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Abstract

We present some fixed point results for a single mapping and a pair of compatible mappings via
auxiliary functions which satisfy a generalized weakly contractive condition in partially ordered
complete G–metric spaces. Some examples are furnished to illustrate the useability of our main
results. At the end, an application is presented to the study of existence and uniqueness of solutions
for a boundary value problem for certain second order ODE and the respective integral equation.
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1. Introduction and preliminaries

The study of fixed points of mappings satisfying certain contractive conditions has been at the
center because of its wide range of applications in different areas such as variational inequalities,
optimization and parameterize estimation and other problems in nonlinear analysis. A number
of generalizations of metric spaces have been introduced and studied by many authors. One of
such generalization was introduced and studied by Dhage [8] in 1992 and called it D–metric space.
However, it was noticed in [17, 18] and elsewhere that most of the claims related to the fundamental
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topological structure of D–metric space are incorrect. To address the problem of structure of D–
metric spaces, Z. Mustafa and B. Sims introduced a new class metric spaces known as G–metric
spaces. In a G–metric space every triplet of elements is assigned to a non–negative real number.
Analysis of the structure of these spaces was studied and presented in [17, 18, 19]. They also
extended some well–known fixed point theorems from metric spaces to G–metric spaces including
the Banach contraction principle. The notion of G–metric spaces received good attentions and many
authors obtained fixed results in G–metric spaces. Abbas and Rhoades [1] initiated the study of
coincidence and common fixed point theory in these spaces.

Recently, fixed point theory has been developed rapidly in partially ordered metric spaces, as well
as in partially ordered G–metric spaces [6, 34]. The first result in this direction was given by Ran and
Reurings [31, Theorem 2.1] who presented its applications to matrix equation. Subsequently, Nieto
and Rodŕiguez–López [28] extended the result of Ran and Reurings for nondecreasing mappings and
applied it to obtain a unique solution for a first order ordinary differential equation with periodic
boundary conditions. Further, Harjani and Sadarangani [11] used the partial ordering and proved
some fixed point theorems for weakly contractive operators on ordered metric spaces. Subsequently
[12] they generalized these results by considering a pair of altering functions (ψ, ϕ). Nashine and
Altun [24] and Nashine and Bessem [26] generalized the results of Harjani and Sadarangani for a
pair of compatible mappings. Nashine et al. [27] also proved fixed point theorems for T–weakly
isotone increasing mappings which satisfy a generalized nonlinear contractive condition in complete
ordered metric spaces and gave an application to an existence theorem for a solution of some integral
equations. In [15], Erdal and Salimi established fixed point theorems via auxiliary functions in the
framework of partially ordered metric spaces, and improved the results of Choudhury and Kundu
[7]).

On the other hand, Choudhury and Maity [6] and Agarwal et al. [2] proved coupled fixed point
theorems in the framework of a partially ordered G–metric space. Thereafter many work has been
done by many authors in G–metric space (see details in [33, 34]).

In the present paper, an attempt has been made to establish fixed point theorems under a
generalized weakly contraction condition via auxiliary functions in the setting of ordered G–metric
spaces. Some examples are furnished to demonstrate the validity of the obtained results. Our results
generalizes the results in [6, 11, 12, 15, 21, 26] in the sense that considered contractive condition
is more general in the framework of G–metric spaces. We present also some consequences of the
obtained results to fixed points for a single mapping and a pair of mappings satisfying a general
contractive condition of integral type in complete partially ordered G–metric spaces. In conclusion,
we apply accomplished fixed point results for generalized weakly contraction type mappings to the
study of existence and uniqueness of solutions for a boundary value problem for certain second order
ODE and the respective integral equation.

2. Preliminaries

At first, we introduce some notations and definitions that will be used later. For more details on the
following definitions and results, we refer the reader to [19, 6].

Definition 2.1. (Mustafa and Sims, [19]) Let X be a nonempty set and let G : X ×X ×X → R+

be a function satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z;

(G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y;

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y;
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(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , (symmetry in all three variables);

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangular inequality).

Then the function G is called a G–metric on X and the pair (X,G) is called a G–metric space.

Definition 2.2. (Mustafa and Sims, [19]) Let (X,G) be a G–metric space and let {xn} be a se-
quence of points of X. A point x ∈ X is said to be the limit of the sequence {xn} if

lim
n,m→∞

G(x, xn, xm) = 0

and one says that the sequence {xn} is G–convergent to x. Thus, if xn → x in a G–metric space
(X,G), then for any ε > 0, there exists a positive integer N such that G(x, xn, xm) < ε for all
n,m ≥ N .

It has been shown in [19] that the G–metric induces a Hausdorff topology and the convergence
described in the above definition is relative to this topology. The topology being Hausdorff, a
sequence can converge at most to one point.

Definition 2.3. (Mustafa and Sims, [19]) Let (X,G) be a G–metric space, a sequence {xn} is
called G–Cauchy if for every ε > 0, there is a positive integer N such that G(xn, xm, xl) < ε for all
n,m, l ≥ N , that is, if G(xn, xm, xl)→ 0, as n,m, l→∞.

We next state the following known auxiliary results.

Lemma 2.4. (Mustafa and Sims, [19]) If (X,G) is a G–metric space, then the following are equiv-
alent:

(1) {xn} is G–convergent to x.

(2) G(xn, xn, x)→ 0, as n→∞.

(3) G(xn, x, x)→ 0, as n→∞.

Lemma 2.5. (Mustafa and Sims, [17]) If (X,G) is a G–metric space, then the following are equiv-
alent:

(1) The sequence {xn} is G–Cauchy.

(2) For every ε > 0, there exists a positive integer N such that G(xn, xm, xm) < ε for all n,m ≥ N .

Lemma 2.6. (Mustafa and Sims, [19]) If (X,G) is a G–metric space, then G(x, y, y) ≤ 2G(y, x, x)
for all x, y ∈ X.

Combining Lemmas 2.5 and 2.6 we have the following result.

Lemma 2.7. If (X,G) is a G–metric space then {xn} is a G–Cauchy sequence if and only if for
every ε > 0, there exists a positive integer N such that G(xn, xm, xm) < ε for all m > n ≥ N .

Definition 2.8. Let (X,G), (X ′, G′) be two G–metric spaces. Then a function f : X → X is
G–continuous at a point x ∈ X if and only if it is G sequentially continuous at x, that is, whenever
{xn} is G–convergent to x, {f(xn)} is G–convergent to f(x).

Definition 2.9. (Mustafa and Sims, [19]) AG–metric space (X,G) is called symmetric ifG(x, y, y) =
G(y, x, x) for all x, y ∈ X.
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Definition 2.10. (Mustafa and Sims, [19]) A G–metric space (X,G) is said to be G–complete (or
a complete G–metric space) if every G–Cauchy sequence in (X,G) is convergent in X.

The following are examples of G–metric spaces.

Example 2.11. Let (R, d) be the standard metric space. Define Gs by

Gs(x, y, z) = d(x, y) + d(y, z) + d(x, z)

for all x, y, z ∈ R. Then it is clear that (R, Gs) is a G–metric space.

Example 2.12. Let X = {a, b}. Define G on X ×X ×X by

G(a, a, a) = G(b, b, b) = 0, G(a, a, b) = 1, G(a, b, b) = 2,

and extend G to X ×X ×X by using the symmetry in the variables. Then it is clear that (X,G) is
an asymmetric G–metric space.

Throughout this paper (X,�) denotes a partially ordered set. By ’x � y holds’, we mean that ’y � x
holds’ and by ’x ≺ y holds’ we mean that ’x � y holds and x 6= y’.

Definition 2.13. Let X be a nonempty set. (X,G,�) is called an ordered G–metric space if:

(i) (X,G) is a G–metric space,

(ii) (X,�) is a partially ordered set.

Definition 2.14. Let (X,�) be a partially ordered set. Then x, y ∈ X are called comparable if
x � y or y � x holds.

Definition 2.15. Let (X,�) be a partially ordered set and T : X → X be such that, for x, y ∈ X,
x � y implies Tx � Ty. Then the mapping T is said to be non–decreasing.

