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Abstract

The purpose of this paper is to find of the theoretical results of fixed point theorems for a mixed
monotone mapping in a metric space endowed with partially order by using the generalized Kanann
type contractivity of assumption. Also, as an application, we prove the existence and uniqueness of
solution for a first–order ordinary differential equation with periodic boundary conditions admitting
only the existence of a mixed ≤-solution.
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1. Introduction

Fixed point theory, the contraction mapping theorem and the abstract monotone iterative technique
[7, 8] are a very useful tool in solving a variety of problems in control theory [3, 5], economic theory
[2], nonlinear analysis [4, 6, 12] and global analysis [13, 14]. Recently, there is a trend to weaken
the requirement on the contraction by considering metric spaces endowed with partial order. This
approach was initiated in [11] where some applications to matrix equation are studied. This fixed
point theorem was refined and extended in [9, 10] and was applied to the periodic boundary value
problem considering both monotone cases.

In this paper, we extend the theoretical results of coupled fixed point for a mixed monotone
mapping in partially ordered sets, using the generalized Kanann type contractivity and then apply
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them to study a problem of ordinary differential equations. We also will find results on existence of
solution for the periodic boundary value problem (PBVP){

u′ = f(t, u) + g(t, u)
u(0) = u(T ),

∀t ∈ I = [0, T ], (1.1)

where T > 0 and f, g ∈ C(I × R,R). Recall that a solution for (1.1) is a function α ∈ C1(I,R)
satisfying conditions in (1.1) and a lower solution for (1.1), is a function α ∈ C1(I,R) such that

α′(t) ≤ f(t, α(t)) + g(t, α(t)) α(0) ≤ α(T ).

An upper solution for (1.1) satisfies the reversed inequalities. Also, an element (α, β) ∈ C1(I,R) ×
C1(I,R) is called a mixed ≤-solution of (1.1), if for every t ∈ I,{

α′(t) ≤ f(t, α(t)) + g(t, β(t)) α(0) ≤ α(T ),
β′(t) ≥ f(t, β(t)) + g(t, α(t)) β(0) ≥ β(T ).

It is well know [8] that the existence of a lower solution α and an upper solution β with α ≤ β implies
the existence of a solution of the periodic boundary value problem{

u′ = f(t, u)
u(0) = u(T )

∀t ∈ I = [0, T ],

where T > 0 and f ∈ C(I × R,R). In [1], Bhaskar and Lakshmikantham introduced the notions
of mixed monotone property and coupled fixed point for the contractive mapping f : X ×X → X,
where X is a partially ordered metric space, and proved some coupled fixed point theorems with
having a lower coupled fixed point. Then as an application of the coupled fixed point theorems, they
determined the existence and uniqueness of the solution of (1.1). For the function f and under certain
conditions, demonstrate that x = y. This implies the existence of a fixed point for the function f .
This approach is also discussed by replacing the continuity assumption on the mapping f with an
appropriate assumption on the metric space, as was done in [9, 10].

The structure of this paper is as follows: In the rest of this section we will review the necessary
parts from a mixed monotone mapping in a metric space endowed with partially order. In Section
2, we prove the existence of a coupled fixed point for f : X ×X → X under the generalized Kanann
type contractivity condition and establish the uniqueness under an additional assumption on the
metric space. Further, we also establish that components of the coupled fixed point are equal. In
Section 3, as an application of the theorems proved in Section 2, we discuss the existence of a unique
solution of the periodic boundary value problem (1.1).

In the rest of this introduction we will briey recall the definitions and basic properties of coupled
fixed point. For more information we refer to [1].

Definition 1.1. Let (X,≤) be a partially ordered set and f : X × X → X be a mapping. Then
we say that f has the mixed monotone property if f(x, y) is nondecreasing with respect to first
component and is nonincreasing in second component that is

x1 ≤ x2 ⇒ f(x1, y) ≤ f(x2, y) ∀ x1, x2, y ∈ X,
y1 ≤ y2 ⇒ f(x, y1) ≥ f(x, y2) ∀ y1, y2, x ∈ X.
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Example 1.2. Let X = R and ≤ be the usual total order in R. Then the mapping

f : X ×X → X

f(x, y) = x3 + x− y + 1 ∀x, y ∈ X,

has the mixed monotone property.

