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Abstract

Very recently, Kumam et al. [J Funct Spaces, Volume 2015, Article ID: 350840] obtained some
interesting common fixed point results for two mappings satisfying a generalized contractive condition
in b–metric spaces without the assumption of the continuity of the b–metric, but unfortunately, there
exists a gap in the proof of the main result. In this note, we point out and fill such gap by making
some remarks and offering a new proof for the result. It should be mentioned that our proofs for
some key assertions of the main result are new and somewhat different from the original ones. In
addition, we also present a result to check the continuity of the b–metrics which is found effective
and workable when applied to some examples.
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1. Introduction and Preliminaries

Since Czerwik [3] introduced the concept of b–metric space (sometimes called metric type space or
metric–type space, see Jovanović, Kadelburg and Radenović [5], for instance) many authors have
focused on the studying the fixed point theory for single–valued and multivalued operators in b–
metric spaces (see also [1, 2, 3, 4, 5, 6, 7, 8, 9]). Most of the authors have used in their works
b–metric spaces under the assumption that the b–metric is continuous. Very recently, Kumam et
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al. [7] presented some interesting common fixed point results for two mappings under a generalized
contractive condition in b–metric spaces, where the b–metric is not necessarily continuous. But
unfortunately, there exists a gap in the proof of the main result. The aim of this note is to describe
the gap by making some remarks and fill the gap by offering a new proof for the result. Our proofs
for the key assertions of the main result are new and somewhat different from the original ones. In
addition, we discuss the continuity of the b–metrics and present a sufficient condition under which
the b–metrics are continuous. We find that this result is effective and workable by applying it to
some examples.

Throughout this paper, we denote by N, R+ and R the sets of positive integers, nonnegative real
numbers, and real numbers, respectively.

Consistent with [3], the following definition and results will be needed in the sequel.

Definition 1.1. (Czerwik, [3]) Let X be a nonempty set and let b ≥ 1 be a given real number.
A function d : X × X → R+ is a b–metric on X if, for all x, y, z ∈ X, the following conditions are
satisfied:

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, y) ≤ b(d(x, z) + d(z, x)).

Then (X, d) is called a b–metric space with coefficient b.

In general, a b–metric need not be continuous, see Remark 2.1 in [2], and Example 3.9 in [9].
However, there are a number of examples in which the b–metrics are actually continuous.

Now we give a sufficient condition under which the b–metric is continuous in a b–metric space.

Proposition 1.2. Let (X,D) be a b–metric space. If there exist a metric d on X and a continuous
function ϕ : [0,+∞)→ [0,+∞) such that D(x, y) = ϕ(d(x, y)) for all x, y ∈ X, then D is continuous
on X ×X.

Proof . Since ϕ : [0,+∞] → [0,+∞] is continuous, taking into account that the metric d on X
is continuous, we get that the b–metric D(x, y) with D(x, y) = ϕ(d(x, y)) is a function satisfying
limn→∞D(xn, yn) = D(x, y) whenever limn→∞(xn, yn) = (x, y). Thus by Corollary 3.8 in [9], we
conclude that D is continuous at each (x, y) ∈ X ×X. �

The following can be used to show that a function D(x, y) defined on X×X, where X is a metric
space, is a b–metric.

Proposition 1.3. Let (X, d) be a metric space. Suppose that there exists a convex and nondecreasing

function ϕ : [0,+∞) → [0,+∞) with ϕ(2) ≥ 2 and ϕ(0) = 0 such that ϕ(x
2
) ≥ ϕ(x)

ϕ(2)
for all x ∈

(0,+∞). Then D(x, y) = ϕ(d(x, y)) is a b–metric with b = ϕ(2)
2

and so (X,D) is a b–metric space.

