y)
.

Then (X,M,4) is a FM-space and the fuzzy metric M induced by the metric d is often referred to

as the standard fuzzy metric.

Lemma 4.3. Let (X,M,4) be a fuzzy metric space. Then M(x, y, t) is non-decreasing with respect

to t for all x, y ∈ X.
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Now, we give an application of Theorem 3.1 to fuzzy metric space.

Theorem 4.4. Let P1, P2, . . . , P2n, A and B be self-maps on a FM-space (X,M,4), where 4 is a

continuous t-norm. Further, let the pairs (A,P1P3 . . . P2n−1) and (B,P2P4 . . . P2n) are each owc and

satisfying the condition (3.2) of Theorem 3.1 such that

M(Ax,By, t) ≥ φ

min


M(P1P3 . . . P2n−1x, P2P4 . . . P2ny, t),

M(Ax, P1P3 . . . P2n−1x, t),
M(By, P2P4 . . . P2ny, t)


 (4.1)

for all x, y ∈ X and t > 0 where φ : [0, 1] → [0, 1] is a continuous function with φ(s) > s whenever

0 < s < 1.

Then P1, P2, . . . , P2n, A and B have a unique common fixed point in X.

Proof . Let Fx,y(t) = M(x, y, t), then (X,F ,4) is a Menger space. The proof is an immediate

result of Theorem 3.1. �

In a similar way, we can also represent the fuzzy version of Theorem 3.2, Corollary 3.3 and

Corollary 3.5.

Corollary 4.5. Let {Tα}α∈J and {Pi}2ni=1 be two families of self-maps on a FM-space (X,M,4),

where 4 is a continuous t-norm. Further, let the pairs (Tα, P1P3 . . . P2n−1) and (Tβ, P2P4 . . . P2n) are

each owc and satisfying the condition (3.4) of Theorem 3.2 such that: for a fixed β ∈ J ,

M(Tαx, Tβy, t) ≥ φ

min


M(P1P3 . . . P2n−1x, P2P4 . . . P2ny, t),

M(Tαx, P1P3 . . . P2n−1x, t),
M(Tβy, P2P4 . . . P2ny, t)


 (4.2)

for all x, y ∈ X and t > 0 where φ : [0, 1] → [0, 1] is a continuous function with φ(s) > s whenever

0 < s < 1.

Then all {Pi} and {Tα} have a unique common fixed point in X.

Corollary 4.6. Let A,B, S and T be self-maps on a FM-space (X,M,4), where 4 is a continuous

t-norm. Further, let the pairs (A, S) and (B, T ) are each owc and satisfying

M(Ax,By, t) ≥ φ (min{M(Sx, Ty, t),M(Ax, Sx, t),M(By, Ty, t)}) (4.3)

for all x, y ∈ X and t > 0 where φ : [0, 1] → [0, 1] is a continuous function with φ(s) > s whenever

0 < s < 1.

Then A,B, S and T have a unique common fixed point in X.

Corollary 4.7. Let A and S be self-maps on a FM-space (X,M,4), where 4 is a continuous t-

norm. Further, let the pair (A, S) is owc satisfying:

M(Ax,Ay, t) ≥ φ (min{M(Sx, Sy, t),M(Ax, Sx, t),M(Ay, Sy, t)}) (4.4)

for all x, y ∈ X and t > 0 where φ : [0, 1] → [0, 1] is a continuous function with φ(s) > s whenever

0 < s < 1.

Then A and S have a unique common fixed point in X.
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Remark 4.8. Theorem 4.4, Corollary 4.5, Corollary 4.6 and Corollary 4.7 improve and extend the

results of Imdad and Ali [23].

Remark 4.9. If we use the same terminology in FM-spaces as defined in Remark 3.6 then we obtain

an improved version of the results of Vasuki (see Theorem 2 in [48]) and Chugh and Kumar (see

Theorem A in [13]).
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