Definition 1.3. Let (X,≤) be a partially ordered set and f : X ×X → X be a mapping. Then:

(1) An element (x, y) ∈ X ×X is called a coupled fixed point of the mapping f if

x = f(x, y) and y = f(y, x).

(2) An element (x, y) ∈ X ×X is called a ≤-coupled fixed point of f if,

x ≤ f(x, y) and y ≥ f(y, x).

Example 1.4. Let X = R and f : X ×X → X defined by f(x, y) = x2 + x− y+ 1, for all x, y ∈ X.
Then the elements (0,−1), (−1, 0) are coupled fixed point of the mapping f .

Example 1.5. Suppose X = [0, 1] and ≤ be the usual total order in [0, 1]. Suppose that f : X×X →
X defined by f(x, y) = x+1

y+5
, for all x, y ∈ X. Then (0, 1) is an ≤-coupled fixed point of f .

Definition 1.6. Let (X,≤) be a partially ordered set and let d be a complete metric on X. Then
a mapping f : X ×X → X is called a generalized Kannan type mapping, if there exist real numbers
α, β ∈ (0, 1

2
) such that

d(f(x, y), f(u, v)) ≤ αd(x, f(x, y)) + βd(u, f(u, v)) ∀ x ≥ u, y ≤ v.

Example 1.7. Let X = [1, 5
4
] and ≤ be the usual total order in [1, 5

4
] and d(x, y) = |x − y|. Now

defined the map f : X ×X → X by f(x, y) = 1
5
x− 4

5
y+ 1 for all x, y ∈ X. Suppose that α = β = 1

4
,

then for every x ≥ u and y ≤ v we have:

1

4
d
(
x, f(x, y)

)
+

1

4
d
(
u, f(u, v)

)
− d
(
f(x, y), f(u, v)

)
= y +

2

5
u− 3

5
v − 1

2
≥ 3

10
≥ 0.

Therefore, f is a generalized Kannan type mapping with α = β = 1
4

and has the mixed monotone
property.

2. Coupled fixed points of generalized Kanann type mapping

We start with the following theorem that proves the existence of coupled fixed point for a continuous
generalized Kannan type mapping, with having an ≤-coupled fixed point.

Theorem 2.1. Let (X,≤) be a partially ordered set and d be a complete metric on X. Suppose
f : X ×X → X is a continuous mapping such that:

(i) f : X ×X → X has the mixed monotone property on X.
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(ii) (x0, y0) is an ≤-coupled fixed point of f .

(iii) There exist α, β ∈ (0, 1
2
) with

d(f(x, y), f(u, v)) ≤ αd(x, f(x, y)) + βd(u, f(u, v)) ∀ x ≥ u, y ≤ v.

Then, there exists (x, y) ∈ X ×X such that f(x, y) = x and f(y, x) = y.

Proof . Define sequences {xn}n∈N and {yn}n∈N in X, by xn = f(xn−1, yn−1) and yn = f(yn−1, xn−1).
Let (x0, y0) ∈ X ×X be an ≤-coupled fixed point of f . The mixed monotonicity of f implies that

x1 = f(x0, y0) ≤ f(x1, y1) = x2, and y1 = f(y0, x0) ≥ f(y1, x1) = y2.

Hence, induction gives

x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 ≤ · · ·
y0 ≥ y1 ≥ y2 ≥ · · · ≥ yn ≥ yn+1 ≥ · · ·

Now, we claim that for any n ∈ N,

d(xn+1, xn) ≤ (
β

1− α
)nd(x1, x0) (2.1)

d(yn+1, yn) ≤ (
α

1− β
)nd(y1, y0). (2.2)

Indeed, for n = 1, using x1 ≥ x0 and y1 ≤ y0, we get

d(x2, x1) = d(f(x1, y1), f(x0, y0))

≤ αd(x1, f(x1, y1)) + βd(x0, f(x0, y0))

= αd(x2, x1) + βd(x1, x0).