Definition 2.16. Let (X,G,�) be a partially ordered G–metric space. We say that X is regular
if and only if the following hypothesis holds: if {zn} is a non–decreasing sequence in X with respect
to � such that zn → z ∈ X as n→∞, then zn � z for all n ∈ N.

Khan et al. [16] introduced the concept of altering distance function:

Definition 2.17. (Khan et al., [16]) A function ψ : [0,+∞)→ [0,+∞) is called an altering distance
function if the following properties are satisfied:

(i) ψ is continuous and non–decreasing,

(ii) ψ(t) = 0 if and only if t = 0.

One of the generalizations of the contraction principle was suggested by Alber and Guerre–
Delabriere [3] in Hilbert spaces by introducing the concept of weakly contractive mappings.

A self–mapping T on a metric space X is called weakly contractive if for each x, y ∈ X,

d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)) (2.1)

where φ is an altering distance function.
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Rhoades [32] showed that most of the results of [3] are still true for any Banach space. Subse-
quently, several authors (see, e.g., [7, 9, 10, 21]) introduced various generalizations and refinements
of weakly contractive mappings concept, and established new results.

To complete the proofs of our results, we introduce a new weakly contraction condition in G–
metric space, and for this we need the following classes of functions from [0,+∞) into itself, discussed
in [14, 15]:

Ψ = {ψ : ψ is nondecreasing and lower semicontinuous },
Φ1 = {α : α is upper semicontinuous },
Φ2 = { β : β is lower semicontinuous }.

3. Main results

This section is divided in two subsections. In the first one, we derive fixed point results in the case of
a continuous nondecreasing self–mapping on complete G–metric space endowed with partial order,
or in the case of a regular space. In the second subsection we are concerned with a pair of continuous
self–mappings which is relatively weakly increasing and G–compatible.

3.1. Result–I

We will beginning with a case of a single mapping. The following theorem is a generalization of
Theorems 2.1 and 2.2 of Harjani and Sadarangani [12] to G–metric space.

Theorem 3.1. Let (X,G,�) be a partially ordered complete G–metric space and let T : X → X be
a nondecreasing self–mapping. Assume that there exist ψ ∈ Ψ, α ∈ Φ1 and β ∈ Φ2 such that for all
s, t ≥ 0,

t > 0 and (s = t or s = 0) imply ψ(t)− α(s) + β(s) > 0, (3.1)

and

ψ(G(Tx, Ty, Tz)) ≤ α(Θ(x, y, z))− β(Θ(x, y, z)) (3.2)

where

Θ(x, y, z) = max{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz),
1

3
[G(x, Ty, Ty) +G(y, Tz, Tz) +G(z, Tx, Tx)]}

for all x, y, z ∈ X with z � y � x. We suppose the following hypotheses:

(i) T is continuous, or

(ii) X is regular.

If there exists x0 ∈ X such that x0 ≺ Tx0, then T has a fixed point, that is, there exists z ∈ X such
that z = Tz.

Proof . Let x0 be the given point in X. Suppose Tx0 6= x0. we choose x1 ∈ X such that Tx0 = x1.
Since T is a nondecreasing function, we have x0 ≺ x1 = Tx0 � Tx1. Again, let x2 = Tx1. Then we
have

x0 ≺ x1 = Tx0 � x2 = Tx1 � Tx2.
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Continuing this process, we can construct a sequence {xn} in X such that xn+1 = Txn with

x0 ≺ x1 � x2 � . . . � xn � xn+1 � · · · .

If xn0 = xn0+1 for some n0 ∈ {1, 2, · · · }, then xn0+1 = xn0 = Txn0 and so we are finished. Now we
can suppose

G(xn+1, xn+2, xn+2) > 0 (3.3)

for all n ≥ 1. First, we will prove that limn→∞G(xn+1, xn+2, xn+2) = 0.
Since xn � xn+1, we can use (3.2) for these points, and we have for n ≥ 1

Θ(xn, xn+1, xn+1) = max{G(xn, xn+1, xn+1), G(xn, Txn, Txn), G(xn+1, Txn+1, Txn+1),
1

3
[G(xn, Txn+1, Txn+1) +G(xn+1, Txn+1, Txn+1) +G(xn+1, Txn, Txn)]}

= max{G(xn, xn+1, xn+1), G(xn+1, xn+2, xn+2),
1

3
[G(xn, xn+2, xn+2) +G(xn+1, xn+2, xn+2)]}.

By (G5), we have

G(xn, xn+2, xn+2) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2).

Thus

1

3
[G(xn, xn+2, xn+2) +G(xn+1, xn+2, xn+2)] ≤ max{G(xn, xn+1, xn+1), G(xn+1, xn+2, xn+2)}.

Therefore we have

Θ(xn, xn+1, xn+1) = max{G(xn, xn+1, xn+1), G(xn+1, xn+2, xn+2)}.

Now we claim that
G(xn+1, xn+2, xn+2) ≤ G(xn, xn+1, xn+1) (3.4)

for all n ≥ 1. Suppose this is not true, that is, there exists n0 ≥ 1 such that G(xn0+1, xn0+2, xn0+2) >
G(xn0 , xn0+1, xn0+1). Now since xn0 � xn0+1, we can use the inequality (3.2) for these elements, and
we have

ψ(G(xn0+1, xn0+2, xn0+2)) = ψ(G(Txn0 , Txn0+1, Txn0+1))

≤ α(max{G(xn0 , xn0+1, xn0+1), G(xn0+1, xn0+2, xn0+2)})
−β(max{G(xn0 , xn0+1, xn0+1), G(xn0+1, xn0+2, xn0+2)}).

If
max{G(xn0 , xn0+1, xn0+1), G(xn0+1, xn0+2, xn0+2)} = G(xn0+1, xn0+2, xn0+2),

then

ψ(G(xn0+1, xn0+2, xn0+2)) ≤ α(G(xn0+1, xn0+2, xn0+2))− β(G(xn0+1, xn0+2, xn0+2)).

By the assumption (3.1) it follows that G(xn0+1, xn0+2, xn0+2) = 0, which contradicts the condition
(3.3). Therefore

max{G(xn0 , xn0+1, xn0+1), G(xn0+1, xn0+2, xn0+2)} = G(xn0 , xn0+1, xn0+1).
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Hence, we have
G(xn+1, xn+2, xn+2) ≤ G(xn, xn+1, xn+1) ∀n ∈ N.

Therefore, (3.4) is true and so the sequence {G(xn, xn+1, xn+1) : n ∈ N} is nonincreasing and bounded
below. Thus there exists ρ ≥ 0 such that

lim
n→∞

G(xn, xn+1, xn+1) = ρ.

Now suppose that ρ > 0. It follows from (3.2) that

ψ(G(xn+1, xn+2, xn+2)) ≤ α(G(xn, xn+1, xn+1))− β(G(xn, xn+1, xn+1))

and using the properties of functions ψ, α, β we get

ψ(ρ) ≤ lim inf ψ(G(xn+1, xn+2, xn+2)) ≤ lim supψ(G(xn+1, xn+2, xn+2))

≤ lim sup[α(G(xn, xn+1, xn+1))− β(G(xn, xn+1, xn+1))]

= lim supα(G(xn, xn+1, xn+1))− lim inf β(G(xn, xn+1, xn+1))]

≤ α(ρ)− β(ρ).

Using again the condition (3.1), we get that it is only possible if ρ = 0. Thus

lim
n→∞

G(xn, xn+1, xn+1) = 0. (3.5)

Next, we show that {xn} is a G–Cauchy sequence in X. Suppose to the contrary; that is, {xn} is
G–Cauchy. Then there exists ε > 0 for which we can find two subsequences {xm(i)} and {xn(i)} of
{xn} such that n(i) is the smallest index for which

n(i) > m(i) > i, G(xm(i), xn(i), xn(i)) ≥ ε. (3.6)

This means that
G(xm(i), xn(i)−1, xn(i)−1) < ε. (3.7)

From (3.6), (3.7) and (G5), we get

ε ≤ G(xm(i), xn(i), xn(i))

≤ G(xm(i), xn(i)−1, xn(i)−1) +G(xn(i)−1, xn(i), xn(i))

< ε+G(xn(i)−1, xn(i), xn(i)).