Proof . Recall that ϕ is convex in [0,+∞), if it satisfies

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y)

for all x, y ∈ [0,+∞) and λ ∈ [0, 1]. So for any a, c ∈ (0,+∞), we have

ϕ(a+ c) · 1

ϕ(2)
≤ ϕ(

a+ c

2
) ≤ 1

2
(ϕ(a) + ϕ(c)),
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since ϕ(x
2
) ≥ ϕ(x)

ϕ(2)
for any x ∈ (0,+∞). So we get

ϕ(a+ c) ≤ ϕ(2)

2
(ϕ(a) + ϕ(c)). (1.1)

By the triangle inequality of d we see that

d(x, y) ≤ d(x, z) + d(z, y) (1.2)

for all x, y, z ∈ X. Let D(x, y) = ϕ(d(x, y)). Then by (1.1), (1.2) and the fact that ϕ is nondecreasing
we have

D(x, y) = ϕ(d(x, y)) ≤ ϕ(d(x, z) + d(z, y))

≤ ϕ(2)

2
(ϕ(d(x, z)) + ϕ(d(z, y)))

= b(D(x, z) +D(z, y)),

where b = ϕ(2)
2
≥ 1 since ϕ(2) ≥ 2. That is, D(x, y) is a b-metric with b = ϕ(2)

2
and so (X,D) is a

b-metric space. �

Example 1.4. Suppose X = R and s > 1. Consider the usual Euclidean metric d : X ×X → R+

defined by
d(x, y) = |x− y|, ∀x, y ∈ X.

Then by Proposition 1.3, we see that D(x, y) = |x − y|s is a b–metric on R with b = 2s−1 (noting
that here we can take ϕ(t) = ts), but it is not a metric on R, since the triangle inequality does not
hold. In fact, taking x = 2n + 1, y = 1, z = n + 1 where n is positive real number, we see (noting
that s > 1)

|x− y|s = (2n)s > 2ns = |x− z|s + |z − y|s,

that is, D(x, y) > D(x, z)+D(z, y), which implies that the triangle inequality does not hold for D. In
addition, by Proposition 1.2, we see that the b–metric D is continuous since here ϕ(t) is continuous.

By Proposition 1.2 and Proposition 1.3, we immediately obtain the following result.

Proposition 1.5. Let (X, d) be a metric space. Suppose that there exists a convex, nondecreasing

and continuous function ϕ : [0,+∞) → [0,+∞) with ϕ(2) ≥ 2 and ϕ(0) = 0 such that ϕ(x
2
) ≥ ϕ(x)

ϕ(2)

for all x ∈ (0,+∞). Then D(x, y) = ϕ(d(x, y)) is a b–metric with b = ϕ(2)
2

and so (X,D) is a b-metric
space. In addition, the b–metric D(x, y) is continuous at each (x, y) ∈ X ×X.

Remark 1.6. By using Proposition 1.5 we may check that the functions ρ(x, y) = (d(x, y))s from

Example 2 in [7], D(x, y) = (
∑∞

n=1 |xn − yn|p)
1
p from Example 1.1 in [2] and ρ(x, y) = (

∫ 1

0
|x(t) −

y(t)|pdt)
1
p from Example 1.2 in [2] are all b–metrics and each of these b–metrics is also continuous

at each (x, y) ∈ X ×X where X is the corresponding b-metric space. Take Example 1.2 in [2], for
example. In fact, let X = Lp[0, 1] (0 < p < 1). Define d(x, y) by

d(x, y) =

∫ 1

0

|x(t)− y(t)|p dt, ∀x, y ∈ Lp[0, 1].
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It can be easily seen that d is a metric on Lp[0, 1]. Obviously, there is a continuous function ϕ(t) = t
1
p

such that
ρ(x, y) = ϕ(d(x, y)), ∀x, y ∈ Lp[0, 1].

Using Proposition 1.5 (or Proposition 1.2 and Proposition 1.3) we conclude that the function ρ is a
b-metric. Moreover, ρ is also continuous at any (x, y) ∈ X ×X.

For the definitions of basic concepts concerning the convergence of sequences in a b–metric space
such as convergent sequence, Cauchy sequence, complete space, etc., we refer to Boriceanu, Bota and
Petrusel [2].