Therefore d(x2, x1) ≤ β
1−αd(x1, x0). Similarly, we have

d(y2, y1) = d(f(y0, x0), f(y1, x1))

≤ αd(y0, f(y0, x0)) + βd(y1, f(y1, x1))

= βd(y2, y1) + αd(y1, y0).

This implies that d(y2, y1) ≤ α
1−βd(y1, y0). Now, assume that (2.1) and (2.2) hold. Using xn+1 ≥ xn

and yn+1 ≤ yn, we get

d(xn+2, xn+1) = d(f(xn+1, yn+1), f(xn, yn))

≤ αd(xn+1, f(xn+1, yn+1)) + βd(xn, f(xn, yn))

= αd(xn+2, xn+1) + βd(xn+1, xn).

Therefore

d(xn+2, xn+1) ≤
β

1− α
d(xn+1, xn) ≤ (

β

1− α
)n+1d(x1, x0).
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Similarly, we can show that d(yn+2, yn+1) ≤ ( α
1−β )n+1d(y1, y0). This implies that {xn}n∈N and {yn}n∈N

are Cauchy sequences in X and for all m ≥ n we have

d(xm, xn) ≤ (
β

1− α
)nd(x1, x0)

d(ym, yn) ≤ (
α

1− β
)nd(y1, y0).

Since X is a complete metric space, there exist x∗, y∗ ∈ X such that limn→∞ xn = x∗ and limn→∞ yn =
y∗. Finally, we prove that (x∗, y∗) ∈ X × X is a coupled fixed point of f . Let ε > 0. Using the
continuity of f at the point (x∗, y∗), given ε

2
> 0, there exists a δ > 0 such that d(x∗, u)+d(y∗, v) < δ

implies that d(f(x∗, y∗), f(u, v)) < ε
2
. Since limn→∞ xn = x∗ and limn→∞ yn = y∗, for η = min( ε

2
, δ
2
) >

0, there exist N ∈ N such that, for n ≥ N ,

d(xn, x
∗) < η and d(yn, y

∗) < η

Now, for n ∈ N, n ≥ N we have

d(f(x∗, y∗), x∗) ≤ d
(
f(x∗, y∗), xn+1

)
+ d
(
xn+1, x

∗)
= d
(
f(x∗, y∗), f(xn, yn)

)
+ d
(
xn+1, x

∗)
<
ε

2
+ η ≤ ε

This implies that f(x∗, y∗) = x∗. Similarly, we can show that f(y∗, x∗) = y∗. �

In the next theorem, the continuity hypothesis of f has been omitted.

Theorem 2.2. Let (X,≤) be a partially ordered set and d be a complete metric on X. Suppose that
X has following property:

(1) If a nondecreasing sequence xn → x, then xn ≤ x, ∀n ∈ N.

(2) If a nonincreasing sequence yn → y, then yn ≥ y, ∀n ∈ N.

Assume that f : X ×X → X is a mapping such that:

(i) f : X ×X → X has the mixed monotone property on X.

(ii) (x0, y0) is an ≤-coupled fixed point of f .

(iii) There exist α, β ∈ (0, 1
2
) with

d(f(x, y), f(u, v)) ≤ αd(x, f(x, y)) + βd(u, f(u, v)) ∀ x ≥ u, y ≤ v.

Then, there exists (x∗, y∗) ∈ X ×X such that f(x∗, y∗) = x∗ and f(y∗, x∗) = y∗.

Proof . Define {xn}n∈N and {yn}n∈N in X, by xn = f(xn−1, yn−1) and yn = f(yn−1, xn−1). Similar
to the proof of Theorem 2.1, {xn}n∈N and {yn}n∈N are nondecreasing and nonincreasing sequences



174 Ghafoori Adl, Ebrahimi Bagha, Asgari

respectively and xn → x∗ and yn → y∗ for some x∗, y∗ ∈ X. Therefore, xn ≤ x∗ and yn ≥ y∗ for all
n ∈ N. We now show that (x∗, y∗) is a coupled fixed point of f . By (iii) we have

d(f(x∗, y∗), x∗) ≤ d(f(x∗, y∗), xn+1) + d(xn+1, x
∗)

= d(f(x∗, y∗), f(xn, yn)) + d(xn+1, x
∗)

≤ αd(x∗, f(x∗, y∗)) + βd(xn, f(xn, yn)) + d(xn+1, x
∗)

≤ αd(x∗, f(x∗, y∗)) + β × (
β

1− α
)nd(x1, x0) + d(xn+1, x

∗).