Passing to the limit as i→∞ and using (3.5), we get

lim
i→∞

G(xm(i), xn(i), xn(i)) = ε. (3.8)

Using (G5), we have

G(xm(i), xn(i), xn(i)) ≤ G(xm(i), xm(i)+1, xm(i)+1) +G(xm(i)+1, xn(i)+1, xn(i)+1) +G(xn(i)+1, xn(i), xn(i))

≤ G(xm(i), xm(i)+1, xm(i)+1) +G(xm(i)+1, xm(i), xm(i)) +G(xm(i), xn(i), xn(i))

+G(xn(i), xn(i)+1, xn(i)+1) +G(xn(i)+1, xn(i), xn(i)).

Passing to the limit as i→∞ in the above inequalities and using (3.5), (3.8), we get that

lim
i→∞

G(xm(i)+1, xn(i)+1, xn(i)+1) = ε. (3.9)
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Again using (G5),

G(xm(i), xn(i)+1, xn(i)+1) ≤ G(xm(i), xn(i), xn(i)) +G(xn(i), xn(i)+1, xn(i)+1)

≤ G(xm(i), xn(i)+1, xn(i)+1) +G(xn(i)+1, xn(i), xn(i))

+G(xn(i), xn(i)+1, xn(i)+1).

Passing to the limit as i→∞ in the above inequalities and using (3.5), (3.8), we get that

lim
i→∞

G(xm(i), xn(i)+1, xn(i)+1) = ε. (3.10)

Using (G5) to get

G(xm(i)+1, xn(i), xn(i)) ≤ G(xm(i)+1, xn(i)+1, xn(i)+1) +G(xn(i)+1, xn(i), xn(i))

≤ G(xm(i)+1, xn(i), xn(i)) +G(xn(i), xn(i)+1, xn(i)+1)

+G(xn(i)+1, xn(i), xn(i)).

Passing to the limit in the above inequalities and using (3.5), (3.9), we get that

lim
i→∞

G(xm(i)+1, xn(i), xn(i)) = ε. (3.11)

Since xm(i) � xn(i), we have

Θ(xm(i), xn(i), xn(i))

= max{G(xm(i), xn(i), xn(i)), G(xm(i), Txm(i), Txm(i)), G(xn(i), Txn(i), Txn(i)),

1

3
[G(xm(i), Txn(i), Txn(i)) +G(xn(i), Txn(i), Txn(i)) +G(xn(i), Txm(i), Txm(i))]}

= max{G(xm(i), xn(i), xn(i)), G(xm(i), xm(i)+1, xm(i)+1), G(xn(i), xn(i)+1, xn(i)+1),

1

3
[G(xm(i), xn(i)+1, xn(i)+1) +G(xn(i), xn(i)+1, xn(i)+1) +G(xn(i), xm(i)+1, xm(i)+1)]}

≤ max{G(xm(i), xn(i), xn(i)), G(xm(i), xm(i)+1, xm(i)+1), G(xn(i), xn(i)+1, xn(i)+1),

1

3
[G(xm(i), xn(i)+1, xn(i)+1) +G(xn(i), xn(i)+1, xn(i)+1) + 2G(xn(i), xn(i), xm(i)+1)]}.

Therefore from (3.2), we have

ψ(G(xm(i)+1, xn(i)+1, xn(i)+1))

= ψ(G(Txm(i), Txn(i), Txn(i)))

≤ α(max{G(xm(i), xn(i), xn(i)), G(xm(i), xm(i)+1, xm(i)+1), G(xn(i), xn(i)+1, xn(i)+1),

1

3
[G(xm(i), xn(i)+1, xn(i)+1) +G(xn(i), xn(i)+1, xn(i)+1) + 2G(xn(i), xn(i), xm(i)+1)]})

−β(max{G(xm(i), xn(i), xn(i)), G(xm(i), xm(i)+1, xm(i)+1), G(xn(i), xn(i)+1, xn(i)+1),

1

3
[G(xm(i), xn(i)+1, xn(i)+1) +G(xn(i), xn(i)+1, xn(i)+1) + 2G(xn(i), xn(i), xm(i)+1)]}).

Passing to the limit as i → ∞, and using (3.5), (3.8), (3.9), (3.10), (3.11) and the properties of
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functions ψ, α, β we get

ψ(ε) ≤ lim supα(max{G(xm(i), xn(i), xn(i)), G(xm(i), xm(i)+1, xm(i)+1), G(xn(i), xn(i)+1, xn(i)+1),

1

3
[G(xm(i), xn(i)+1, xn(i)+1) +G(xn(i), xn(i)+1, xn(i)+1) + 2G(xn(i), xn(i), xm(i)+1)]})

− lim inf β(max{G(xm(i), xn(i), xn(i)), G(xm(i), xm(i)+1, xm(i)+1), G(xn(i), xn(i)+1, xn(i)+1),

1

3
[G(xm(i), xn(i)+1, xn(i)+1) +G(xn(i), xn(i)+1, xn(i)+1) + 2G(xn(i), xn(i), xm(i)+1)]})

≤ α(ε)− β(ε).

Using (3.1), we get ε = 0, a contradiction. Thus {xn} is a G–Cauchy sequence in X. Thus there is
z ∈ X such that

lim
n→∞

xn = z. (3.12)

Suppose that (i) holds. Since T is G–continuous, we get that xn+1 = Txn is a G–convergent sequence
to Tz. By the uniqueness of limit we get that z = Tz and so z is a fixed point of T .

Suppose that (ii) holds. Since {xn} is a non–decreasing sequence such that xn → z and X is
regular, it follows that xn � z for all n ∈ N. Therefore, we have

Θ(xn, z, z) = max{G(xn, z, z), G(xn, Txn, Txn), G(z, Tz, Tz),
1

3
[G(xn, T z, Tz) +G(u, Tz, Tz) +G(z, Txn, Txn)]}

= max{G(xn, z, z), G(xn, xn+1, xn+1), G(z, Tz, Tz),
1

3
[G(xn, T z, Tz) +G(z, Tz, Tz) +G(z, xn+1, xn+1)]}.

By (3.2), we obtain

ψ(G(xn+1, T z, Tz)) = ψ(G(Txn, T z, Tz))

≤ α(max{G(xn, z, z), G(xn, xn+1, xn+1), G(z, Tz, Tz),
1

3
[G(xn, T z, Tz) +G(u, Tz, Tz) +G(z, xn+1, xn+1)]})

−β(max{G(xn, z, z), G(xn, xn+1, xn+1), G(z, Tz, Tz),
1

3
[G(xn, T z, Tz) +G(u, Tz, Tz) +G(z, xn+1, xn+1)]}).

Passing to the upper limit as n→∞ in the above inequalities and using (3.12) and the fact that G
is continuous on its variables, we get that

ψ(G(z, Tz, Tz)) ≤ α(G(z, Tz, Tz))− β(G(z, Tz, Tz)).

Using (3.1), we get G(z, Tz, Tz) = 0 and hence z = Tz. Thus z is a fixed point of T . �

Now we give a sufficient condition for the uniqueness of fixed point.

Theorem 3.2. Let all the conditions of Theorem 3.1 be fulfilled and, moreover, the space (X,G,�)
satisfy the following condition: for all x, y ∈ X there exists z ∈ X, z � Tz, satisfying both x � z
and y � z or there exists z ∈ X, z � Tz, satisfying both x � z and y � z. Then the fixed point of T
is unique.
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Proof . Let x and y be two fixed points of T , i.e., Tx = x and Ty = y. Consider the following two
possible cases.