Very recently, Kumam et al. introduced commutativity for two mappings in b–metric spaces,
which generalized the classical Banach contraction condition, as follows.

Let f , g : X → X be mappings where (X, d) is a b–metric space. Then we say that f and g are
weakly commuting provided that

d(fgx, gfx) ≤ d(fx, gx)

for any x ∈ X. We say that f and g are R–weakly commuting provided that there is a number R > 0
such that

d(fgx, gfx) ≤ Rd(fx, gx)

for any x ∈ X.
Note that the commutativity for two mappings defined above is crucial in the studying of the

theory of common fixed point.

2. The main results

In this section, we will emphasize the insufficiency of the proof of the main result of Kumam et al.
[7] and correct the weaknesses appearing in [7]. The main result (Theorem 12) of [7] was presented
as follows.

Theorem 2.1. (Kumam et al. [7]) Let (X, d) be a complete b–metric space with b ≥ 1. Suppose
that f, g : X → X are R–weakly commuting mappings satisfying the following three conditions:

(a) f(X) ⊂ g(X);
(b) f or g is continuous;
(c) d(fx, fy) ≤ γ

(
1
b4
d (gx, gy)

)
for all x, y ∈ X, where γ : [0,∞) → [0,∞) is a continuous and

nondecreasing function such that γ(a) < a for each a > 0 and γ(0) = 0. Then f and g have a unique
common fixed point.

This result and its proof are interesting. However, there is some insufficiency or gap in the proof
of Theorem 2.1 appearing in Kumam et al. [7]. We first present some remarks.

Remark 2.2. In Theorem 2.1, it follows from (c) that if g is continuous then f is also continuous.
Hence, in (b): “f or g is continuous” may be replaced by “f is continuous”.

Remark 2.3. In the proof of Theorem 2.1 from [7], in order to prove the existence of common fixed
point of f and g, the authors of [7] first discuss the Jungck sequence {yn} where

yn = fxn = gxn+1 (n ∈ N)

and prove that it is a Cauchy sequence in f(X). To achieve this end they use the contradiction
method. However, there is another method to show this. In fact, by using (c) and Lemma 3.1 from
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[8] we know that {yn} is a Cauchy sequence in f(X). This direct method is quite different from the
above-mentioned contradiction method. In addition, the authors get the inequality

ε ≤ lim
k→∞

dk ≤ bε

from (17) in [7], but they have not shown that the limit of the sequence {dk} exists, so it is unrea-
sonable to assert this.

Remark 2.4. In the proof of Theorem 2.1 from [7], since {yn} is a Cauchy sequence in f(X), it is
easily seen that fxn → z ∈ X because X is complete. So it follows that ffxn → fz ∈ X since f
is continuous. Moreover, a key assertion, namely, gfxn → fz ∈ X must be proved. In order to do
this, the authors of [3] utilize the R-weakly commuting condition and get

d (fgxn, gfxn) ≤ Rd (fxn, gxn) (n ∈ N). (2.1)

Based on (2.1), by Lemma 1.2 from [7] the authors take the upper limit as n→∞ and obtain

1

b2
d

(
fz, lim sup

n→∞
gfxn

)
≤ lim sup

n→∞
d (fgxn, gfxn)

≤ lim sup
n→∞

d (fxn, gxn)

≤ Rb2d(z, z)

= 0

(2.2)

which means that
1

b2
d

(
fz, lim sup

n→∞
gfxn

)
= 0. (2.3)

Similarly, they also get
1

b2
d
(
fz, lim inf

n→∞
gfxn

)
= 0. (2.4)

By (2.3) together with (2.4) they obtain

lim
n→∞

gfxn = fz.

Note that there is something wrong with (2.2), (2.3) and (2.4) since the notation
“lim supn→∞ gfxn” and “lim infn→∞ gfxn” are not well defined. Indeed, the authors never give
the definition of the upper limit or upper lower limit of a sequence in a b–metric space. This may be
the crucial gap in the proof of the main theorem in [7].