Therefore

d(f(x∗, y∗), x∗) ≤ (
β

1− α
)n+1d(x1, x0) +

1

1− α
d(xn+1, x

∗).

Letting n→∞, then d(f(x∗, y∗), x∗) = 0, which implies that f(x∗, y∗) = x∗. Similarly, we can show
that f(y∗, x∗) = y∗. �

Let (X,≤) be a partially ordered set. In the rest of the paper, we endow the product space X×X
with the following partial order:

∀(x, y), (u, v) ∈ X ×X, (x, y) ≤ (u, v)⇔ x ≤ u, y ≥ v.

We can prove that the components of the coupled fixed points are equal, if the product space
X × X endowed with the above partial order has the property which every pair of elements has
either a lower bound or an upper bound. It is know that this condition is equivalent with for every
(x, y), (u, v) ∈ X ×X, there exists a (z, w) ∈ X ×X that is comparable to (x, y) and (u, v) ([9]).

Theorem 2.3. In addition to the hypothesis of Theorem 2.1, assume that every pair of elements of
X × X has an upper bound or a lower bound in X × X. Then, there exists an x ∈ X such that
f(x, x) = x.

Proof . The existence of coupled fixed point (x, y) proved in Theorem 2.1. We first show that
if (x∗, y∗) ∈ X × X is another coupled fixed point of f , then x = x∗, y = y∗. To see this, if
(x, y) comparable to (x∗, y∗) with respect to the order in X ×X, it is obvious, because in this case
x ≥ x∗, y ≤ y∗. Hence with (iii) we see that

d(x, x∗) + d(y, y∗) = d(f(x, y), f(x∗, y∗)) + d(f(y, x), f(y∗, x∗))

≤ αd
(
x, f(x, y)

)
+ βd

(
x∗, f(x∗, y∗)

)
+ αd

(
y∗, f(y∗, x∗)

)
+ βd

(
y, f(y, x)

)
= αd(x, x) + βd(x∗, x∗) + αd(y∗, y∗) + βd(y, y) = 0.

So x = x∗, y = y∗. Finally, assume that (x, y) is not comparable to (x∗, y∗), then, there exists
a (z1, z2) ∈ X × X that is comparable to (x, y) and (x∗, y∗). Thus, by the the mixed mono-
tone property of f for any n ∈ N, (fn(z1, z2), f

n(z2, z1)) is comparable to (fn(x, y), fn(y, x)) and
(fn(x∗, y∗), fn(y∗, x∗)). This follows that

d(x, x∗) + d(y, y∗) = d
(
fn+1(x, y), fn+1(x∗, y∗)

)
+ d
(
fn+1(y, x), fn+1(y∗, x∗)

)
≤ d(fn(x, y), fn(z1, z2)) + d(fn(y, x), fn(z2, z1))

+ d(fn(z1, z2), f
n(x∗, y∗)) + d(fn(z2, z1), f

n(y∗, x∗))

≤ α(
β

1− α
)nd(x, f(x, y)) + β(

β

1− α
)nd(z1, f(z1, z2))

+ α(
β

1− α
)nd(z1, f(z1, z2)) + β(

β

1− α
)nd(x∗, f(x∗, y∗))
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letting n → ∞ so that d
(
(x, y), (x∗, y∗)

)
= 0, it follows that x = x∗, y = y∗. Now, we note that if

(x, y) is a coupled fixed point of f , then (y, x) is also another coupled fixed point of f . Therefore
x = y. �

In the next theorem, we give another condition that prove the components of the coupled fixed
points in Theorem 2.1 are equal.