1◦) x and y are comparable. Then we can apply the condition (3.1) and obtain that

ψ(G(x, y, z)) = ψ(G(Tx, Ty, Tz)) ≤ α(Θ(x, y, z))− β(Θ(x, y, z))

where

Θ(x, y, z) = max{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz),
1

3
[G(x, Ty, Ty) +G(y, Tz, Tz) +G(z, Tx, Tx)]}

≤ max{G(x, y, z),
1

3
[G(x, y, z) +G(x, y, z) +G(x, y, z)]}

= G(x, y, z)

and hence ψ(G(x, y, z)) ≤ α(G(x, y, z)) − β(G(x, y, z)) which is possible only if G(x, y, z) = 0 and
hence x = y = z. 2◦) Suppose now that x and y are not comparable. Choose an element z ∈ X,
z � Tz comparable with both of them. Then also x = T nx is comparable with T nz for each n (since
T is nondecreasing). Applying (3.1) one obtains that

ψ(G(x, T nz, T nz)) = ψ(G(TT n−1x, TT n−1z, TT n−1z))

≤ α(Θ(T n−1x, T n−1z, T n−1z))− β(Θ(T n−1x, T n−1z, T n−1z)),

where

Θ(T n−1x, T n−1z, T n−1z)

= max{G(T n−1x, T n−1z, T n−1z), G(T n−1x, TT n−1x, TT n−1x),

G(T n−1z, TT n−1z, TT n−1z), G(T n−1z, TT n−1z, TT n−1z),

1

3
[G(T n−1x, TT n−1z, TT n−1z) +G(T n−1z, TT n−1z, TT n−1z) +G(T n−1z, TT n−1x, TT n−1x)]}

= max{G(x, T n−1z, T n−1z), G(T n−1z, T nz, T nz), G(T n−1x, T nz, T nz)}

for n sufficiently large, because G(T n−1z, T nz, T nz) → 0 when n → ∞ (the last assertion can be
proved, starting from the assumption z � Tz, in the same way as the similar conclusion in the proof
of Theorem 3.1). Similarly as in the proof of Theorem 3.1, it can be shown that G(x, T nz, T nz) ≤
Θ(x, T n−1z, T n−1z) ≤ G(x, T n−1z, T n−1z). It follows that the sequence G(x, T nz, T nz) is nonincreas-
ing and it has a limit ` ≥ 0. Assuming that ` > 0 and passing to the limit in the relation

ψ(G(x, T nz, T nz)) ≤ α(Θ(x, T n−1z, T n−1z))− β(Θ(x, T n−1z, T n−1z)),

one obtains that ` = 0, a contradiction. In the same way it can be deduced that G(y, T nz, T nz)→ 0
as n → ∞. Now, passing to the limit in G(x, y, y) ≤ G(x, T nz, T nz) + G(T nz, y, y), it follows that
G(x, y, y) = 0. Hence, x = y and the uniqueness of the fixed point is proved. �

Remark 3.3. Theorem 3.1–Theorem 3.2 are also true even if we replace Θ(x, y, z) by the following:

Θ1(x, y, z) = max{G(x, y, z), G(x, x, Tx), G(y, y, Ty), G(z, z, Tz),
1

3
[G(x, x, Ty) +G(y, y, Tz) +G(z, z, Tx)]}.
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We furnish the following example to demonstrate the validity of the hypotheses of Theorem 3.1:

Example 3.4. Let X = {1, 2, 3} and G : X ×X ×X → R+ be defined as follows (the values of G
are invariant under permutations of its arguments):

G(x, y, z) =


x+ y + z, if x, y, z are all distinct
x+ z, if x = y 6= z
0, if x = y = z.

Then (X,G) is a complete G–metric space. Let a relation � on X be defined as follows:

�:= {(1, 1), (2, 2), (3, 3), (3, 1)}.

Clearly, � is a partial order on X. Consider the mapping T : X → X defined by

T =

(
1 2 3
1 3 1

)
.

Now, we will show that (X,G,�) is regular.
Let {zn} be a non–decreasing sequence in X with respect to � such that zn → z ∈ X as n → ∞.
We have zn � zn+1 for all n ∈ N.
• If z0 = 1, then z0 = 1 � z1. From the definition of �, we have z1 = 1. By induction, we get zn = 1
for all n ∈ N and z = 1. Then, zn � z for all n ∈ N.
• If z0 = 2, then z0 = 2 � z1. From the definition of �, we have z1 = 2. By induction, we get zn = 2
for all n ∈ N and z = 2. Then, zn � z for all n ∈ N.
• If z0 = 3, then z0 = 3 � z1. From the definition of �, we have z1 ∈ {3, 1}. By induction, we get
zn ∈ {3, 1} for all n ∈ N. Suppose that there exists p ≥ 1 such that zp = 1. From the definition of
�, we get zn = zp = 1 for all n ≥ p. Thus, we have z = 1 and zn � z for all n ∈ N. Now, suppose
that zn = 3 for all n ∈ N. In this case, we get z = 3 and zn � z for all n ∈ N.
Thus, we have proved that in all cases, we have zn � z for all n ∈ N. Then, (X,G,�) is regular.

We will check that T satisfies the condition (3.2) of Theorem 3.1 with functions ψ, α, β given as
ψ(t) = t, α(t) = t, β(t) = 1

10
t (obviously belonging to the respective classes). Note that in this case

α(t)− β(t) = 9
10
t.

To verify (3.2), we divide all the cases for every x, y, z ∈ X in the following manner:

• For x = y = z ( or x = y = 1, z = 3 or x = y = 3, z = 1). In this case (or cases) the left-hand
side is equal to 0 and hence (3.2) is satisfied.

• If x = 1, y = 2, z = 3, then ψ(Tx, Ty, Tz) = 4 and

Θ(x, y, z) = max{G(1, 2, 3), G(1, T1, T1), G(2, T2, T2), G(3, T3, T3),
1

3
[G(1, T2, T2) +G(2, T3, T3) +G(3, T1, T1)]} = 6.

Thus the relation (3.2) is satisfied as

4 = ψ(G(Tx, Ty, Tz)) ≤ α(Θ(x, y, z))− β(Θ(x, y, z)) = (
9

10
)6.



96 Nashine, Sharma

• If x = 1, y = 1, z = 2 (or x = 2, y = 2, z = 3 or x = 2, y = 2, z = 3), then ψ(Tx, Ty, Tz) = 4
and it is to show Θ(x, y, z) = 5. Thus the relation (3.2) is satisfied as

4 = ψ(G(Tx, Ty, Tz)) ≤ α(Θ(x, y, z))− β(Θ(x, y, z)) = (
9

10
)5.

Then with x0 = 2, Theorem 3.1 is applicable to this example. It is also observed that T has a unique
fixed point z = 1.

3.2. Results-II

In this subsection, we present coincidence point results for compatible mappings in G–metric spaces.
Recall the following notions. Let X be a non–empty set and R, T : X → X be given self–

mappings on X. If w = Rx = Tx for some x ∈ X, then x is called a coincidence point of R and
T , and w is called a point of coincidence of R and T . The pair {R, T} of self–mappings in a metric
space (X, d) is said to be compatible if d(TRxn, RTxn)→ 0 as n→∞ whenever {xn} is a sequence
in X satisfying limn→∞ Txn = limn→∞Rxn. The pair {R, T} is said to be weakly compatible if
RTx = TRx, whenever Tx = Rx for some x in X. We will use the following version of compatibility
of these mappings in a G–metric space.

Definition 3.5. Mappings R, T : X → X are said to be compatible in a G-metric space (X,G) if

G(TRxn, RTxn, RTxn)→ 0 as n→∞,

whenever {xn} is a sequence in X such that limn→∞ Txn = limn→∞Rxn in (X,G).

The following notion has been recently introduced by Nashine and Samet [26]. Let X be a non–empty
set and R : X → X be a given mapping. For every x ∈ X, we denote by R−1(x) the subset of X
defined by

R−1(x) := {u ∈ X | Ru = x}.

Definition 3.6. (Nashine and Samet, [26]) Let (X,�) be a partially ordered set and T,R : X → X
be given mappings such that TX ⊆ RX. We say that T is weakly increasing with respect to R if for
all x ∈ X, we have:

Tx � Ty, ∀ y ∈ R−1(Tx).