Remark 2.5. In Eq. (27) from [7], the formula

1

b2
d (fz, fz1) ≤ lim sup

n→∞
d (ffxn, fz)

should be replaced by
1

b2
d (fz, fz1) ≤ lim sup

n→∞
d (ffxn, fz1) .
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Now we present a new proof of Theorem 2.1
Proof . Let x0 be any given point in X. From (a), we can find an x1 ∈ X satisfying fx0 = gx1. In
general, we can find the point xn+1 ∈ X satisfying fxn = gxn+1 for any n ≥ 0. Let yn = fxn. Now
we show that {yn} is a Cauchy sequence in f(X). As is indicated in (11) from [7], the following is
obvious:

d (yn, yn+1) = d (fxn, fxn+1)

≤ γ

(
1

b4
d (gxn, gxn+1)

)
= γ

(
1

b4
d (fxn−1, fxn)

)
≤ 1

b4
d (yn−1, yn)

= λd (yn−1, yn) ,

which implies that
d (yn, yn+1) ≤ λd (yn−1, yn)

for all n ∈ N, where λ = 1
b4
∈ [0, 1

b
). So it follows from Lemma 3.1 in [8] that {yn} is a Cauchy

sequence in f(X). Noting that f(X) ⊂ X and X is complete, we see there exists z ∈ X such that
{fxn} converges to z ∈ X. Also, {gxn} converges to z ∈ X. So it follows that ffxn → fz, fgxn → fz
since f is continuous. Further, we have also that gfxn → fz. In fact,

d (fz, gfxn) ≤ b [d (fz, fgxn) + d (fgxn, gfxn)]

≤ bd (fz, fgxn) + bRd (fxn, gxn)

≤ bd (fz, fgxn) +Rb2d (fxn, z) +Rb2d (z, gxn)

→ 0 + 0 + 0 = 0,

which implies that gfxn → fz.
Next, we prove z = fz by contradiction method. Indeed, if it is not true, then by Lemma 1.2 in

[1] and (c) we have

1

b2
d (fz, z) ≤ lim sup

n→∞
d(ffxn, fxn) ≤ lim sup

n→∞
γ

(
1

b4
d (gfxn, gxn)

)
= γ

(
1

b4
lim sup
n→∞

d (gfxn, gxn)

)
≤ γ

(
1

b4
b2d (fz, z)

)
= γ

(
1

b2
d (fz, z)

)
<

1

b2
d (fz, z) ,

a contradiction. Hence, z = fz. Since f(X) ⊂ g(X), there is z1 ∈ X such that z = fz = gz1. So we
have

d(ffxn, fz1) ≤ γ

(
1

b4
d (gfxn, gz1)

)
∀n ∈ N.
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Then, by γ(0) = 0, it follows from Lemma 1.2 in [1] that

1

b
d (fz, z1) ≤ lim sup

n→∞
d(ffxn, fz1)

≤ γ

(
lim sup
n→∞

1

b4
d (gfxn, gz1)

)
≤ γ

(
1

b3
d (fz, gz1)

)
= 0,

which implies that fz = fz1. So, z = fz = fz1 = gz1. Hence, by the fact that f and g are R-weakly
commuting we see that

d(fz, gz) = d(fgz1, gfz1) ≤ Rd(fz1, gz1) = 0,

which implies that fz = gz. That is, z is a common fixed point of f and g.
Finally, we need to prove the uniqueness of the common fixed point of f and g. This can be done

in the same way as in the proof of Theorem 12 from [7], so we omit it for convenience. �

Remark 2.6. Compared to the proof of Theorem 12 from [7], our proof for Theorem 2.1 above
gives a new method to show the assertion lim supn→∞ gfxn = fz, filling the gap caused by the
unwell–defined notations lim supn→∞ gfxn and lim infn→∞ gfxn appearing in (22) and (23) from [7],
respectively.

Remark 2.7. In Theorem 2.1, if we replace the condition “(X, d) is a complete b–metric space” by
“(X, d) is a b–metric space and f(X) or g(X) is complete”, while the rest remains unchanged, then
the conclusion also holds true.
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