Theorem 2.4. In addition to the hypothesis of Theorem 2.1, if the ≤-coupled fixed point of f are
comparable. Then the components of the coupled fixed point are equal.

Proof . Let (x0, y0) be the ≤-coupled fixed point of f such that x0 ≤ y0. The mixed monotonicity
of f implies that xn ≤ yn for all n ∈ N. Suppose that (x, y) is the coupled fixed point of f . Now,
using the triangular inequality, (2.1) and (2.2), we get

d(x, y) ≤ d(x, xn+1) + d(xn+1, y) ≤ d(x, xn+1) + d(xn+1, yn+1) + d(yn+1, y)

≤ d(x, xn+1) + d(f(yn, xn), f(xn, yn)) + d(yn+1, y)

≤ d(x, xn+1) + αd(yn, f(yn, xn)) + βd(xn, f(xn, yn)) + d(yn+1, y)

= d(x, xn+1) + αd(yn+1, yn) + βd(xn+1, xn) + d(yn+1, y)

≤ d(x, xn+1) + α(
α

1− β
)nd(y1, y0) + β(

β

1− α
)nd(x1, x0) + d(yn+1, y).

Letting n→∞, since xn → x and yn → y, we obtain d(x, y) = 0, that is x = y. Similarly, if x0 ≥ y0,
then it is possible to show xn ≥ yn for all n, and that d(x, y) = 0. �

3. An application to periodic boundary value problems

In this section, on the basis of the coupled fixed point theorems in Section 2, we study the existence
of a unique solution of a periodic boundary value problem.{

u′ = f(t, u) + g(t, u)
u(0) = u(T ),

∀t ∈ I = [0, T ],

where T > 0 and f, g ∈ C(I × R,R). As a first step we obtain a solution of the following boundary
value equations system: 

u′ = f(t, u) + g(t, v)
v′ = f(t, v) + g(t, u)
u(0) = u(T ), v(0) = v(T ).

∀t ∈ I = [0, T ], (3.1)

This problem is equivalent to the following integral equations system:{
u(t) = u(T ) +

∫ t
0

(
f(s, u(s)) + g(s, v(s))

)
ds

v(t) = v(T ) +
∫ t
0

(
f(s, v(s)) + g(s, u(s))

)
ds

∀t ∈ I = [0, T ].

Let X = C(I,R) be the metric space of all continuous functions u : I → R, endowed with the metric

d(u, v) = sup
t∈I
|u(t)− v(t)| ∀u, v ∈ X.

Also, if we define the order relation in X as follows, then X is a partially ordered set:

u ≤ v ⇔ u(t) ≤ v(t) ∀t ∈ I.
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Suppose that we consider a monotone nondecreasing sequence {un}∞n=1 in X converging to u ∈ X.
Then, for every t ∈ I, the sequence of real numbers

u1(t) ≤ u2(t) ≤ · · · ≤ un(t) ≤ · · · ,

converges to u(t). Therefore, for all t ∈ I, n ∈ N, un(t) ≤ u(t). Hence un ≤ u, for all n ∈ N.
Similarly, we can verify that the limit v(t) of a monotone nonincreasing sequence {vn}∞n=1 in X is a
lower bound for all the elements in the sequence. Moreover, for any f, g ∈ X, M(t) = max{f(t), g(t)}
and m(t) = min{f(t), g(t)}, for all t ∈ I, are in X and are the upper and lower bounds of f, g,
respectively. Also, (X ×X, d) is a complete metric space if we define

d((u1, v1), (u2, v2)) = sup
t∈I
|u1(t)− u2(t)|+ sup

t∈I
|v1(t)− v2(t)|.

Also, X × X = C(I,R) × C(I,R) is a partially ordered set if we define the order relation in X as
follows:

(u1, v1) ≤ (u2, v2)⇐⇒ u1(t) ≤ u2(t) and v1(t) ≥ v2(t) ∀t ∈ I.

Define, for t ∈ I,

F (u, v)(t) = u(T ) +

∫ t

0

(
f(s, u(s)) + g(s, v(s))

)
ds.