Remark 3.7. If R : X → X is the identity mapping (Rx = x for all x ∈ X), and T is weakly
increasing with respect to R then T is a weakly increasing mapping. Note that the notion of weakly
increasing mappings was introduced in [4].

The results of this subsection extend the results of Nashine and Samet [26] to generalized contractive
conditions defined in generalized metric space.

Theorem 3.8. Let (X,G,�) be a partially ordered complete G–metric space and let T,R : X → X
be self–mappings. Assume that there exist ψ ∈ Ψ, α ∈ Φ1 and β ∈ Φ2 such that for all s, t ≥ 0,

t > 0 and (s = t or s = 0) imply ψ(t)− α(s) + β(s) > 0, (3.13)

and

ψ(G(Tx, Ty, Tz)) ≤ α(∆(x, y, z))− β(∆(x, y, z)) (3.14)
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where

∆(x, y, z) = max{G(Rx,Ry,Rz), G(Rx, Tx, Tx), G(Ry, Ty, Ty), G(Rz, Tz, Tz),
1

3
[G(Rx, Ty, Ty) +G(Ry, Tz, Tz) +G(Rz, Tx, Tx)]}

for all x, y, z ∈ X with Rz � Ry � Rx. We suppose the following hypotheses:

(i) T and R are continuous,

(ii) TX ⊆ RX,

(iii) T is weakly increasing with respect to R,

(iv) the pair {T,R} is compatible.

Then, T and R have a coincidence point, that is, there exists u ∈ X such that Ru = Tu.

Remark 3.9. Note that, in this theorem, we do not need the condition “there exists an x0 ∈ X with
x0 � Tx0” of Theorem 3.1.

Proof . Let x0 be an arbitrary point in X. Since TX ⊆ RX, we can construct a sequence {xn} in
X defined by:

Rxn+1 = Txn, ∀n ∈ N. (3.15)

Now, since x1 ∈ R−1(Tx0) and x2 ∈ R−1(Tx1), using that T is weakly increasing with respect to R,
we obtain:

Rx1 = Tx0 � Tx1 = Rx2 � Tx2 = Rx3.

Continuing this process, we get:

Rx1 � Rx2 � x3 � · · · � Rxn � Rxn+1 � · · · .

Now we can suppose
G(Rxn+1, Rxn+2, Rxn+2) > 0 (3.16)

for all n ≥ 1. We complete the proof in three steps.
Step I. We will prove that limn→∞G(Rxn+1, Rxn+2, Rxn+2) = 0. Since Rxn � Rxn+1, we can use
(3.15) for these points, and we have for n ≥ 1

∆(xn, xn+1, xn+1) = max{G(Rxn, Rxn+1, Rxn+1), G(Rxn, Txn, Txn), G(Rxn+1, Txn+1, Txn+1),

1

3
[G(Rxn, Txn+1, Txn+1) +G(Rxn+1, Txn+1, Txn+1) +G(Rxn+1, Txn, Txn)]}

= max{G(Rxn, Rxn+1, Rxn+1), G(Rxn+1, Rxn+2, Rxn+2),

1

3
[G(Rxn, Rxn+2, Rxn+2) +G(Rxn+1, Rxn+2, Rxn+2)]}.

By (G5), we have

G(Rxn, Rxn+2, Rxn+2) ≤ G(Rxn, Rxn+1, Rxn+1) +G(Rxn+1, Rxn+2, Rxn+2).
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Thus

1

3
[G(Rxn, Rxn+2, Rxn+2) +G(Rxn+1, Rxn+2, Rxn+2)]

≤ max{G(Rxn, Rxn+1, Rxn+1), G(Rxn+1, Rxn+2, Rxn+2)}.

Therefore we have

∆(xn, xn+1, xn+1) = max{G(Rxn, Rxn+1, Rxn+1), G(Rxn+1, Rxn+2, Rxn+2)}.

Now we claim that
G(Rxn+1, Rxn+2, Rxn+2) ≤ G(Rxn, Rxn+1, Rxn+1) (3.17)

for all n ≥ 1. Suppose this is not true, that is, there exists n0 ≥ 1 such that

G(Rxn0+1, Rxn0+2, Rxn0+2) > G(Rxn0 , Rxn0+1, Rxn0+1).

Now since Rxn0 � Rxn0+1, we can use the inequality (3.14) for these elements, and we have

ψ(G(Rxn0+1, Rxn0+2, Rxn0+2)) = ψ(G(Txn0 , Txn0+1, Txn0+1))

≤ α(max{G(Rxn0 , Rxn0+1, Rxn0+1), G(Rxn0+1, Rxn0+2, Rxn0+2)})
− β(max{G(Rxn0 , Rxn0+1, Rxn0+1), G(Rxn0+1, Rxn0+2, Rxn0+2)}).

If

max{G(Rxn0 , Rxn0+1, Rxn0+1), G(Rxn0+1, Rxn0+2, Rxn0+2)} = G(Rxn0+1, Rxn0+2, Rxn0+2),

then

ψ(G(Rxn0+1, Rxn0+2, Rxn0+2)) ≤ α(G(Rxn0+1, Rxn0+2, Rxn0+2))− β(G(Rxn0+1, Rxn0+2, Rxn0+2)).

By the assumption (3.13) it follows that G(Rxn0+1, Rxn0+2, Rxn0+2) = 0, which contradicts the
condition (3.16). Therefore

max{G(Rxn0 , Rxn0+1, Rxn0+1), G(Rxn0+1, Rxn0+2, Rxn0+2)} = G(Rxn0 , Rxn0+1, Rxn0+1).

Hence, we have

ψ(G(Rxn0+1, Rxn0+2, Rxn0+2)) ≤ α(G(Rxn0 , Rxn0+1, Rxn0+1))− β(G(Rxn0 , Rxn0+1, Rxn0+1)).
(3.18)

Thus
G(Rxn+1, Rxn+2, Rxn+2) ≤ G(Rxn, Rxn+1, Rxn+1) ∀n ∈ N.

Therefore, (3.17) is true and so the sequence {G(Rxn, Rxn+1, Rxn+1) : n ∈ N} is nonincreasing and
bounded below. Thus there exists ρ ≥ 0 such that

lim
n→∞

G(Rxn, Rxn+1, Rxn+1) = ρ.

Now suppose that ρ > 0. It follows from (3.18) that

ψ(G(Rxn+1, Rxn+2, Rxn+2)) ≤ α(G(Rxn, Rxn+1, Rxn+1))− β(G(Rxn, Rxn0+1, Rxn0+1))
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and using the properties of functions ψ, α, β we get that

ψ(ρ) ≤ lim inf ψ(G(Rxn+1, Rxn+2, Rxn+2))

≤ lim supψ(G(Rxn+1, Rxn+2, Rxn+2))

≤ lim sup[α(G(Rxn, Rxn+1, Rxn+1))− β(G(Rxn, Rxn0+1, Rxn0+1))]

= lim supα(G(Rxn, Rxn+1, Rxn+1))− lim inf β(G(Rxn, Rxn0+1, Rxn0+1))

≤ α(ρ)− β(ρ).

Using again the condition (3.13), we get that it is only possible if ρ = 0. Thus

lim
n→∞

G(Rxn, Rxn+1, Rxn+1) = 0. (3.19)

Step II. We will prove that {Rxn} is a G–Cauchy sequence in X. Suppose the contrary, that is,
{Rxn} is not G-Cauchy. Then there exists ε > 0 for which we can find two subsequences {m(i)} and
{n(i)} such that n(i) is the smallest index for which

n(i) > m(i) > i, G(Rxm(i), Rxn(i), Rxn(i)) ≥ ε. (3.20)

This means that
G(Rxm(i), Rxn(i)−1, Rxn(i)−1) < ε. (3.21)

From (3.20), (3.21) and (G5), we get

ε ≤ G(Rxm(i), Rxn(i), Rxn(i))

≤ G(Rxm(i), Rxn(i)−1, Rxn(i)−1) +G(Rxn(i)−1, Rxn(i), Rxn(i))

< ε+G(Rxn(i)−1, Rxn(i), Rxn(i)).

Passing to the limit as i→∞ and using (3.19), we get

lim
i→∞

G(Rxm(i), Rxn(i), Rxn(i)) = ε.

Using (G5), we have

G(Rxm(i), Rxn(i), Rxn(i))

≤ G(Rxm(i), Rxm(i)+1, Rxm(i)+1) +G(Rxm(i)+1, Rxn(i)+1, Rxn(i)+1) +G(Rxn(i)+1, Rxn(i), Rxn(i))

≤ G(Rxm(i), Rxm(i)+1, Rxm(i)+1) +G(Rxm(i)+1, Rxm(i), Rxm(i)) +G(Rxm(i), Rxn(i), Rxn(i))

+G(Rxn(i), Rxn(i)+1, Rxn(i)+1) +G(Rxn(i)+1, Rxn(i), Rxn(i)).

Passing to the limit as i→∞ in the above inequalities and using (3.19), (3.2), we get that

lim
i→∞

G(Rxm(i)+1, Rxn(i)+1, Rxn(i)+1) = ε. (3.22)

Again using (G5),

G(Rxm(i), Rxn(i)+1, Rxn(i)+1) ≤ G(Rxm(i), Rxn(i), Rxn(i)) +G(Rxn(i), Rxn(i)+1, Rxn(i)+1)

≤ G(Rxm(i), Rxn(i)+1, Rxn(i)+1) +G(Rxn(i)+1, Rxn(i), Rxn(i))

+G(Rxn(i), Rxn(i)+1, Rxn(i)+1).
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Passing to the limit as i→∞ in the above inequalities and using (3.19), (3.2), we get that

lim
i→∞

G(Rxm(i), Rxn(i)+1, Rxn(i)+1) = ε. (3.23)

Using (G5) to get

G(Rxm(i)+1, Rxn(i), Rxn(i)) ≤ G(Rxm(i)+1, Rxn(i)+1, Rxn(i)+1) +G(Rxn(i)+1, Rxn(i), Rxn(i))

≤ G(Rxm(i)+1, Rxn(i), Rxn(i)) +G(Rxn(i), Rxn(i)+1, Rxn(i)+1)

+G(Rxn(i)+1, Rxn(i), Rxn(i)).

Passing to the limit in the above inequalities and using (3.19), (3.22), we get that

lim
i→∞

G(Rxm(i)+1, Rxn(i), Rxn(i)) = ε. (3.24)

Since Rxm(i) � Rxn(i), we have

∆(xm(i), xn(i), xn(i))

= max{G(Rxm(i), Rxn(i), Rxn(i)), G(Rxm(i), Txm(i), Txm(i)), G(Rxn(i), Txn(i), Txn(i)),

1

3
[G(Rxm(i), Txn(i), Txn(i)) +G(Sxn(i), Txn(i), Txn(i)) +G(Rxn(i), Txm(i), Txm(i))]}

= max{G(Rxm(i), Rxn(i), Rxn(i)), G(Rxm(i), Rxm(i)+1, Rxm(i)+1), G(Rxn(i), Rxn(i)+1, Rxn(i)+1),

1

3
[G(Rxm(i), Rxn(i)+1, Rxn(i)+1) +G(Rxn(i), Rxn(i)+1, Rxn(i)+1) +G(Rxn(i), Rxm(i)+1, Rxm(i)+1)]}

≤ max{G(Rxm(i), Rxn(i), Rxn(i)), G(Rxm(i), Rxm(i)+1, Rxm(i)+1), G(Rxn(i), Rxn(i)+1, Rxn(i)+1),

1

3
[G(Rxm(i), Rxn(i)+1, Rxn(i)+1) +G(Rxn(i), Rxn(i)+1, Rxn(i)+1) + 2G(Rxn(i), Rxn(i), Rxm(i)+1)]}.

Therefore, passing to the upper limit in (3.14) and using properties of the functions ψ, α, β with
(3.19), (3.2), (3.22), (3.23), (3.24), we get that

ψ(ε)

≤ lim inf ψ(G(Rxm(i)+1, Rxn(i)+1, Rxn(i)+1))

= lim supψ(G(Txm(i), Txn(i), Txn(i)))

≤ lim sup[(max{G(Rxm(i), Rxn(i), Rxn(i)), G(Rxm(i), Rxm(i)+1, Rxm(i)+1), G(Rxn(i), Rxn(i)+1, Rxn(i)+1),

1

3
[G(Rxm(i), Rxn(i)+1, Rxn(i)+1) +G(Rxn(i), Rxn(i)+1, Rxn(i)+1) + 2G(Rxn(i), Rxn(i), Rxm(i)+1)]})

− ϕ(max{G(Rxm(i), Rxn(i), Rxn(i)), G(Rxm(i), Rxm(i)+1, Rxm(i)+1), G(Rxn(i), Rxn(i)+1, Rxn(i)+1),

1

3
[G(Rxm(i), Rxn(i)+1, Rxn(i)+1) +G(Rxn(i), Rxn(i)+1, Rxn(i)+1) + 2G(Rxn(i), Rxn(i), Rxm(i)+1)]})]

≤ lim sup[αmax{G(Rxm(i), Rxn(i), Rxn(i)), G(Rxm(i), Rxm(i)+1, Rxm(i)+1), G(Rxn(i), Rxn(i)+1, Rxn(i)+1),

1

3
[G(Rxm(i), Rxn(i)+1, Rxn(i)+1) +G(Rxn(i), Rxn(i)+1, Rxn(i)+1) + 2G(Rxn(i), Rxn(i), Rxm(i)+1)]}]

− lim inf[β(max{G(Rxm(i), Rxn(i), Rxn(i)), G(Rxm(i), Rxm(i)+1, Rxm(i)+1), G(Rxn(i), Rxn(i)+1, Rxn(i)+1),

1

3
[G(Rxm(i), Rxn(i)+1, Rxn(i)+1) +G(Rxn(i), Rxn(i)+1, Rxn(i)+1) + 2G(Rxn(i), Rxn(i), Rxm(i)+1)]})]

≤ α(ε)− β(ε).

This is (because of ε > 0) a contradiction with (3.13). Thus {Rxn} is a G–Cauchy sequence in X.
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Step III. Existence of a coincidence point. Since {Rxn} is a G–Cauchy sequence in the complete
G-metric space, there exists u ∈ X such that:

lim
n→∞

Rxn = u. (3.25)

From (3.25) and the continuity of R, we get:

lim
n→∞

R(Rxn) = Ru. (3.26)

By the rectangular inequality, we have:

G(Ru, Tu, Tu) ≤ G(Ru,R(Rxn+1), R(Rxn+1)) +G(R(Txn), T (Rxn), T (Rxn)) +G(T (Rxn), Tu, Tu).
(3.27)

On the other hand, we have:

Rxn → u, Txn → u as n→∞.

Since the pair {T,R} is G-compatible, this implies that

lim
n→∞

G(R(Txn), T (Rxn), T (Rxn)) = 0. (3.28)

Now, from the continuity of T and (3.25), we have:

lim
n→∞

G(T (Rxn), Tu, Tu) = 0. (3.29)

Combining (3.26), (3.28) and (3.29), and letting n→∞ in (3.27), we obtain:

G(Ru, Tu, Tu) ≤ 0,

which implies that
Ru = Tu,

that is, u is a coincidence point of T and R. This makes the end to the proof. �

In the next theorem, we replace the continuity hypothesis by the hypothesis of regularity of the
space X.

Theorem 3.10. Let (X,G,�) be a partially ordered complete G–metric space and let T,R : X → X
be self–mappings. Assume that there exist ψ ∈ Ψ, α ∈ Φ1 and β ∈ Φ2 such that for all s, t ≥ 0,

t > 0 and (s = t or s = 0) imply ψ(t)− α(s) + β(s) > 0, (3.30)

and
ψ(G(Tx, Ty, Tz)) ≤ ψ(∆(x, y, z))− ϕ(∆(x, y, z)),

where

∆(x, y, z) = max{G(Rx,Ry,Rz), G(Rx, Tx, Tx), G(Ry, Ty, Ty), G(Rz, Tz, Tz),
1

3
[G(Rx, Ty, Ty) +G(Ry, Tz, Tz) +G(Rz, Tx, Tx)]}

for all x, y, z ∈ X with Rz � Ry � Rx. We suppose the following hypotheses:
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(i) X is regular,

(ii) T is weakly increasing with respect to R,

(iii) RX is a closed subset of (X, d),

(ii) TX ⊆ RX.