Note that if (u, v) ∈ X ×X is a coupled fixed point of F , we have

u(t) = F (u, v)(t) and v(t) = F (v, u)(t) ∀t ∈ I

and it is a solution of (3.1) satisfying the boundary conditions u(0) = u(T ) and v(0) = v(T ).

Theorem 3.1. Suppose f, g ∈ C(I ×R,R) such that f is nondecreasing in its second argument and
g is nonincreasing in its second argument. Suppose that there exist mixed ≤-solution (u0, v0) of (1.1).
Then the boundary value equations system (3.1) having a unique solution in C(I,R).

Proof . We show that the operator F : C(I,R) × C(I,R) → C(I,R) has a unique coupled fixed
point in C(I,R) × C(I,R). To achieve this, we verify that F satisfies the hypotheses of Theorem
2.2. For any u1 ≥ u2 we have

F (u1, v)(t) = u1(T ) +

∫ t

0

(
f(s, u1(s)) + g(s, v(s))

)
ds

≥ u2(T ) +

∫ t

0

(
f(s, u2(s)) + g(s, v(s))

)
ds = F (u2, v)(t).

Also, if v1 ≤ v2, then

F (u, v1)(t) = u(T ) +

∫ t

0

(
f(s, u(s)) + g(s, v1(s))

)
ds

≥ u(T ) +

∫ t

0

(
f(s, u(s)) + g(s, v2(s))

)
ds = F (u, v2)(t).
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Thus, F (u, v) has the mixed monotone property on C(I,R). In addition, for (x, y) ≤ (u, v), we
obtain

d(F (u, v), F (x, y)) = sup
t∈I

∣∣F (u, v)(t)− F (x, y)(t)
∣∣

= sup
t∈I

∣∣u(T ) +

∫ t

0

(
f(s, u(s)) + g(s, v(s))

)
ds

− x(T )−
∫ t

0

(
f(s, x(s)) + g(s, y(s))

)
ds
∣∣

≤ 1

3
sup
t∈I

∣∣u(T )− u(t) +

∫ t

0

(
f(s, u(s)) + g(s, v(s))

)
ds
∣∣

+
1

3
sup
t∈I

∣∣x(T )− x(t) +

∫ t

0

(
f(s, x(s)) + g(s, y(s))

)
ds
∣∣

=
1

3
d(u, F (u, v)) +

1

3
d(x, F (x, y)).

So F is a generalized Kannan type mapping with α = β = 1
3
. Finally, let (u0, v0) ∈ C1(I,R)×C1(I,R)

be a mixed ≤-solution of (1.1). We have{
u′0(t) ≤ f(t, u0(t)) + g(t, v0(t)) u0(0) ≤ u0(T ),
v′0(t) ≥ f(t, v0(t)) + g(t, u0(t)) v0(0) ≥ v0(T ).

By integration on [0, t], we get{
u0(t) ≤ u0(T ) +

∫ t
0
[f(s, u0(s)) + g(s, v0(s))]ds,

v0(t) ≥ v0(T ) +
∫ t
0
[f(s, v0(s)) + g(s, u0(s))]ds,

which implies that

u0 ≤ F (u0, v0), v0 ≥ F (v0, u0).

Therefore by Theorem 2.2, F has a coupled fixed point in C(I,R) × C(I,R) which is a solution of
the boundary value equations system (3.1). �

Remark 3.2. Since the hypothesis of Theorem 2.4 is satisfied, therefore the components of the
coupled fixed point (u, v) in Theorem 3.1 are equal. That is, u(t) = v(t), which this implies that
u = F (u, u) and thus u(t) is the unique solution of{

u′(t) = f(t, u(t)) + g(t, u(t))
u(0) = u(T ),

∀t ∈ I = [0, T ].

This establishes that the PBVP (1.1) has an unique solution on I.

4. Conclusion

In this paper, we found several theoretical results of fixed point theorems for the generalized Kanann
type contraction mappings in partially ordered metric space. Also, as an application, we proved
the existence and uniqueness of solution for a first-order ordinary differential equation with periodic
boundary conditions admitting only the existence of a mixed ≤-solution.
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