Then, T and R have a coincidence point.

Proof . Following the proof of Theorem 3.8, we have that {Rxn} is a Cauchy sequence in (RX,G)
which is complete since RX is a closed subspace of (X,G). Then, there exists u = Rv, v ∈ X such
that

lim
n→∞

Rxn = u = Rv. (3.31)

Since {Rxn} is a non-decreasing sequence and X is regular, it follows from (3.31) that Rxn � Rv
for all n ∈ N. Hence, we can apply the considered contractive condition. Then, for x = xn and
y = z = v, we obtain

Θ(xn, v, v) = max{G(Rxn, Rv,Rv), G(Rxn, Txn, Txn), G(Rv, Tv, Tv),
1

3
[G(Rxn, T v, Tv) +G(Rv, Tv, Tv) +G(Rv, Txn, Txn)]}

= max{G(Rxn, Rv,Rv), G(Rxn, Rxn+1, Rxn+1), G(Rv, Tv, Tv),
1

3
[G(Rxn, T v, Tv) +G(Rv, Tv, Tv) +G(Rv,Rxn+1, Rxn+1)]}.

By (3.14), we obtain

ψ(G(Rxn+1, T v, Tv)) = ψ(G(Txn, T v, Tv))

≤ α(max{G(Rxn, Rv,Rv), G(Rxn, Rxn+1, Rxn+1), G(Rv, Tv, Tv),

1

3
[G(Rxn, T v, Tv) +G(Rv, Tv, Tv) +G(Rv,Rxn+1, Rxn+1)]})

− β(max{G(Rxn, Rv,Rv), G(Rxn, Rxn+1, Rxn+1), G(Rv, Tv, Tv),

1

3
[G(Rxn, T v, Tv) +G(Rv, Tv, Tv) +G(Rv,Rxn+1, Rxn+1)]}).

Passing to the upper limit as n → ∞ in the above inequalities as in the previous case, using (3.31)
and the fact that G is continuous in its variables, we get that

ψ(G(Rv, Tv, Tv)) ≤ α(G(Rv, Tv, Tv))− β(G(Rv, Tv, Tv)).

Using again the condition (3.30), we get that it is only possible if G(Rv, Tv, Tv) = 0 and hence
Rv = Tv. Hence, v is a coincidence point of T and R. This finishes the proof. �

Theorem 3.11. Under the hypotheses of Theorem 3.10, and assuming that the order � is total, the
mappings T and R have a unique point of coincidence, that is, there exists a unique w ∈ X such that
Rz = Tz = w for some z ∈ X. In particular, if T is injective, they have also a unique coincidence
point. If, moreover, T and R are weakly compatible, then T and R have a unique common fixed point.
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Proof . The existence of points z, w ∈ X satisfying Tz = Rz = w was proved in Theorem 3.1.
Suppose that there exists another point w1 ∈ X, w1 6= w such that Tz1 = Rz1 = w1 for some z1 ∈ X.
Without loss of generality, assume that G(w1, w, w) ≥ G(w,w1, w1). Then

Θ(z1, z, z) = max

{
G(Rz1, Rz,Rz), G(Rz1, T z1, T z1), G(Rz, Tz, Tz), G(Rz, Tz, Tz),

1

3
[G(Rz1, T z, Tz) +G(Rz, Tz, Tz) +G(Rz, Tz1, T z1)]

}
= max

{
G(w1, w, w),

1

3
[G(w1, w, w) +G(w,w1, w1)]

}
= G(w1, w, w) = θ(z1, z, z).

Applying condition (3.2) to points z1, z, z, we get that

ψ(G(w1, w, w)) = ψ(G(Tz1, T z, Tz)) ≤ α(G(w1, w, w))− β(G(w1, w, w)).

Using again the condition (3.30), we get that it is only possible if G(w1, w, w) = 0 and w1 = w, a
contradiction. Thus, the point of coincidence w of R and T is unique. If T is injective, then also
z = z1 and the coincidence point is also unique. If these two mappings are weakly compatible, it
follows that they have a unique common fixed point by a well known result of Jungck. �

Now, we present an example to illustrate our obtained result given by the Theorem 3.8 (inspired by
[14]) showing the usage of Theorem 3.8 with (at least some of) functions ψ, α, β not being continuous.

Example 3.12. Let X = [0, 1] and (X,G) be the complete G–metric space defined by

G(x, y, z) = |x− y|+ |y − z|+ |z − x|, for all x, y, z ∈ X.

We define an ordering � on X as follows:

x � y ⇐⇒ y ≤ x, ∀x, y ∈ X.

Define self–mappings T,R : X → X by Rx = x
2

and Tx = x
16

.
If {xn} is a sequence in X such that Rxn = 1

2
xn → t and Txn = 1

16
xn → t for some t ∈ X

then it is easy to see that limn→∞G(TRxn, RTxn, RTxn) = 0. Hence the pair of mappings {T,R}
is compatible. Also we can easily show that the mappings T and R satisfy the contractive condition
(3.14). For instance,

G(Tx, Ty, Tz) = G(
x

16
,
y

16
,
z

16
) =

1

16
G(x, y, z) ≤ 3

4
G(Rx,Ry,Rz) ≤ 3

4
∆(x, y, z).

Now, by considering the control functions ψ, α, β : [0,+∞)→ [0,+∞) defined by:

ψ(t) = t+
3

2
, α(t) = t+

5

2
and β(t) =

t

4
+ 1, for t > 0,

we get:
ψ(G(Tx, Ty, Tz)) ≤ α(∆(x, y, z))− β(∆(x, y, z)),

for all x, y, z ∈ X such that Rz � Ry � Rx. Hence (3.14) is satisfied. Theorem 3.8 is applicable
since all its hypotheses are satisfied. It may be observed that in this example the common fixed point
of T and R (0) is unique.
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Next, we demonstrate that if T and R do not satisfy the condition of compatibility then they
may not have any common fixed point.

Example 3.13. Let X = R, and (X,G) be the G–metric space defined by G(x, y, z) = |x − y| +
|y− z|+ |z−x| for all x, y, z in X and R, T be self mappings on X defined as Rx = [x] for all x ∈ X,

Tx =


−3, if x ≤ 0,
0, if 0 < x < 2,
3, if x ≥ 2.

where [x] denotes the integral part of x.
Take a sequence {xn} of points in X as xn = 1

n
, then Rxn = 0 = Txn and TRxn = −3, RTxn = 0.

Therefore, limn→∞G(RTxn, TRxn, TRxn) = G(0,−3,−3) = 6 6= 0.
If 0 < x < 2, then the left–hand side of (3.14) is 0 and hence (3.14) is satisfied. Thus, Theorem

3.8 is not applicable. It is observed that there is no common fixed point of T and R.

If R : X → X is the identity mapping, we can deduce easily the following fixed point result which
improves the results of previous section.

Corollary 3.14. Let (X,G,�) be a partially ordered complete G–metric space and let T : X → X
be a nondecreasing self–mapping. Assume that there exist ψ ∈ Ψ, α ∈ Φ1 and β ∈ Φ2 such that for
all s, t ≥ 0,

t > 0 and (s = t or s = 0) imply ψ(t)− α(s) + β(s) > 0,

and
ψ(G(Tx, Ty, Tz)) ≤ α(∆(x, y, z))− β(∆(x, y, z))

where

∆(x, y, z) = max{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz),
1

3
[G(x, Ty, Ty) +G(y, Tz, Tz) +G(z, Tx, Tx)]}

for all x, y, z ∈ X with z � y � x. We assume the following hypotheses:

(i) T is continuous or X is regular,

(ii) Tx � T (Tx) for all x ∈ X.

Then T has a fixed point, that is, there exists u ∈ X such that u = Tu.

Remark 3.15. All the results of this section are valid if we replace ∆(x, y, z) by the following:

Θ2(x, y, z) = max{G(Rx,Ry,Rz), G(Rx,Rx, Tx), G(Ry,Ry, Ty), G(Rz,Rz, Tz),
1

3
[G(Rx,Rx, Ty) +G(Ry,Ry, Tz) +G(Rz,Rz, Tx)]}

As a consequence of our results, we will deduce a fixed and coincidence point result for mappings
satisfying a contraction of integral type in a partially ordered complete G–metric space. At first, let
us introduce some notations.

We denote by Υ the set of functions Ψ : [0,+∞)→ [0,+∞) satisfying the following conditions:

(i) Ψ is a Lebesgue integrable mapping on each compact subset of [0,+∞),
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(ii) For all ε > 0, we have: ∫ ε

0

Ψ(s) ds > 0.

Let N ∈ N be fixed. Let {Ψi}1≤i≤N be a family of N functions that belong to Υ. For all t ≥ 0, we
denote:

I1(t) =

∫ t

0

Ψ1(s) ds,

I2(t) =

∫ I1(t)

0

Ψ2(s) ds =

∫ ∫ t

0

Ψ1(s) ds

0

Ψ2(s) ds

...

IN(t) =

∫ IN−1(t)

0

ΨN(s) ds.

We have the following fixed point theorem of integral type.

Theorem 3.16. Let (X,G,�) be a partially ordered complete G–metric space and let T : X → X
be a nondecreasing self–mapping. Assume that there exist ψ ∈ Ψ, α ∈ Φ1 and β ∈ Φ2 such that for
all s, t ≥ 0,

t > 0 and (s = t or s = 0) imply ψ(t)− α(s) + β(s) > 0,

and
IN(ψ(G(Tx, Ty, Tz))) ≤ IN(α(∆(x, y, z)))− IN(β(∆(x, y, z)))

where

∆(x, y, z) = max{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz),
1

3
[G(x, Ty, Ty) +G(y, Tz, Tz) +G(z, Tx, Tx)]}

for all x, y, z ∈ X with z � y � x. We assume the following hypotheses:

(i) T is continuous or regular,

(ii) Tx � T (Tx) for all x ∈ X.

Then T admits a fixed point.

Remark 3.17. Similar fixed and coincidence point results for mappings satisfying a contraction of
integral type can be obtained from Theorems 3.1, 3.8 and 3.10.

4. An application to boundary value problems for ODE’s

In this section we present another example where Theorem 3.1 and its corollaries can be applied.
The example is inspired by [12].

We study the existence of solution for the following two–point boundary value problem for second
order differential equation 

d2u

dt2
= K(t, u(t)), t ∈ [0, 1], u ∈ [0,∞)

u(0) = u(1) = 0.
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This problem is equivalent to the integral equation

u(t) =

∫ 1

0

G(t, s)K(s, u(s)) ds, for t ∈ [0, 1], (4.1)

where K : [0, 1]× R+ → R+ and G(t, s) is the Green function

G(t, s) =

{
t(1− s), 0 ≤ s < t ≤ 1

s(1− t), 0 ≤ t < s ≤ 1.

Denote X = C([0, 1],R+)–the set of real non–negative continuous functions on [0, 1]. We endow
X with the G–metric

G(u, v, w) = max
t∈[0,1]

|u(t)− v(t)|+ max
t∈[0,1]

|u(t)− w(t)|+ max
t∈[0,1]

|v(t)− w(t)|,

for u, v, w,∈ X. Then (X,G) is a G-complete metric space.
X can also be equipped with the partial order � given by:

u, v ∈ X, u � v ⇔ u(t) ≤ v(t), ∀ t ∈ [0, 1].

Moreover, in [28], it is proved that (X,G,�) is regular (see Definition 2.16).
Consider the self-mapping T : X → X defined by

Tu(t) =

∫ 1

0

G(t, s)K(s, u(s)) ds, for t ∈ [0, 1]. (4.2)

Clearly, u is a solution of (4.1) if and only if u is a fixed point of T .
We will prove the existence and uniqueness of the fixed point of T under the following conditions.

Theorem 4.1. Suppose that the following hypotheses hold:

(i) K(s, ·) is a non–decreasing continuous function for any fixed s ∈ [0, 1], that is,

x, y ∈ R+, x ≤ y =⇒ K(s, x) ≤ K(s, y).

(ii) for all t, s ∈ [0, 1], u ∈ X, we have:

K(t, u(s)) ≤ K

(
t,

∫ 1

0

K(s, u(τ)) dτ

)
,

(iii) for all t ∈ [0, 1] and x, y ∈ R such that x ≥ y,

|K(t, x)−K(t, y)| ≤ 6|x− y|,

(iv) there exists u0 ∈ C([0, 1]) such that u0(t) ≤ Tu0(t) for t ∈ [0, 1].

Then the integral equation (4.1) has a solution u∗ ∈ C([0, 1]).
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Proof . Consider T : X → X given by (4.2). Let us prove that

Tu � T (Tu) for all u ∈ X. (4.3)

Let u ∈ C([0, 1]). From (ii), for all t, s ∈ [0, 1], we have:

Tu(t) =

∫ 1

0

G(t, s)K(s, u(s)) ds

≤
∫ 1

0

G(t, s)K

(
s,

∫ 1

0

G(t, s)K(s, u(τ)) dτ

)
ds

=

∫ 1

0

G(t, s)K(s, Tu(s)) ds

= T (Tu)(t).

Then (4.3) holds. Since G(t, s) ≥ 0 for all t, s ∈ [0, 1], we deduce from (i) that for u ≤ v∫ 1

0

G(t, s)K(s, u(s)) ds ≤
∫ 1

0

G(t, s)K(s, v(s)) ds,

i.e., Tu(t) ≤ Tv(t) holds for all t ∈ [0, 1]. Thus T is a non–decreasing mapping. Also from (iv),
u0 � Tu0 for u0 ∈ X. Since G(t, s) ≥ 0 for all t, s ∈ [0, 1], therefore for u, v, w ∈ X such that
w � v � u, by (iii), we have:

G(Tu, Tv, Tw) (4.4)

= max
t∈[0,1]

|Tu(t)− Tv(t)|+ max
t∈[0,1]

|Tu(t)− Tw(t)|+ max
t∈[0,1]

|Tv(t)− Tw(t)|

= max
t∈[0,1]

∫ 1

0

G(t, s) |K(s, u(s))−K(s, v(s))| ds

+ max
t∈[0,1]

∫ 1

0

G(t, s) |K(s, u(s))−K(s, w(s))| ds

+ max
t∈[0,1]

∫ 1

0

G(t, s) |K(s, v(s))−K(s, w(s))| ds

≤ max
t∈[0,1]

∫ 1

0

G(t, s)(|u(s)− v(s)|+ |u(s)− w(s)|+ |v(s)− w(s)|) ds

≤ G(u, v, w) max
t∈[0,1]

∫ 1

0

G(t, s) ds.

It is easy to verify that ∫ 1

0

G(t, s) ds =
−t2

2
+
t

2

and that

sup
t∈[0,1]

∫ 1

0

G(t, s) ds =
1

8
.

With these facts, the inequality (4.4) give us

G(Tu, Tv, Tw) ≤ 3

4
G(u, v, w) ≤ 3

4
Θ(u, v, w).
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Now, by considering the control functions ψ, α, β : [0,+∞)→ [0,+∞) defined by:

ψ(t) = t+
3

2
, α(t) = t+

5

2
and β(t) =

t

4
+ 1, for t > 0,

we get:
ψ(G(Tu, Tv, Tw)) ≤ α(Θ(u, v, w))− β(Θ(u, v, w)),

for all u, v, w ∈ C(I) such that w � v � u. Now, all the required hypotheses of Theorem 3.1 are
satisfied. Then T admits a fixed point u∗ ∈ C([0, 1]), that is, u∗ is a solution to (4.1) (and so also of
the given boundary value problem). �
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